International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

Available at www.ijsred.com

RESEARCH ARTICLE OPEN ACCESS

Al-Driven Operating System for Intelligent Desktop Automation

M. Vishnu Vardhan', Mohammed Junaid?, Mounish?, T. Vishnu Vardhan*, Mr.Iliyaz Pasha M?>

5Assistant Professor, Department of Computer Science and Engineering,
R.L. Jalappa Institute of Technology, Doddaballapur, Karnataka, India
Student, Department of Computer Science and Engineering

skt sk sk sk stk sk sk sk ok sk sk

Abstract:

Modern desktop operating systems require significant command-line knowledge and manual
configuration, creating accessibility barriers for many users. This paper presents an Al-driven operating
system assistant prototype that integrates a locally-deployed Large Language Model into a minimal Linux
environment to enable natural language control of system operations. The proposed architecture employs a
modular design with a user interface, a central Orchestrator for secure command execution, and a fine-
tuned LLM that translates user intent into structured system actions. All processing occurs offline on
consumer hardware, preserving privacy while maintaining responsiveness. The prototype was evaluated
through desktop automation scenarios including file management, project organization, and version
control workflows, demonstrating the feasibility of using compact, domain-adapted language models for
intuitive desktop interaction. The results establish a foundation for future research into intelligent, offline-
capable computing assistants.

Keywords— AI-Driven Operating System, Large Language Model (LLM), Natural Language Interface,
Offline Al Desktop Assistant, System Automation

ste sl ste s ste s ste sl ste sfe e sfe e sfe shesfe shesfe shesfe shesfe she e

L INTRODUCTION
Traditional desktop operating systems rely heavily
on command-driven interaction, manual
configuration, and user expertise to perform even
routine system tasks. Users must remember
complex terminal commands, navigate filesystem
hierarchies, install and manage software manually,
and troubleshoot unexpected errors through log
inspection. While this workflow is flexible for
power users, it presents a steep learning curve for

Recent advances in Large Language Models (LLMs)
have demonstrated strong capabilities in natural-
language understanding, intent interpretation, and
procedural reasoning. These developments open the
opportunity to fundamentally rethink how users
interact with their personal computers. Instead of
acting as passive platforms, operating systems can
evolve into active participants that understand user
goals, automate workflows, and assist in
troubleshooting—without ~ requiring technical

the majority of everyday computer users who expertise.

primarily seek a seamless, intuitive, and supportive
computing experience.

ISSN : 2581-7175 ©I1JSRED: All Rights are Reserved Page 43

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

This paper presents a prototype for an Al-assisted
desktop automation system centred around an
offline, on-device intelligent assistant capable of
translating natural language instructions into
actionable, validated system operations. The system
is built around a modular architecture involving a
User Interface, an Orchestrator, and a fine-tuned,
lightweight LLM, forming a closed, privacy-
preserving workflow that functions without internet
access. The Orchestrator ensures secure execution
through structured action parsing, strict privilege
isolation, and a controlled terminal environment.

The prototype demonstrates a personal-computer
environment that is intuitive, autonomous, and
helpful. It enables users to manage files, organize
projects, automate repetitive tasks, and interact with
their system through natural language. For example,
a user working on a college project can request the
assistant to "organize my project folder, initialize a
Git repository, and prepare it for upload to GitHub,"
demonstrating how the system can execute these
steps safely and transparently. By integrating Al
into the core interaction loop, the proposed system
aims to enhance usability, reduce cognitive
workload, and make advanced system operations
more accessible. This research explores how
combining lightweight AI models with a secure
execution framework can contribute to redefining
the user experience of modern personal computing
environments.

IL. LITERATURE SURVERY
[1] Vaswani et al: Vaswani et al. introduced the
Transformer architecture, demonstrating that self-
attention mechanisms can replace recurrence and
convolution for sequence modeling. Their work
showed how multi-head attention and positional
encoding enable efficient modeling of long-range
dependencies and contextual relationships. This
architecture forms the foundational design of

Available at www.ijsred.com

modern large language models, and our system
adopts transformer-based language modeling to
enable contextual understanding of multi-step
operating system instructions and conversational
continuity.

[2] Devlin et al: Devlin et al. introduced BERT, a
bidirectional transformer-based language
representation model that significantly advanced
natural language understanding tasks. Their work
demonstrated how deep contextual embeddings
enable models to capture semantic relationships and
syntactic structure more effectively than traditional
sequential models. This research established the
foundation for intent understanding and contextual
interpretation, which is essential for accurately
interpreting natural-language system commands in
Al-driven operating system environments.

[3] Brown et al: Brown et al. demonstrated that
large-scale language models exhibit few-shot
learning capabilities through prompt-based
conditioning, without requiring task-specific fine-
tuning. Their work showed that a single model can
generalize across diverse tasks using only natural
language prompts. This insight directly influences
our prompt-driven interaction design, allowing the
assistant to perform a wide range of operating
system tasks using a unified model without
retraining for each function.

introduced

Touvron et al: Touvron et al.

[4]
LLaMA, a family of open and computationally
efficient foundation language models designed for
local deployment. Their work emphasized
parameter efficiency and high performance on
consumer-grade hardware. This research informs
our decision to use locally executable language
models, enabling offline operation, reduced
resource overhead, and privacy-preserving Al-

assisted system interaction.

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 44

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

[5] Yao et al: Yao et al. proposed the ReAct
framework, which synergizes reasoning and action
execution by interleaving intermediate reasoning
steps with tool usage. Their approach demonstrated
improved task performance by enabling models to
plan and adapt based on observations. Our system
draws conceptual inspiration from ReAct by
separating reasoning and action phases, while
introducing a dedicated orchestrator to validate and
safely execute system commands generated by the
model.

[6] Wei et al: Wei et al. introduced Chain-of-
Thought prompting, showing that explicitly
generating intermediate reasoning steps
significantly improves reasoning accuracy in large
language models. Their work highlights the
importance of structured reasoning in complex
decision-making tasks. In our system, Chain-of-
Thought reasoning is used internally to improve
planning and command generation reliability, while
remaining hidden from the user interface to
maintain a clean and minimal interaction
experience.

[7] Schwartz-Narbonne et al: Schwartz-Narbonne et
al. investigated formal methods for the safe
execution of learned control policies, emphasizing
correctness, verification, and execution constraints
in autonomous systems. Their work underscores the
importance of enforcing safety boundaries when
integrating learned behaviors into real-world
systems. These principles directly influence our
execution model, where all model-generated actions
are mediated through an orchestrator that enforces
isolation, privilege control, and structured execution
policies.

[8] Gulzar et al: Gulzar et al. explored automated
detection and correction of configuration errors in

Linux systems, demonstrating how intelligent

Available at www.ijsred.com

analysis of system state can reduce operational
faults. Their findings motivate the diagnostic
capabilities of our assistant, which analyzes
configuration outputs and system state information
before suggesting corrective actions, rather than
applying direct or potentially unsafe modifications.

[9] Mickens et al: Mickens et al. introduced Pivot, a
system for fast and isolated execution of code
fragments using generator chains. Their work
emphasized isolation and controlled execution as
core principles for secure system integration. This
research informs our modular system design, where
the user interface, reasoning engine, and command
execution environment are isolated components to
prevent fault propagation and enhance system
stability.

[10] Myers et al: Myers et al. examined natural
programming languages and environments that
enable users to express computational intent using
human-centric language rather than rigid syntax.
Their work argued for systems that adapt to human
communication patterns. This perspective directly
motivates our natural language—first operating
system interface, allowing users to interact with
system functionality conversationally instead of
relying on traditional command-line tools.

111. MOTIVATION AND REAL WORLD SCENARIO

Modern personal computers remain powerful but
often unintuitive tools: they execute commands
exactly as instructed, with limited contextual
understanding of user intent, and depend heavily on
the user’s technical expertise to perform moderately
complex tasks. Whether managing files, organizing
projects, or configuring software environments,
users frequently encounter repetitive, time-
consuming workflows that disrupt productivity.

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 45

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

A typical example occurs during local software
development. A student or developer may need to
initialize a Git repository, create a structured project
folder, and prepare it for version control—a process
that requires remembering numerous CLI
commands, interpreting error logs, and manually
navigating between tools. Even minor mistakes,
such as incorrect paths or missing permissions, can
halt progress and require extensive troubleshooting.

To address this friction, we propose an Al-assisted
desktop automation system that embeds an offline,
intelligent assistant capable of understanding and
executing natural language instructions. Instead of
requiring users to memorize commands or interpret
cryptic errors, the system enables conversational
interaction—for example, a user could request:
“Create a new C++ project folder with src, docs,
and scripts directories, and initialize a Git
repository.” The system interprets the request,
translates it into validated system actions, executes
them through a secure Orchestrator, and returns the
results. By enabling offline Al reasoning and
controlled automation of common desktop tasks,
this approach aims to reduce the technical burden
on users, enhance accessibility for non-experts, and
improve productivity for students, developers, and
everyday computer users.

IV. CONTRIBUTION

This work demonstrates a prototype system for
enabling natural-language interaction with desktop
operating systems through a secure, locally-hosted
Al assistant. The primary contributions are:

An architecture for secure, offline Al-assisted
desktop automation, centred on a dedicated
Orchestrator layer that mediates between a local
LLM and the OS, ensuring command validation and
execution safety without cloud dependence.

o A structured natural-language-to-command
translation approach, in which user intents are
mapped to JSON-formatted executable actions,
enabling deterministic parsing and controlled
execution.

Available at www.ijsred.com

o Implementation and evaluation of a fully

local automation pipeline, showing that
lightweight, fine-tuned LLMs can perform
common desktop tasks—such as file

management, project setup, and version control
operations—entirely offline.

o A modular prototype showcasing clear
separation of concerns between the user
interface, reasoning model, and execution
sandbox, illustrating a replicable design for
privacy-preserving desktop Al assistants.

o Evidence that compact models can support

adaptive command execution through a
feedback loop where terminal output 1is
analyzed to refine subsequent actions,

improving reliability in multi-step workflows.

o A publicly documented methodology for
dataset creation, model fine-tuning, and system
integration that can serve as a reference for
future work in offline, language-driven OS
interaction.

V. SYSTEM ARCHITECTURE
A. User Interface Layer:

[Cantext
ter Manager
e e— Local LU
ommana
ars
ifecycie Conticl
Mocel-Engine Script
(start ! stop { restart)

Fig-1 High-level architecture of implementation
illustrating the interaction between the User
Interface, Orchestrator, local LLM engine, and the
command execution environment.

The User Interface (UI) serves as the primary point
of interaction, designed as a lightweight, chat-style

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 46

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

desktop assistant that operates entirely offline.
Users enter natural-language requests—such as file
organization, project setup, or basic automation
tasks—into a simple text prompt. The Ul transmits
all input directly to the Orchestrator for processing
and displays structured responses, explanations, and
task progress. For transparency and debugging, an
optional terminal-mirror mode allows users to view
command execution in real time. The interface is
intentionally minimal to reduce system overhead

and maintain responsiveness on consumer hardware.

Crucially, the UI does not execute any commands;
it acts solely as a safe interaction surface, with all
decision-making and execution handled by
subsequent layers.

B. Orchestrator Layer (Central Control Unit)

The Orchestrator functions as the core control
mechanism, connecting the UI, the LLM, and the
underlying Linux environment. It ensures that every
operation follows a structured, secure workflow.
The Orchestrator operates in two modes: Normal
Mode for efficient execution, and Debug Mode,
which logs the entire interaction pipeline for
analysis and troubleshooting.

The Orchestrator consists of several key modules:

o Request Handling Module

Receives user input from the UI, normalizes it, and
attaches relevant metadata (such as conversation
state and previous command output) to create a
context-rich prompt for the LLM.

o Communication Bridge (Model-
Engine): Manages the lifecycle of the local
LLM handling startup, shutdown,
resource checks, and health monitoring to
ensure low-latency availability.

o Safety & Validation Module: Performs syntax
validation on model-generated commands and
enforces privilege isolation by executing all
commands in a controlled environment. The
current implementation focuses on basic

server,

Available at www.ijsred.com

validation, while the modular design allows for
future integration of more advanced security
measures—such as container-based sandboxing,
system-call filtering, or path-restriction
policies—as needed.

o Terminal Execution Environment: Uses an
embedded tmux session to run validated
commands in an isolated, non-root context. This
provides sandboxed execution while capturing
complete terminal output (stdout and stderr) for
feedback and logging.

o Logging & Audit Subsystem: Records all
inputs, outputs, commands, model responses,
and validation decisions, supporting
traceability, debugging, and safety auditing—
especially when Debug Mode is active.

o Extensibility Framework: The Orchestrator’s
architecture is designed to support pluggable
modules for future enhancements, such as
distributed communication protocols that could
enable coordination between multiple instances
of the system across a local network or edge
devices.

Through these components, the Orchestrator
transforms natural-language input into validated,
secure system operations, forming the foundation of
the prototype’s intelligent behaviour.

C. Model Layer (Local LLLM Engine)

The Large Language Model (LLM) serves as the
core reasoning component of the prototype. We use
a lightweight, fine-tuned variant (1B-2B
parameters) designed for offline execution on
consumer hardware, enabling low-latency inference
while preserving user privacy and eliminating cloud
dependency. The model receives pre-processed user
intent and contextual metadata from the
Orchestrator and generates responses according to a
strictly defined, three-part format that separates
reasoning, user communication, and executable
instructions. This structured approach maintains

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 47

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

safety, transparency, and predictability throughout
the automation pipeline.

o Structured Model Response Format

Each model response is organized into three distinct
sections:

[THINKING]: Contains the model’s internal
reasoning and step-by-step planning. This section
is never executed and serves only to improve
multi-step reasoning quality and decision
consistency.

[USER]: Provides natural-language explanations,
summaries, or confirmations intended for display
in the user interface.

[ACTIONS]: Contains strictly structured,
machine-readable instructions in JSON format.
Only this section is consumed by the Orchestrator,
where each proposed action undergoes validation
before execution in the controlled terminal
environment.

[THINKING]

<internal reasoning and planning based on user intent and system state>
[USER]

<human-readable explanation or confirmation message shown to the user>
[ACTIONS]

[

{"action": "execute_command", "command": "<shell command>"},

{"action": "send_keys", "keys": "<interactive input>"}

1

Fig-1. Illustrates the end to end execution pipeline,
showing LLM reasoning, structured action
generation, sandboxed command execution inside
tmux, terminal output analysis, and the final user
facing response.

o Rationale for the Sectioned Response Format

©IJSRED: All Rights are Reserved

ISSN : 2581-7175

Available at www.ijsred.com

Instead of emitting a single monolithic JSON
object, the sectioned response format is employed
to address several practical limitations inherent in
OS-level automation. First, it enforces a clear
separation of responsibilities by isolating reasoning,
explanations, and executable commands into
distinct blocks, which reduces parsing complexity
and prevents the accidental execution of
non-operational content. Second, by extracting only
the [ACTIONS] block, the Orchestrator can apply
consistent validation rules, thereby improving
safety and determinism while minimizing the risk
of unintended command execution caused by
malformed or ambiguous model output. Third, the
format remains parsable even when individual
sections contain minor errors, granting the system
robustness against partial or invalid output and
allowing it to recover gracefully or request
correction without crashing the pipeline. Fourth,
explicit reasoning traces in
the [THINKING] section enable transparent
debugging and auditing, letting developers inspect
why a particular command was proposed without
exposing internal logic to the execution layer.
Finally, this clean separation facilitates a
closed-loop feedback mechanism: terminal output
can be returned to the model, which can then revise
specific sections while preserving the overall
response structure, thereby supporting iterative
self-correction during multi-step workflows.

o Model Training and Adaptation

The LLM is fine-tuned on a domain-specific dataset

of approximately 4,000 samples covering
system-administration dialogues,
command-generation tasks, and
workflow-automation examples. This training

enables the model to interpret user intents related to
file management, project organization,
version-control operations, and basic system
navigation. When command execution produces

Page 48

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

errors or unexpected output, the Orchestrator
returns structured terminal feedback to the LLM,
which can then generate a revised response
following the same three-part format. This
closed-loop interaction demonstrates the potential
for adaptive, self-correcting behavior in
desktop-automation scenarios.

Overall, the Model Layer provides the intelligent
reasoning foundation for natural-language
interaction with desktop systems. By enforcing a
strict response contract and delegating all execution
authority to the Orchestrator, the prototype achieves
a balance between autonomy, safety, and
transparency in offline desktop automation.

VILMETHODOLOGY
Our prototype was developed through four
coordinated phases: dataset creation, model
fine-tuning, orchestrator implementation, and

system integration. Each phase was guided by the
requirements of offline operation, basic safety, and
compatibility with consumer hardware.

A. Dataset Creation

A domain-specific dataset of approximately 4,000
multi-turn dialogues was constructed to train the
LLM for interactive desktop automation. Each
dialogue simulates a realistic user-assistant
exchange and is structured to reinforce the
three-part response format ([THINKING], [USER],
[ACTIONS]). The data includes natural-language
queries, model reasoning traces, user-facing
explanations, and executable command sequences,
along with simulated terminal output to enable
feedback-driven adaptation. For instance:

{
"dialogue": [
{

"user_input": "<natural language request>",

"thinking_output": "<model's internal

reasoning>",

n,n

"user_output": "<explanation for user>",

Available at www.ijsred.com

"orchestrator_output": "[{
\"action\": \"execute_command\",
\"command\": \"<shell command>\"}]"
1
{

"orchestrator_input":
"[TERMINAL_OUTPUT\n<simulated terminal
output>",

"thinking_output": "
output>",

"user_output": "<summary for user>",

"orchestrator_output": null

}

]
}

<analysis of terminal

B. Model Fine-Tuning

A compact LLaMA-based model (1B-2B
parameters) was selected for its suitability for local
execution on laptops with limited resources.
Fine-tuning was performed using LoRA (Low-Rank
Adaptation) on a single T4 GPU (Google Colab),
with a custom training format that mirrors the
dialogue structure shown above. The objective was
to teach the odel to: (1) interpret natural-language
intents for common desktop tasks, (2) produce
structured three-part responses ([THINKING],
[USER], [ACTIONS]), and (3) adapt its reasoning
based on terminal feedback. Training leveraged the
simulated terminal output included in the dataset to
enable Dbasic error-recovery behavior. After
fine-tuning, the model demonstrated improved
accuracy in command generation and the ability to
refine its outputs when presented with execution
results.

C. Orchestrator Development

The Orchestrator, implemented in Go, serves as the
central control unit that mediates between the user
interface, the LLM, and the underlying OS. Its
modular design includes:

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 49

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

e Request Handler: Formats user input into
context-rich prompts for the LLM.

o Safety & Validation Module: Performs basic
syntax checks on model-generated commands
to ensure they are appropriate for execution.

¢ Terminal Execution Environment: Manages
a persistent, isolated tmux session that
provides sandboxed command execution and
complete output capture, preventing direct
LLM access to the OS.

e Logging and Debugging
Subsystem: Supports two operational modes;
Normal (minimal overhead) and Debug
(detailed traces of wuser prompts, model
responses, validated actions, and terminal

output)—enabling analysis without impacting

runtime performance.

e Model-Engine Module: A dedicated helper
script that manages the local LLM server
lifecycle, monitoring health and ensuring
low-latency communication.

This architecture ensures that all commands are
validated and executed within a controlled
environment while keeping all processing offline.

VII. IMPLEMENTATION

The proposed Al-driven operating system was
implemented using a modular and incremental
development approach, integrating a locally
deployed Large Language Model (LLM), a
centralized Orchestrator framework, and a hardened
base operating system into a unified intelligent
desktop environment. Each subsystem was
developed, validated, and refined independently
prior to full-stack integration, ensuring stable

Available at www.ijsred.com

operation, basic safety guarantees, and complete
offline functionality.

A. Local LLM Deployment and Execution
Control.

The system utilizes a fine-tuned 1-billion-parameter
LLaMA-based language model deployed locally
using the llama.cpp inference framework. The
model is exposed as an HTTP-based inference
service through the native Illama.cpp serving
interface, enabling CPU-optimized execution on
consumer-grade hardware without reliance on cloud
services or GPU acceleration.

A lightweight model engine control script manages
the complete lifecycle of the model server,
including startup, shutdown, restart, health
monitoring, and model selection. The Orchestrator
continuously monitors the availability of the model
server and initiates it on demand when user requests
are received, thereby optimizing system resource
utilization during idle periods.

Communication between the Orchestrator and the
language model occurs exclusively over a local
HTTP interface. Model responses are constrained to
a structured three-part format comprising
[THINKING], [USER], and [ACTIONS] sections.
The [THINKING] component contains internal
reasoning annotations used during development and
debugging, the [USER] section provides human-
readable explanations intended for user feedback,
and the [ACTIONS] section contains structured,
machine-readable commands encoded in JSON
format. Only the [ACTIONS] section is forwarded
to the execution pipeline, ensuring deterministic
parsing, reliable validation, and strict separation
between reasoning and execution.

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 50

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

$./friday-engine

Invalid command:

Usage: friday-engine <command> [options]

start [--model <name>] Start the model server (optionally specify a model)
stop Stop the running server

status Check if the server is running

restart Restart the server

list-models List all available models (.gguf)

help Show this help message

friday-engine start
friday-engine start
friday-engine stop
friday-engine list-models

--model 1llama-3.2-3b-instruct.Q4 K_M.gguf

$./friday-engine start
Starting LLM server...
[FRIDAY SERVER] GPU detected: NVIDIA GeForce RTX 3050 6GB Laptop GPU, 6144 MiB
[FRIDAY SERVER] Server started (PID: 1057, Port: 8080)
Logs: /tmp/llama_server.log

] |

8080

Fig-2 Local LLM serving architecture using
llama.cpp and HTTP-based inference interface

B. Orchestrator Architecture and Control Flow.

The Orchestrator, implemented in Go to leverage its
low runtime overhead and native concurrency
support, functions as the central control layer of the
system. It mediates all interactions between user
interfaces, the local language model server, and the
underlying operating system, providing a structured
execution flow and centralized control over
command dispatch and logging.

User requests are received through a Unix Domain
Socket interface, enabling low-latency local inter-
process communication. The Orchestrator supports
concurrent client connections while maintaining
thread-safe internal state. Structured prompt
contexts are constructed by combining system
prompts, a bounded interaction history, and the
current user query before being forwarded to the
language model server. A lightweight state-tracking
mechanism, comprising idle, processing, waiting,
error, and completion states, is used to monitor
request progression and provide consistent status
updates to connected interfaces.

In the current prototype, model-generated actions
are parsed and inspected prior to execution to

Available at www.ijsred.com

ensure structural correctness and adherence to the
expected action format. Commands are executed
within a non-root user context to limit system
exposure. More advanced validation mechanisms—
such as semantic command analysis, detection of
destructive patterns, privilege-escalation prevention,
and policy-based execution control—are
intentionally deferred and identified as directions
for future work.

Command execution is performed within a
dedicated and persistent tmux session managed by
the Orchestrator, allowing isolation from the user’s
interactive shell while enabling full capture of
command output. Execution completion is inferred
through shell prompt detection, providing a
practical, non-intrusive mechanism for determining
command termination. Standard output and error
streams are captured and returned to the
Orchestrator, where they are either presented to the
user or supplied back to the language model to
support iterative reasoning and corrective response
generation.

g $./orchestrator

[FRIDAY SERVER] Server started (PID: 3983, Port: 8080)
Logs: /tmp/llama_server.log

8080

2025/11/28 16:44:40 [STATE] waiting — Waiting for model to initialize...
2025/11/28 16:44:42 [STATE] processing — Model generating response...
2025/11/28 16:44:43 [MODEL RAW] [THINKING]

User wants current time. Can use date command.

[USER]
Let me check the current time:

[ACTIONS]
[{"action": "execute_command", "command": "date"}]

2025/11/28 16:44:43 [STATE] waiting — Executing: date

2025/11/28 16:44:44 [STATE] processing — Analyzing terminal output...
2025/11/28 16:44:45 [MODEL ANALYSIS RAW] [THINKING]

Command returned UTC 2025 16:44:43. There was no action needed.

[USER]
The time is Friday, November 28, 2025, at 16:44:43 UTC.

[ACTIONS]

None

2025/11/28 16:44:45 [STATE] done — All tasks completed successfully.
2025/11/28 16:44:45 [STATE] idle — Standing by.

Fig-3 Orchestrator-controlled tmux execution

pipeline and feedback loop

The Orchestrator supports two operational modes to
balance performance and observability. Normal

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 51

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

mode enables minimal logging to reduce runtime
overhead, while Debug mode records detailed
traces including model prompts, parsed responses,
validation decisions, executed commands, and
terminal output. This dual-mode design enables
effective debugging and system analysis without
requiring modifications to the core architecture.

C. User Interaction Layer.

Two complementary user interface implementations
were developed to evaluate system usability and
interaction flexibility.

A lightweight command-line interface supports
rapid testing and real-time inspection of system
behaviour. The interface streams structured
responses from the Orchestrator and clearly
distinguishes between reasoning output, proposed
actions, execution status, and terminal results.

A simple graphical desktop assistant interface
provides a natural-language input field, a scrollable
interaction history, and clear visualization of
executed commands and their outcomes. The
interface operates entirely offline and
communicates with the Orchestrator using the same
local socket-based protocol.

D. Base Operating System Preparation.

A minimal Debian-based environment was prepared
as the target deployment platform, referred to as the
Golden Master base operating system. Non-
essential packages were removed to reduce the
system attack surface, while essential system
utilities, tmux, and LLM runtime dependencies
were retained. User permissions were configured to
enforce non-root execution and controlled system
access. The Golden Master OS is currently
deployed within a controlled virtual machine for
stability validation, with bare-metal deployment
planned for future phases.

Available at www.ijsred.com

E. System Integration and Validation.

Following full system integration, an iterative
testing phase was conducted to validate end-to-end
functionality. Comprehensive tests verified the
complete LLM-Orchestrator—execution pipeline,
while stress tests evaluated latency, concurrency
handling, and overall system responsiveness.
Additional safety evaluations confirmed consistent
generation of warnings for potentially destructive
commands and strict enforcement of execution
constraints by the Orchestrator prior to command
execution.

VIII. RESULTS AND DISCUSSION

This section presents observations derived from
controlled execution traces collected during
interaction with the prototype system. The
evaluation focuses on end-to-end task latency and
execution behaviour as experienced by the user,
rather than establishing absolute performance
guarantees. The reported results serve as empirical
reference measurements, intended to demonstrate
system feasibility and architectural behaviour under
realistic usage conditions.

All measurements were obtained from real
executions of the implemented system and reflect
the combined effects of model inference, command
validation, execution, and output handling.

A. Experimental
Scope

The benchmarking experiments were conducted on
a consumer-grade system equipped with an Intel
Core 15-13450HX processor, 16 GB of RAM, and
an NVIDIA RTX 3050 GPU with 6 GB VRAM.
Although a discrete GPU was available, the system
primarily relied on CPU-based inference using the
llama.cpp backend, reflecting a practical offline

Setup and Benchmarking

deployment scenario.

It is important to emphasize that absolute latency
values are highly dependent on system configuration,

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 52

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

including processor architecture, available memory,
storage performance, background load, and model
size. Consequently, the measurements reported in
this section should not be interpreted as fixed
performance benchmarks. Instead, they are provided
as observational reference values, demonstrating
how the system behaves on one representative
hardware configuration.
The benchmark dataset consists of multiple natural-
language requests grouped into four functional
categories:

e file operations,

e system information queries,

¢ development-related tasks, and

e package and tool operations.
For each task, a single end-to-end latency value was
recorded, measured from the point at which the
Orchestrator began processing the request to the
completion of command execution and response
generation.

B. End-to-End Latency Across Task Categories

Figure 4 presents the average end-to-end latency
observed for each task category.

#verage End-to-End Latency per Task Category

£ 12500
% s
- J .
¥
Task Category

Fig-4 Average End-to-End Latency per Task
Category

File operations and development-related tasks
generally exhibit lower average latency, as these
requests typically translate into lightweight shell
commands with limited output. System information
queries demonstrate moderately higher latency due
to increased command execution and output
processing.

Available at www.ijsred.com

Package and tool operations show the highest
average latency. These tasks often involve querying
package managers, enumerating system services, or
accessing documentation, all of which produce
larger outputs and incur additional I/O and parsing
overhead. The observed increase in latency is
therefore attributable to command complexity rather
than instability within the system architecture.

C. Latency Variability and Distribution

Figure 5 illustrates the distribution of task latency
across categories using box plots.

Latency Distribution by Task Category

25000

Task Category

Fig-5 Latency Distribution by Task Category

File and development tasks exhibit relatively tight
latency distributions, indicating predictable
execution behaviour. In contrast, package-related
operations show greater variability, including higher
outliers. This reflects the non-deterministic nature of
system-level commands that depend on filesystem
state, package metadata size, and background
system activity. Despite this variability, all tasks
completed successfully without system crashes or
inconsistent states, indicating that the Orchestrator
and execution pipeline remain stable under diverse
workloads.

D. Effect of Command Output Characteristics

Figure 6 analyzes the relationship between
command output size and observed latency.

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 53

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

Latency vs Command Output Characteristics

17300

g
]

Fig-6 Latency vs. Command Output Characteristics

Tasks producing large volumes of output
consistently exhibit higher end-to-end latency. This
confirms that output handling and post-processing
contribute significantly to overall execution time,
often exceeding the cost of model inference itself.
Tasks with small or moderate output sizes remain
within interactive latency bounds, reinforcing the
suitability of the system for everyday desktop
operations.

E. Discussion

The observed results demonstrate that the proposed
architecture can support practical, offline, natural-
language-driven desktop automation on consumer
hardware. While latency varies depending on task
complexity and output size, the system exhibits
consistent behaviour and stable execution across all
tested scenarios.

Importantly, the benchmarks presented in this
section are not intended as definitive performance
claims. Instead, they provide concrete evidence that
a lightweight, locally deployed language model—
when combined with a structured orchestration and
execution framework—can effectively mediate real
operating system interactions. Performance
characteristics are expected to scale proportionally
with system hardware and configuration, reinforcing
the portability of the proposed design.

IX.CONCLUSION

This work explored the feasibility of integrating a
lightweight, locally deployed Large Language
Model into a desktop operating system environment

Available at www.ijsred.com

to enable natural-language-driven system interaction.
By combining a compact fine-tuned language model,
a centralized Orchestrator, and a minimal Debian-
based base system, the proposed prototype
demonstrates that meaningful OS-level automation
can be achieved without reliance on cloud services.
The implementation shows that common desktop
tasks—such as file management, project
organization, system inspection, and development-
related workflows—can be mediated through
natural-language interaction while preserving user
control and execution boundaries. The Orchestrator
plays a central role in this design, acting as an
intermediary that enforces structured parsing,
validation, and controlled execution rather than
granting the
language model direct access to the operating
system.
Experimental observations indicate that the system
operates with predictable end-to-end latency for a
range of everyday tasks on consumer hardware.
While absolute performance varies with task
complexity and system configuration, the results
provide empirical evidence that offline language
models can be practically integrated into interactive
desktop environments. Importantly, the evaluation
emphasizes observed system behavior rather than
fixed performance guarantees.
Overall, this work demonstrates the practicality of a
local, privacy-preserving approach to Al-assisted
desktop automation and highlights the potential of
combining language-based reasoning with
traditional operating system control mechanisms in
a structured and transparent manner.

X.FUTURE WORK

While the current prototype demonstrates the
feasibility of offline natural-language control for
desktop automation, several directions remain for
future exploration and refinement.

Voice-Based Interaction:

Future extensions may incorporate on-device speech
recognition models to enable hands-free interaction.
This would allow users to issue commands and
receive feedback through voice while preserving the
system’s local and privacy-focused design.

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 54

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

Deeper System Awareness:

The Orchestrator could be extended to incorporate
additional system-level signals, such as I/O behavior,
resource contention, or hardware health indicators.
Integrating such information may enable more
informed diagnostics and context-aware assistance.

Cross-Device and Distributed Operation:

An extension of the framework to support multiple
machines—such as personal laptops, servers, or

edge devices—could enable coordinated task
execution and system management across
distributed environments, while maintaining

centralized control logic.

Multimodal Inputs:

Incorporating visual inputs, such as screenshots or
window-level state, could enhance troubleshooting
and user interaction. This would allow the assistant
to reason over graphical context in addition to
textual commands.

Extensible Plugin Architecture:

A controlled plugin mechanism could allow third-
party developers to add domain-specific capabilities,
such as integration with development tools or
creative software, without weakening the system’s
execution and isolation guarantees.

On-Device Adaptation:

Future work may explore lightweight
personalization techniques that allow the system to
adapt to user preferences or recurring workflows
over time. Such adaptation would need to remain
fully local and operate within strict safety
constraints.

These directions aim to extend the system’s
capabilities while preserving its core design
principles: locality, transparency, controlled
execution, and user authority.

Xl. XI. REFERENCES

Available at www.ijsred.com

[1] A. Vaswani et al., “Attention is all you need,” in
Advances in Neural Information Processing
Systems, 2017, pp. 5998-6008.

[2] J. Devlin, M.-W. Chang, K. Lee, and K.
Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language
understanding,” in Proc. NAACL-HLT, 2019, pp.
4171-4186.

[3] T. B. Brown et al., “Language models are few-
shot learners,” in Advances in Neural Information
Processing Systems, vol. 33, 2020, pp. 1877-1901.

[4] H. Touvron et al., “LLaMA: Open and efficient
foundation language models,”
arXiv preprint arXiv:2302.13971, 2023.

[5] S. Yao et al., “ReAct: Synergizing reasoning and
acting in language models,”
arXiv preprint arXiv:2210.03629, 2022.

[6] J. Wei et al., “Chain-of-thought prompting elicits
reasoning in large language models,” in Advances in
Neural Information Processing Systems, vol. 35,
2022, pp. 24824-24837.

[7] D. Schwartz-Narbonne et al., “Formal methods
for safe execution of learned control policies,” IEEE
Trans. Softw. Eng., vol. 48, no. 4, pp. 1243-1259,
Apr. 2022.

[8] M. A. Gulzar, S. M. A. H. Rizvi, and M. A.
Suleman, “Understanding and auto-fixing
configuration errors in Linux systems,” in Proc.
ACM SIGOPS 28th Symp. Operating Syst. Princ.,
2021, pp. 432-447.

[9] J. Mickens et al., “Pivot: Fast, synchronous
mashup isolation using generator chains,” in Proc.
IEEE Symp. Secur. Privacy, 2017, pp. 261-275.

[10] B. A. Myers, A. J. Ko, and T. D. LaToza,
“Natural programming languages and environments,
Commun. ACM, vol. 59, no. 9, pp. 47-53, Sep.
2016.

2

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 55

