
International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026 

          Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 43 

 

AI-Driven Operating System for Intelligent Desktop Automation 
 

M. Vishnu Vardhan1, Mohammed Junaid2, Mounish3, T. Vishnu Vardhan4, Mr.Iliyaz Pasha M5 

 5Assistant Professor, Department of Computer Science and Engineering,  

R.L. Jalappa Institute of Technology, Doddaballapur, Karnataka, India  

Student, Department of Computer Science and Engineering  

----------------------------------------************************----------------------------------

Abstract: 

            Modern desktop operating systems require significant command-line knowledge and manual 

configuration, creating accessibility barriers for many users. This paper presents an AI-driven operating 

system assistant prototype that integrates a locally-deployed Large Language Model into a minimal Linux 

environment to enable natural language control of system operations. The proposed architecture employs a 

modular design with a user interface, a central Orchestrator for secure command execution, and a fine-

tuned LLM that translates user intent into structured system actions. All processing occurs offline on 

consumer hardware, preserving privacy while maintaining responsiveness. The prototype was evaluated 

through desktop automation scenarios including file management, project organization, and version 

control workflows, demonstrating the feasibility of using compact, domain-adapted language models for 

intuitive desktop interaction. The results establish a foundation for future research into intelligent, offline-

capable computing assistants. 
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I.     INTRODUCTION 

Traditional desktop operating systems rely heavily 

on command-driven interaction, manual 

configuration, and user expertise to perform even 

routine system tasks. Users must remember 

complex terminal commands, navigate filesystem 

hierarchies, install and manage software manually, 

and troubleshoot unexpected errors through log 

inspection. While this workflow is flexible for 

power users, it presents a steep learning curve for 

the majority of everyday computer users who 

primarily seek a seamless, intuitive, and supportive 

computing experience. 

 

Recent advances in Large Language Models (LLMs) 

have demonstrated strong capabilities in natural-

language understanding, intent interpretation, and 

procedural reasoning. These developments open the 

opportunity to fundamentally rethink how users 

interact with their personal computers. Instead of 

acting as passive platforms, operating systems can 

evolve into active participants that understand user 

goals, automate workflows, and assist in 

troubleshooting—without requiring technical 

expertise. 
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This paper presents a prototype for an AI-assisted 

desktop automation system centred around an 

offline, on-device intelligent assistant capable of 

translating natural language instructions into 

actionable, validated system operations. The system 

is built around a modular architecture involving a 

User Interface, an Orchestrator, and a fine-tuned, 

lightweight LLM, forming a closed, privacy-

preserving workflow that functions without internet 

access. The Orchestrator ensures secure execution 

through structured action parsing, strict privilege 

isolation, and a controlled terminal environment. 

 

The prototype demonstrates a personal-computer 

environment that is intuitive, autonomous, and 

helpful. It enables users to manage files, organize 

projects, automate repetitive tasks, and interact with 

their system through natural language. For example, 

a user working on a college project can request the 

assistant to "organize my project folder, initialize a 

Git repository, and prepare it for upload to GitHub," 

demonstrating how the system can execute these 

steps safely and transparently. By integrating AI 

into the core interaction loop, the proposed system 

aims to enhance usability, reduce cognitive 

workload, and make advanced system operations 

more accessible. This research explores how 

combining lightweight AI models with a secure 

execution framework can contribute to redefining 

the user experience of modern personal computing 

environments. 

 

II.                         LITERATURE SURVERY 

[1] Vaswani et al: Vaswani et al. introduced the 

Transformer architecture, demonstrating that self-

attention mechanisms can replace recurrence and 

convolution for sequence modeling. Their work 

showed how multi-head attention and positional 

encoding enable efficient modeling of long-range 

dependencies and contextual relationships. This 

architecture forms the foundational design of 

modern large language models, and our system 

adopts transformer-based language modeling to 

enable contextual understanding of multi-step 

operating system instructions and conversational 

continuity. 

[2] Devlin et al: Devlin et al. introduced BERT, a 

bidirectional transformer-based language 

representation model that significantly advanced 

natural language understanding tasks. Their work 

demonstrated how deep contextual embeddings 

enable models to capture semantic relationships and 

syntactic structure more effectively than traditional 

sequential models. This research established the 

foundation for intent understanding and contextual 

interpretation, which is essential for accurately 

interpreting natural-language system commands in 

AI-driven operating system environments. 

 

[3] Brown et al: Brown et al. demonstrated that 

large-scale language models exhibit few-shot 

learning capabilities through prompt-based 

conditioning, without requiring task-specific fine-

tuning. Their work showed that a single model can 

generalize across diverse tasks using only natural 

language prompts. This insight directly influences 

our prompt-driven interaction design, allowing the 

assistant to perform a wide range of operating 

system tasks using a unified model without 

retraining for each function. 

 

[4] Touvron et al: Touvron et al. introduced 

LLaMA, a family of open and computationally 

efficient foundation language models designed for 

local deployment. Their work emphasized 

parameter efficiency and high performance on 

consumer-grade hardware. This research informs 

our decision to use locally executable language 

models, enabling offline operation, reduced 

resource overhead, and privacy-preserving AI-

assisted system interaction. 
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[5] Yao et al: Yao et al. proposed the ReAct 

framework, which synergizes reasoning and action 

execution by interleaving intermediate reasoning 

steps with tool usage. Their approach demonstrated 

improved task performance by enabling models to 

plan and adapt based on observations. Our system 

draws conceptual inspiration from ReAct by 

separating reasoning and action phases, while 

introducing a dedicated orchestrator to validate and 

safely execute system commands generated by the 

model. 

 

[6] Wei et al: Wei et al. introduced Chain-of-

Thought prompting, showing that explicitly 

generating intermediate reasoning steps 

significantly improves reasoning accuracy in large 

language models. Their work highlights the 

importance of structured reasoning in complex 

decision-making tasks. In our system, Chain-of-

Thought reasoning is used internally to improve 

planning and command generation reliability, while 

remaining hidden from the user interface to 

maintain a clean and minimal interaction 

experience. 

 

[7] Schwartz-Narbonne et al: Schwartz-Narbonne et 

al. investigated formal methods for the safe 

execution of learned control policies, emphasizing 

correctness, verification, and execution constraints 

in autonomous systems. Their work underscores the 

importance of enforcing safety boundaries when 

integrating learned behaviors into real-world 

systems. These principles directly influence our 

execution model, where all model-generated actions 

are mediated through an orchestrator that enforces 

isolation, privilege control, and structured execution 

policies. 

 

[8] Gulzar et al: Gulzar et al. explored automated 

detection and correction of configuration errors in 

Linux systems, demonstrating how intelligent 

analysis of system state can reduce operational 

faults. Their findings motivate the diagnostic 

capabilities of our assistant, which analyzes 

configuration outputs and system state information 

before suggesting corrective actions, rather than 

applying direct or potentially unsafe modifications. 

 

[9] Mickens et al: Mickens et al. introduced Pivot, a 

system for fast and isolated execution of code 

fragments using generator chains. Their work 

emphasized isolation and controlled execution as 

core principles for secure system integration. This 

research informs our modular system design, where 

the user interface, reasoning engine, and command 

execution environment are isolated components to 

prevent fault propagation and enhance system 

stability. 

 

[10] Myers et al: Myers et al. examined natural 

programming languages and environments that 

enable users to express computational intent using 

human-centric language rather than rigid syntax. 

Their work argued for systems that adapt to human 

communication patterns. This perspective directly 

motivates our natural language–first operating 

system interface, allowing users to interact with 

system functionality conversationally instead of 

relying on traditional command-line tools. 

 

III. MOTIVATION AND REAL WORLD SCENARIO 

Modern personal computers remain powerful but 

often unintuitive tools: they execute commands 

exactly as instructed, with limited contextual 

understanding of user intent, and depend heavily on 

the user’s technical expertise to perform moderately 

complex tasks. Whether managing files, organizing 

projects, or configuring software environments, 

users frequently encounter repetitive, time-

consuming workflows that disrupt productivity. 
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A typical example occurs during local software 

development. A student or developer may need to 

initialize a Git repository, create a structured project 

folder, and prepare it for version control—a process 

that requires remembering numerous CLI 

commands, interpreting error logs, and manually 

navigating between tools. Even minor mistakes, 

such as incorrect paths or missing permissions, can 

halt progress and require extensive troubleshooting. 

To address this friction, we propose an AI-assisted 

desktop automation system that embeds an offline, 

intelligent assistant capable of understanding and 

executing natural language instructions. Instead of 

requiring users to memorize commands or interpret 

cryptic errors, the system enables conversational 

interaction—for example, a user could request: 

“Create a new C++ project folder with src, docs, 

and scripts directories, and initialize a Git 

repository.” The system interprets the request, 

translates it into validated system actions, executes 

them through a secure Orchestrator, and returns the 

results. By enabling offline AI reasoning and 

controlled automation of common desktop tasks, 

this approach aims to reduce the technical burden 

on users, enhance accessibility for non-experts, and 

improve productivity for students, developers, and 

everyday computer users. 

IV. CONTRIBUTION 

This work demonstrates a prototype system for 

enabling natural-language interaction with desktop 

operating systems through a secure, locally-hosted 

AI assistant. The primary contributions are: 

An architecture for secure, offline AI-assisted 

desktop automation, centred on a dedicated 

Orchestrator layer that mediates between a local 

LLM and the OS, ensuring command validation and 

execution safety without cloud dependence. 

o A structured natural-language-to-command 

translation approach, in which user intents are 

mapped to JSON-formatted executable actions, 

enabling deterministic parsing and controlled 

execution. 

o Implementation and evaluation of a fully 

local automation pipeline, showing that 

lightweight, fine-tuned LLMs can perform 

common desktop tasks—such as file 

management, project setup, and version control 

operations—entirely offline. 

o A modular prototype showcasing clear 

separation of concerns between the user 

interface, reasoning model, and execution 

sandbox, illustrating a replicable design for 

privacy-preserving desktop AI assistants. 

o Evidence that compact models can support 

adaptive command execution through a 

feedback loop where terminal output is 

analyzed to refine subsequent actions, 

improving reliability in multi-step workflows. 

o A publicly documented methodology for 

dataset creation, model fine-tuning, and system 

integration that can serve as a reference for 

future work in offline, language-driven OS 

interaction. 

V. SYSTEM ARCHITECTURE 

A. User Interface Layer: 

 

Fig-1 High-level architecture of implementation 

illustrating the interaction between the User 

Interface, Orchestrator, local LLM engine, and the 

command execution environment. 

The User Interface (UI) serves as the primary point 

of interaction, designed as a lightweight, chat-style 
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desktop assistant that operates entirely offline. 

Users enter natural-language requests—such as file 

organization, project setup, or basic automation 

tasks—into a simple text prompt. The UI transmits 

all input directly to the Orchestrator for processing 

and displays structured responses, explanations, and 

task progress. For transparency and debugging, an 

optional terminal-mirror mode allows users to view 

command execution in real time. The interface is 

intentionally minimal to reduce system overhead 

and maintain responsiveness on consumer hardware. 

Crucially, the UI does not execute any commands; 

it acts solely as a safe interaction surface, with all 

decision-making and execution handled by 

subsequent layers. 

B. Orchestrator Layer (Central Control Unit)  

The Orchestrator functions as the core control 

mechanism, connecting the UI, the LLM, and the 

underlying Linux environment. It ensures that every 

operation follows a structured, secure workflow. 

The Orchestrator operates in two modes: Normal 

Mode for efficient execution, and Debug Mode, 

which logs the entire interaction pipeline for 

analysis and troubleshooting. 

 

The Orchestrator consists of several key modules: 

o Request Handling Module 

Receives user input from the UI, normalizes it, and 

attaches relevant metadata (such as conversation 

state and previous command output) to create a 

context-rich prompt for the LLM. 

o Communication Bridge (Model-

Engine): Manages the lifecycle of the local 

LLM server, handling startup, shutdown, 

resource checks, and health monitoring to 

ensure low-latency availability. 

o Safety & Validation Module: Performs syntax 

validation on model-generated commands and 

enforces privilege isolation by executing all 

commands in a controlled environment. The 

current implementation focuses on basic 

validation, while the modular design allows for 

future integration of more advanced security 

measures—such as container-based sandboxing, 

system-call filtering, or path-restriction 

policies—as needed. 

o Terminal Execution Environment: Uses an 

embedded tmux session to run validated 

commands in an isolated, non-root context. This 

provides sandboxed execution while capturing 

complete terminal output (stdout and stderr) for 

feedback and logging. 

o Logging & Audit Subsystem: Records all 

inputs, outputs, commands, model responses, 

and validation decisions, supporting 

traceability, debugging, and safety auditing—

especially when Debug Mode is active. 

o Extensibility Framework: The Orchestrator’s 

architecture is designed to support pluggable 

modules for future enhancements, such as 

distributed communication protocols that could 

enable coordination between multiple instances 

of the system across a local network or edge 

devices. 

Through these components, the Orchestrator 

transforms natural-language input into validated, 

secure system operations, forming the foundation of 

the prototype’s intelligent behaviour. 

C. Model Layer (Local LLM Engine) 

The Large Language Model (LLM) serves as the 

core reasoning component of the prototype. We use 

a lightweight, fine-tuned variant (1B–2B 

parameters) designed for offline execution on 

consumer hardware, enabling low-latency inference 

while preserving user privacy and eliminating cloud 

dependency. The model receives pre-processed user 

intent and contextual metadata from the 

Orchestrator and generates responses according to a 

strictly defined, three-part format that separates 

reasoning, user communication, and executable 

instructions. This structured approach maintains 
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safety, transparency, and predictability throughout 

the automation pipeline. 

o Structured Model Response Format 

Each model response is organized into three distinct 

sections: 

[THINKING]: Contains the model’s internal 

reasoning and step-by-step planning. This section 

is never executed and serves only to improve 

multi-step reasoning quality and decision 

consistency. 

[USER]: Provides natural-language explanations, 

summaries, or confirmations intended for display 

in the user interface. 

[ACTIONS]: Contains strictly structured, 

machine-readable instructions in JSON format. 

Only this section is consumed by the Orchestrator, 

where each proposed action undergoes validation 

before execution in the controlled terminal 

environment.  

 

 

Fig-1. Illustrates the end to end execution pipeline, 

showing LLM reasoning, structured action 

generation, sandboxed command execution inside 

tmux, terminal output analysis, and the final user 

facing response. 

o Rationale for the Sectioned Response Format 

Instead of emitting a single monolithic JSON 

object, the sectioned response format is employed 

to address several practical limitations inherent in 

OS-level automation. First, it enforces a clear 

separation of responsibilities by isolating reasoning, 

explanations, and executable commands into 

distinct blocks, which reduces parsing complexity 

and prevents the accidental execution of 

non-operational content. Second, by extracting only 

the [ACTIONS] block, the Orchestrator can apply 

consistent validation rules, thereby improving 

safety and determinism while minimizing the risk 

of unintended command execution caused by 

malformed or ambiguous model output. Third, the 

format remains parsable even when individual 

sections contain minor errors, granting the system 

robustness against partial or invalid output and 

allowing it to recover gracefully or request 

correction without crashing the pipeline. Fourth, 

explicit reasoning traces in 

the [THINKING] section enable transparent 

debugging and auditing, letting developers inspect 

why a particular command was proposed without 

exposing internal logic to the execution layer. 

Finally, this clean separation facilitates a 

closed-loop feedback mechanism: terminal output 

can be returned to the model, which can then revise 

specific sections while preserving the overall 

response structure, thereby supporting iterative 

self-correction during multi-step workflows. 

 

o Model Training and Adaptation  

The LLM is fine-tuned on a domain-specific dataset 

of approximately 4,000 samples covering 

system-administration dialogues, 

command-generation tasks, and 

workflow-automation examples. This training 

enables the model to interpret user intents related to 

file management, project organization, 

version-control operations, and basic system 

navigation. When command execution produces 
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errors or unexpected output, the Orchestrator 

returns structured terminal feedback to the LLM, 

which can then generate a revised response 

following the same three-part format. This 

closed-loop interaction demonstrates the potential 

for adaptive, self-correcting behavior in 

desktop-automation scenarios. 

 

Overall, the Model Layer provides the intelligent 

reasoning foundation for natural-language 

interaction with desktop systems. By enforcing a 

strict response contract and delegating all execution 

authority to the Orchestrator, the prototype achieves 

a balance between autonomy, safety, and 

transparency in offline desktop automation. 

 

VI.METHODOLOGY 

Our prototype was developed through four 

coordinated phases: dataset creation, model 

fine-tuning, orchestrator implementation, and 

system integration. Each phase was guided by the 

requirements of offline operation, basic safety, and 

compatibility with consumer hardware. 

A. Dataset Creation 

A domain-specific dataset of approximately 4,000 

multi-turn dialogues was constructed to train the 

LLM for interactive desktop automation. Each 

dialogue simulates a realistic user-assistant 

exchange and is structured to reinforce the 

three-part response format ([THINKING], [USER], 

[ACTIONS]). The data includes natural-language 

queries, model reasoning traces, user-facing 

explanations, and executable command sequences, 

along with simulated terminal output to enable 

feedback-driven adaptation. For instance: 

{ 

"dialogue": [ 

 { 

"user_input": "<natural language request>", 

   "thinking_output": "<model's internal 

reasoning>", 

   "user_output": "<explanation for user>", 

   "orchestrator_output": "[{ 

\"action\": \"execute_command\",  

\"command\": \"<shell command>\"}]" 

  }, 

 { 

   "orchestrator_input": 

"[TERMINAL_OUTPUT]\n<simulated terminal 

output>", 

   "thinking_output": "<analysis of terminal 

output>", 

   "user_output": "<summary for user>", 

   "orchestrator_output": null 

  } 

  ] 

} 

 

B. Model Fine-Tuning 

A compact LLaMA-based model (1B–2B 

parameters) was selected for its suitability for local 

execution on laptops with limited resources. 

Fine-tuning was performed using LoRA (Low-Rank 

Adaptation) on a single T4 GPU (Google Colab), 

with a custom training format that mirrors the 

dialogue structure shown above. The objective was 

to teach the odel to: (1) interpret natural-language 

intents for common desktop tasks, (2) produce 

structured three-part responses ([THINKING], 

[USER], [ACTIONS]), and (3) adapt its reasoning 

based on terminal feedback. Training leveraged the 

simulated terminal output included in the dataset to 

enable basic error-recovery behavior. After 

fine-tuning, the model demonstrated improved 

accuracy in command generation and the ability to 

refine its outputs when presented with execution 

results. 

C. Orchestrator Development 

The Orchestrator, implemented in Go, serves as the 

central control unit that mediates between the user 

interface, the LLM, and the underlying OS. Its 

modular design includes: 
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• Request Handler: Formats user input into 

context-rich prompts for the LLM. 

• Safety & Validation Module: Performs basic 

syntax checks on model-generated commands 

to ensure they are appropriate for execution. 

• Terminal Execution Environment: Manages 

a persistent, isolated tmux session that 

provides sandboxed command execution and 

complete output capture, preventing direct 

LLM access to the OS. 

• Logging and Debugging 

Subsystem: Supports two operational modes; 

Normal (minimal overhead) and Debug 

(detailed traces of user prompts, model 

responses, validated actions, and terminal 

output)—enabling analysis without impacting 

runtime performance. 

• Model-Engine Module: A dedicated helper 

script that manages the local LLM server 

lifecycle, monitoring health and ensuring 

low-latency communication. 

This architecture ensures that all commands are 

validated and executed within a controlled 

environment while keeping all processing offline. 

VII. IMPLEMENTATION   

The proposed AI-driven operating system was 

implemented using a modular and incremental 

development approach, integrating a locally 

deployed Large Language Model (LLM), a 

centralized Orchestrator framework, and a hardened 

base operating system into a unified intelligent 

desktop environment. Each subsystem was 

developed, validated, and refined independently 

prior to full-stack integration, ensuring stable 

operation, basic safety guarantees, and complete 

offline functionality. 

 

A. Local LLM Deployment and Execution 

Control. 

The system utilizes a fine-tuned 1-billion-parameter 

LLaMA-based language model deployed locally 

using the llama.cpp inference framework. The 

model is exposed as an HTTP-based inference 

service through the native llama.cpp serving 

interface, enabling CPU-optimized execution on 

consumer-grade hardware without reliance on cloud 

services or GPU acceleration. 

A lightweight model engine control script manages 

the complete lifecycle of the model server, 

including startup, shutdown, restart, health 

monitoring, and model selection. The Orchestrator 

continuously monitors the availability of the model 

server and initiates it on demand when user requests 

are received, thereby optimizing system resource 

utilization during idle periods. 

 

Communication between the Orchestrator and the 

language model occurs exclusively over a local 

HTTP interface. Model responses are constrained to 

a structured three-part format comprising 

[THINKING], [USER], and [ACTIONS] sections. 

The [THINKING] component contains internal 

reasoning annotations used during development and 

debugging, the [USER] section provides human-

readable explanations intended for user feedback, 

and the [ACTIONS] section contains structured, 

machine-readable commands encoded in JSON 

format. Only the [ACTIONS] section is forwarded 

to the execution pipeline, ensuring deterministic 

parsing, reliable validation, and strict separation 

between reasoning and execution. 
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Fig-2 Local LLM serving architecture using 

llama.cpp and HTTP-based inference interface 

 

B. Orchestrator Architecture and Control Flow. 

The Orchestrator, implemented in Go to leverage its 

low runtime overhead and native concurrency 

support, functions as the central control layer of the 

system. It mediates all interactions between user 

interfaces, the local language model server, and the 

underlying operating system, providing a structured 

execution flow and centralized control over 

command dispatch and logging. 

 

User requests are received through a Unix Domain 

Socket interface, enabling low-latency local inter-

process communication. The Orchestrator supports 

concurrent client connections while maintaining 

thread-safe internal state. Structured prompt 

contexts are constructed by combining system 

prompts, a bounded interaction history, and the 

current user query before being forwarded to the 

language model server. A lightweight state-tracking 

mechanism, comprising idle, processing, waiting, 

error, and completion states, is used to monitor 

request progression and provide consistent status 

updates to connected interfaces. 

 

In the current prototype, model-generated actions 

are parsed and inspected prior to execution to 

ensure structural correctness and adherence to the 

expected action format. Commands are executed 

within a non-root user context to limit system 

exposure. More advanced validation mechanisms—

such as semantic command analysis, detection of 

destructive patterns, privilege-escalation prevention, 

and policy-based execution control—are 

intentionally deferred and identified as directions 

for future work. 

 

Command execution is performed within a 

dedicated and persistent tmux session managed by 

the Orchestrator, allowing isolation from the user’s 

interactive shell while enabling full capture of 

command output. Execution completion is inferred 

through shell prompt detection, providing a 

practical, non-intrusive mechanism for determining 

command termination. Standard output and error 

streams are captured and returned to the 

Orchestrator, where they are either presented to the 

user or supplied back to the language model to 

support iterative reasoning and corrective response 

generation. 

 
 

Fig-3 Orchestrator-controlled tmux execution 

pipeline and feedback loop 

 

The Orchestrator supports two operational modes to 

balance performance and observability. Normal 
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mode enables minimal logging to reduce runtime 

overhead, while Debug mode records detailed 

traces including model prompts, parsed responses, 

validation decisions, executed commands, and 

terminal output. This dual-mode design enables 

effective debugging and system analysis without 

requiring modifications to the core architecture. 

 

C. User Interaction Layer. 

Two complementary user interface implementations 

were developed to evaluate system usability and 

interaction flexibility. 

A lightweight command-line interface supports 

rapid testing and real-time inspection of system 

behaviour. The interface streams structured 

responses from the Orchestrator and clearly 

distinguishes between reasoning output, proposed 

actions, execution status, and terminal results. 

A simple graphical desktop assistant interface 

provides a natural-language input field, a scrollable 

interaction history, and clear visualization of 

executed commands and their outcomes. The 

interface operates entirely offline and 

communicates with the Orchestrator using the same 

local socket-based protocol. 

 

D. Base Operating System Preparation. 

A minimal Debian-based environment was prepared 

as the target deployment platform, referred to as the 

Golden Master base operating system. Non-

essential packages were removed to reduce the 

system attack surface, while essential system 

utilities, tmux, and LLM runtime dependencies 

were retained. User permissions were configured to 

enforce non-root execution and controlled system 

access. The Golden Master OS is currently 

deployed within a controlled virtual machine for 

stability validation, with bare-metal deployment 

planned for future phases. 

 

E. System Integration and Validation. 

Following full system integration, an iterative 

testing phase was conducted to validate end-to-end 

functionality. Comprehensive tests verified the 

complete LLM–Orchestrator–execution pipeline, 

while stress tests evaluated latency, concurrency 

handling, and overall system responsiveness. 

Additional safety evaluations confirmed consistent 

generation of warnings for potentially destructive 

commands and strict enforcement of execution 

constraints by the Orchestrator prior to command 

execution. 

 

VIII. RESULTS AND DISCUSSION 

This section presents observations derived from 

controlled execution traces collected during 

interaction with the prototype system. The 

evaluation focuses on end-to-end task latency and 

execution behaviour as experienced by the user, 

rather than establishing absolute performance 

guarantees. The reported results serve as empirical 

reference measurements, intended to demonstrate 

system feasibility and architectural behaviour under 

realistic usage conditions. 

All measurements were obtained from real 

executions of the implemented system and reflect 

the combined effects of model inference, command 

validation, execution, and output handling. 

 

A. Experimental Setup and Benchmarking 

Scope 

The benchmarking experiments were conducted on 

a consumer-grade system equipped with an Intel 

Core i5-13450HX processor, 16 GB of RAM, and 

an NVIDIA RTX 3050 GPU with 6 GB VRAM. 

Although a discrete GPU was available, the system 

primarily relied on CPU-based inference using the 

llama.cpp backend, reflecting a practical offline 

deployment scenario. 

It is important to emphasize that absolute latency 

values are highly dependent on system configuration, 
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including processor architecture, available memory, 

storage performance, background load, and model 

size. Consequently, the measurements reported in 

this section should not be interpreted as fixed 

performance benchmarks. Instead, they are provided 

as observational reference values, demonstrating 

how the system behaves on one representative 

hardware configuration. 

The benchmark dataset consists of multiple natural-

language requests grouped into four functional 

categories: 

• file operations, 

• system information queries, 

• development-related tasks, and 

• package and tool operations. 

For each task, a single end-to-end latency value was 

recorded, measured from the point at which the 

Orchestrator began processing the request to the 

completion of command execution and response 

generation. 

 

B. End-to-End Latency Across Task Categories 

Figure 4 presents the average end-to-end latency 

observed for each task category. 

 

 

Fig-4 Average End-to-End Latency per Task 

Category 

 

File operations and development-related tasks 

generally exhibit lower average latency, as these 

requests typically translate into lightweight shell 

commands with limited output. System information 

queries demonstrate moderately higher latency due 

to increased command execution and output 

processing. 

Package and tool operations show the highest 

average latency. These tasks often involve querying 

package managers, enumerating system services, or 

accessing documentation, all of which produce 

larger outputs and incur additional I/O and parsing 

overhead. The observed increase in latency is 

therefore attributable to command complexity rather 

than instability within the system architecture. 

 

C. Latency Variability and Distribution 

Figure 5  illustrates the distribution of task latency 

across categories using box plots. 

 

 

Fig-5 Latency Distribution by Task Category 

 

File and development tasks exhibit relatively tight 

latency distributions, indicating predictable 

execution behaviour. In contrast, package-related 

operations show greater variability, including higher 

outliers. This reflects the non-deterministic nature of 

system-level commands that depend on filesystem 

state, package metadata size, and background 

system activity. Despite this variability, all tasks 

completed successfully without system crashes or 

inconsistent states, indicating that the Orchestrator 

and execution pipeline remain stable under diverse 

workloads. 

 

D. Effect of Command Output Characteristics 

Figure 6 analyzes the relationship between 

command output size and observed latency. 
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Fig-6 Latency vs. Command Output Characteristics 

 

Tasks producing large volumes of output 

consistently exhibit higher end-to-end latency. This 

confirms that output handling and post-processing 

contribute significantly to overall execution time, 

often exceeding the cost of model inference itself. 

Tasks with small or moderate output sizes remain 

within interactive latency bounds, reinforcing the 

suitability of the system for everyday desktop 

operations. 

 

E. Discussion 

The observed results demonstrate that the proposed 

architecture can support practical, offline, natural-

language-driven desktop automation on consumer 

hardware. While latency varies depending on task 

complexity and output size, the system exhibits 

consistent behaviour and stable execution across all 

tested scenarios. 

Importantly, the benchmarks presented in this 

section are not intended as definitive performance 

claims. Instead, they provide concrete evidence that 

a lightweight, locally deployed language model—

when combined with a structured orchestration and 

execution framework—can effectively mediate real 

operating system interactions. Performance 

characteristics are expected to scale proportionally 

with system hardware and configuration, reinforcing 

the portability of the proposed design. 

 

IX.CONCLUSION 

This work explored the feasibility of integrating a 

lightweight, locally deployed Large Language 

Model into a desktop operating system environment 

to enable natural-language-driven system interaction. 

By combining a compact fine-tuned language model, 

a centralized Orchestrator, and a minimal Debian-

based base system, the proposed prototype 

demonstrates that meaningful OS-level automation 

can be achieved without reliance on cloud services. 

The implementation shows that common desktop 

tasks—such as file management, project 

organization, system inspection, and development-

related workflows—can be mediated through 

natural-language interaction while preserving user 

control and execution boundaries. The Orchestrator 

plays a central role in this design, acting as an 

intermediary that enforces structured parsing, 

validation, and controlled execution rather than 

granting the 

language model direct access to the operating 

system. 

Experimental observations indicate that the system 

operates with predictable end-to-end latency for a 

range of everyday tasks on consumer hardware. 

While absolute performance varies with task 

complexity and system configuration, the results 

provide empirical evidence that offline language 

models can be practically integrated into interactive 

desktop environments. Importantly, the evaluation 

emphasizes observed system behavior rather than 

fixed performance guarantees. 

Overall, this work demonstrates the practicality of a 

local, privacy-preserving approach to AI-assisted 

desktop automation and highlights the potential of 

combining language-based reasoning with 

traditional operating system control mechanisms in 

a structured and transparent manner. 

X.FUTURE WORK 

While the current prototype demonstrates the 

feasibility of offline natural-language control for 

desktop automation, several directions remain for 

future exploration and refinement. 

Voice-Based Interaction: 

Future extensions may incorporate on-device speech 

recognition models to enable hands-free interaction. 

This would allow users to issue commands and 

receive feedback through voice while preserving the 

system’s local and privacy-focused design. 
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Deeper System Awareness: 

The Orchestrator could be extended to incorporate 

additional system-level signals, such as I/O behavior, 

resource contention, or hardware health indicators. 

Integrating such information may enable more 

informed diagnostics and context-aware assistance. 

Cross-Device and Distributed Operation: 

An extension of the framework to support multiple 

machines—such as personal laptops, servers, or 

edge devices—could enable coordinated task 

execution and system management across 

distributed environments, while maintaining 

centralized control logic. 

Multimodal Inputs:  

Incorporating visual inputs, such as screenshots or 

window-level state, could enhance troubleshooting 

and user interaction. This would allow the assistant 

to reason over graphical context in addition to 

textual commands. 

Extensible Plugin Architecture:  

A controlled plugin mechanism could allow third-

party developers to add domain-specific capabilities, 

such as integration with development tools or 

creative software, without weakening the system’s 

execution and isolation guarantees. 

On-Device Adaptation: 

Future work may explore lightweight 

personalization techniques that allow the system to 

adapt to user preferences or recurring workflows 

over time. Such adaptation would need to remain 

fully local and operate within strict safety 

constraints. 

These directions aim to extend the system’s 

capabilities while preserving its core design 

principles: locality, transparency, controlled 

execution, and user authority. 
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