
International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 43

AI-Driven Operating System for Intelligent Desktop Automation

M. Vishnu Vardhan1, Mohammed Junaid2, Mounish3, T. Vishnu Vardhan4, Mr.Iliyaz Pasha M5

 5Assistant Professor, Department of Computer Science and Engineering,

R.L. Jalappa Institute of Technology, Doddaballapur, Karnataka, India

Student, Department of Computer Science and Engineering

--************************----------------------------------

Abstract:

 Modern desktop operating systems require significant command-line knowledge and manual

configuration, creating accessibility barriers for many users. This paper presents an AI-driven operating

system assistant prototype that integrates a locally-deployed Large Language Model into a minimal Linux

environment to enable natural language control of system operations. The proposed architecture employs a

modular design with a user interface, a central Orchestrator for secure command execution, and a fine-

tuned LLM that translates user intent into structured system actions. All processing occurs offline on

consumer hardware, preserving privacy while maintaining responsiveness. The prototype was evaluated

through desktop automation scenarios including file management, project organization, and version

control workflows, demonstrating the feasibility of using compact, domain-adapted language models for

intuitive desktop interaction. The results establish a foundation for future research into intelligent, offline-

capable computing assistants.

Keywords— AI-Driven Operating System, Large Language Model (LLM), Natural Language Interface,

Offline AI Desktop Assistant, System Automation

--************************----------------------------------

I. INTRODUCTION

Traditional desktop operating systems rely heavily

on command-driven interaction, manual

configuration, and user expertise to perform even

routine system tasks. Users must remember

complex terminal commands, navigate filesystem

hierarchies, install and manage software manually,

and troubleshoot unexpected errors through log

inspection. While this workflow is flexible for

power users, it presents a steep learning curve for

the majority of everyday computer users who

primarily seek a seamless, intuitive, and supportive

computing experience.

Recent advances in Large Language Models (LLMs)

have demonstrated strong capabilities in natural-

language understanding, intent interpretation, and

procedural reasoning. These developments open the

opportunity to fundamentally rethink how users

interact with their personal computers. Instead of

acting as passive platforms, operating systems can

evolve into active participants that understand user

goals, automate workflows, and assist in

troubleshooting—without requiring technical

expertise.

RESEARCH ARTICLE OPEN ACCESS

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 44

This paper presents a prototype for an AI-assisted

desktop automation system centred around an

offline, on-device intelligent assistant capable of

translating natural language instructions into

actionable, validated system operations. The system

is built around a modular architecture involving a

User Interface, an Orchestrator, and a fine-tuned,

lightweight LLM, forming a closed, privacy-

preserving workflow that functions without internet

access. The Orchestrator ensures secure execution

through structured action parsing, strict privilege

isolation, and a controlled terminal environment.

The prototype demonstrates a personal-computer

environment that is intuitive, autonomous, and

helpful. It enables users to manage files, organize

projects, automate repetitive tasks, and interact with

their system through natural language. For example,

a user working on a college project can request the

assistant to "organize my project folder, initialize a

Git repository, and prepare it for upload to GitHub,"

demonstrating how the system can execute these

steps safely and transparently. By integrating AI

into the core interaction loop, the proposed system

aims to enhance usability, reduce cognitive

workload, and make advanced system operations

more accessible. This research explores how

combining lightweight AI models with a secure

execution framework can contribute to redefining

the user experience of modern personal computing

environments.

II. LITERATURE SURVERY

[1] Vaswani et al: Vaswani et al. introduced the

Transformer architecture, demonstrating that self-

attention mechanisms can replace recurrence and

convolution for sequence modeling. Their work

showed how multi-head attention and positional

encoding enable efficient modeling of long-range

dependencies and contextual relationships. This

architecture forms the foundational design of

modern large language models, and our system

adopts transformer-based language modeling to

enable contextual understanding of multi-step

operating system instructions and conversational

continuity.

[2] Devlin et al: Devlin et al. introduced BERT, a

bidirectional transformer-based language

representation model that significantly advanced

natural language understanding tasks. Their work

demonstrated how deep contextual embeddings

enable models to capture semantic relationships and

syntactic structure more effectively than traditional

sequential models. This research established the

foundation for intent understanding and contextual

interpretation, which is essential for accurately

interpreting natural-language system commands in

AI-driven operating system environments.

[3] Brown et al: Brown et al. demonstrated that

large-scale language models exhibit few-shot

learning capabilities through prompt-based

conditioning, without requiring task-specific fine-

tuning. Their work showed that a single model can

generalize across diverse tasks using only natural

language prompts. This insight directly influences

our prompt-driven interaction design, allowing the

assistant to perform a wide range of operating

system tasks using a unified model without

retraining for each function.

[4] Touvron et al: Touvron et al. introduced

LLaMA, a family of open and computationally

efficient foundation language models designed for

local deployment. Their work emphasized

parameter efficiency and high performance on

consumer-grade hardware. This research informs

our decision to use locally executable language

models, enabling offline operation, reduced

resource overhead, and privacy-preserving AI-

assisted system interaction.

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 45

[5] Yao et al: Yao et al. proposed the ReAct

framework, which synergizes reasoning and action

execution by interleaving intermediate reasoning

steps with tool usage. Their approach demonstrated

improved task performance by enabling models to

plan and adapt based on observations. Our system

draws conceptual inspiration from ReAct by

separating reasoning and action phases, while

introducing a dedicated orchestrator to validate and

safely execute system commands generated by the

model.

[6] Wei et al: Wei et al. introduced Chain-of-

Thought prompting, showing that explicitly

generating intermediate reasoning steps

significantly improves reasoning accuracy in large

language models. Their work highlights the

importance of structured reasoning in complex

decision-making tasks. In our system, Chain-of-

Thought reasoning is used internally to improve

planning and command generation reliability, while

remaining hidden from the user interface to

maintain a clean and minimal interaction

experience.

[7] Schwartz-Narbonne et al: Schwartz-Narbonne et

al. investigated formal methods for the safe

execution of learned control policies, emphasizing

correctness, verification, and execution constraints

in autonomous systems. Their work underscores the

importance of enforcing safety boundaries when

integrating learned behaviors into real-world

systems. These principles directly influence our

execution model, where all model-generated actions

are mediated through an orchestrator that enforces

isolation, privilege control, and structured execution

policies.

[8] Gulzar et al: Gulzar et al. explored automated

detection and correction of configuration errors in

Linux systems, demonstrating how intelligent

analysis of system state can reduce operational

faults. Their findings motivate the diagnostic

capabilities of our assistant, which analyzes

configuration outputs and system state information

before suggesting corrective actions, rather than

applying direct or potentially unsafe modifications.

[9] Mickens et al: Mickens et al. introduced Pivot, a

system for fast and isolated execution of code

fragments using generator chains. Their work

emphasized isolation and controlled execution as

core principles for secure system integration. This

research informs our modular system design, where

the user interface, reasoning engine, and command

execution environment are isolated components to

prevent fault propagation and enhance system

stability.

[10] Myers et al: Myers et al. examined natural

programming languages and environments that

enable users to express computational intent using

human-centric language rather than rigid syntax.

Their work argued for systems that adapt to human

communication patterns. This perspective directly

motivates our natural language–first operating

system interface, allowing users to interact with

system functionality conversationally instead of

relying on traditional command-line tools.

III. MOTIVATION AND REAL WORLD SCENARIO

Modern personal computers remain powerful but

often unintuitive tools: they execute commands

exactly as instructed, with limited contextual

understanding of user intent, and depend heavily on

the user’s technical expertise to perform moderately

complex tasks. Whether managing files, organizing

projects, or configuring software environments,

users frequently encounter repetitive, time-

consuming workflows that disrupt productivity.

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 46

A typical example occurs during local software

development. A student or developer may need to

initialize a Git repository, create a structured project

folder, and prepare it for version control—a process

that requires remembering numerous CLI

commands, interpreting error logs, and manually

navigating between tools. Even minor mistakes,

such as incorrect paths or missing permissions, can

halt progress and require extensive troubleshooting.

To address this friction, we propose an AI-assisted

desktop automation system that embeds an offline,

intelligent assistant capable of understanding and

executing natural language instructions. Instead of

requiring users to memorize commands or interpret

cryptic errors, the system enables conversational

interaction—for example, a user could request:

“Create a new C++ project folder with src, docs,

and scripts directories, and initialize a Git

repository.” The system interprets the request,

translates it into validated system actions, executes

them through a secure Orchestrator, and returns the

results. By enabling offline AI reasoning and

controlled automation of common desktop tasks,

this approach aims to reduce the technical burden

on users, enhance accessibility for non-experts, and

improve productivity for students, developers, and

everyday computer users.

IV. CONTRIBUTION

This work demonstrates a prototype system for

enabling natural-language interaction with desktop

operating systems through a secure, locally-hosted

AI assistant. The primary contributions are:

An architecture for secure, offline AI-assisted

desktop automation, centred on a dedicated

Orchestrator layer that mediates between a local

LLM and the OS, ensuring command validation and

execution safety without cloud dependence.

o A structured natural-language-to-command

translation approach, in which user intents are

mapped to JSON-formatted executable actions,

enabling deterministic parsing and controlled

execution.

o Implementation and evaluation of a fully

local automation pipeline, showing that

lightweight, fine-tuned LLMs can perform

common desktop tasks—such as file

management, project setup, and version control

operations—entirely offline.

o A modular prototype showcasing clear

separation of concerns between the user

interface, reasoning model, and execution

sandbox, illustrating a replicable design for

privacy-preserving desktop AI assistants.

o Evidence that compact models can support

adaptive command execution through a

feedback loop where terminal output is

analyzed to refine subsequent actions,

improving reliability in multi-step workflows.

o A publicly documented methodology for

dataset creation, model fine-tuning, and system

integration that can serve as a reference for

future work in offline, language-driven OS

interaction.

V. SYSTEM ARCHITECTURE

A. User Interface Layer:

Fig-1 High-level architecture of implementation

illustrating the interaction between the User

Interface, Orchestrator, local LLM engine, and the

command execution environment.

The User Interface (UI) serves as the primary point

of interaction, designed as a lightweight, chat-style

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 47

desktop assistant that operates entirely offline.

Users enter natural-language requests—such as file

organization, project setup, or basic automation

tasks—into a simple text prompt. The UI transmits

all input directly to the Orchestrator for processing

and displays structured responses, explanations, and

task progress. For transparency and debugging, an

optional terminal-mirror mode allows users to view

command execution in real time. The interface is

intentionally minimal to reduce system overhead

and maintain responsiveness on consumer hardware.

Crucially, the UI does not execute any commands;

it acts solely as a safe interaction surface, with all

decision-making and execution handled by

subsequent layers.

B. Orchestrator Layer (Central Control Unit)

The Orchestrator functions as the core control

mechanism, connecting the UI, the LLM, and the

underlying Linux environment. It ensures that every

operation follows a structured, secure workflow.

The Orchestrator operates in two modes: Normal

Mode for efficient execution, and Debug Mode,

which logs the entire interaction pipeline for

analysis and troubleshooting.

The Orchestrator consists of several key modules:

o Request Handling Module

Receives user input from the UI, normalizes it, and

attaches relevant metadata (such as conversation

state and previous command output) to create a

context-rich prompt for the LLM.

o Communication Bridge (Model-

Engine): Manages the lifecycle of the local

LLM server, handling startup, shutdown,

resource checks, and health monitoring to

ensure low-latency availability.

o Safety & Validation Module: Performs syntax

validation on model-generated commands and

enforces privilege isolation by executing all

commands in a controlled environment. The

current implementation focuses on basic

validation, while the modular design allows for

future integration of more advanced security

measures—such as container-based sandboxing,

system-call filtering, or path-restriction

policies—as needed.

o Terminal Execution Environment: Uses an

embedded tmux session to run validated

commands in an isolated, non-root context. This

provides sandboxed execution while capturing

complete terminal output (stdout and stderr) for

feedback and logging.

o Logging & Audit Subsystem: Records all

inputs, outputs, commands, model responses,

and validation decisions, supporting

traceability, debugging, and safety auditing—

especially when Debug Mode is active.

o Extensibility Framework: The Orchestrator’s

architecture is designed to support pluggable

modules for future enhancements, such as

distributed communication protocols that could

enable coordination between multiple instances

of the system across a local network or edge

devices.

Through these components, the Orchestrator

transforms natural-language input into validated,

secure system operations, forming the foundation of

the prototype’s intelligent behaviour.

C. Model Layer (Local LLM Engine)

The Large Language Model (LLM) serves as the

core reasoning component of the prototype. We use

a lightweight, fine-tuned variant (1B–2B

parameters) designed for offline execution on

consumer hardware, enabling low-latency inference

while preserving user privacy and eliminating cloud

dependency. The model receives pre-processed user

intent and contextual metadata from the

Orchestrator and generates responses according to a

strictly defined, three-part format that separates

reasoning, user communication, and executable

instructions. This structured approach maintains

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 48

safety, transparency, and predictability throughout

the automation pipeline.

o Structured Model Response Format

Each model response is organized into three distinct

sections:

[THINKING]: Contains the model’s internal

reasoning and step-by-step planning. This section

is never executed and serves only to improve

multi-step reasoning quality and decision

consistency.

[USER]: Provides natural-language explanations,

summaries, or confirmations intended for display

in the user interface.

[ACTIONS]: Contains strictly structured,

machine-readable instructions in JSON format.

Only this section is consumed by the Orchestrator,

where each proposed action undergoes validation

before execution in the controlled terminal

environment.

Fig-1. Illustrates the end to end execution pipeline,

showing LLM reasoning, structured action

generation, sandboxed command execution inside

tmux, terminal output analysis, and the final user

facing response.

o Rationale for the Sectioned Response Format

Instead of emitting a single monolithic JSON

object, the sectioned response format is employed

to address several practical limitations inherent in

OS-level automation. First, it enforces a clear

separation of responsibilities by isolating reasoning,

explanations, and executable commands into

distinct blocks, which reduces parsing complexity

and prevents the accidental execution of

non-operational content. Second, by extracting only

the [ACTIONS] block, the Orchestrator can apply

consistent validation rules, thereby improving

safety and determinism while minimizing the risk

of unintended command execution caused by

malformed or ambiguous model output. Third, the

format remains parsable even when individual

sections contain minor errors, granting the system

robustness against partial or invalid output and

allowing it to recover gracefully or request

correction without crashing the pipeline. Fourth,

explicit reasoning traces in

the [THINKING] section enable transparent

debugging and auditing, letting developers inspect

why a particular command was proposed without

exposing internal logic to the execution layer.

Finally, this clean separation facilitates a

closed-loop feedback mechanism: terminal output

can be returned to the model, which can then revise

specific sections while preserving the overall

response structure, thereby supporting iterative

self-correction during multi-step workflows.

o Model Training and Adaptation

The LLM is fine-tuned on a domain-specific dataset

of approximately 4,000 samples covering

system-administration dialogues,

command-generation tasks, and

workflow-automation examples. This training

enables the model to interpret user intents related to

file management, project organization,

version-control operations, and basic system

navigation. When command execution produces

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 49

errors or unexpected output, the Orchestrator

returns structured terminal feedback to the LLM,

which can then generate a revised response

following the same three-part format. This

closed-loop interaction demonstrates the potential

for adaptive, self-correcting behavior in

desktop-automation scenarios.

Overall, the Model Layer provides the intelligent

reasoning foundation for natural-language

interaction with desktop systems. By enforcing a

strict response contract and delegating all execution

authority to the Orchestrator, the prototype achieves

a balance between autonomy, safety, and

transparency in offline desktop automation.

VI.METHODOLOGY

Our prototype was developed through four

coordinated phases: dataset creation, model

fine-tuning, orchestrator implementation, and

system integration. Each phase was guided by the

requirements of offline operation, basic safety, and

compatibility with consumer hardware.

A. Dataset Creation

A domain-specific dataset of approximately 4,000

multi-turn dialogues was constructed to train the

LLM for interactive desktop automation. Each

dialogue simulates a realistic user-assistant

exchange and is structured to reinforce the

three-part response format ([THINKING], [USER],

[ACTIONS]). The data includes natural-language

queries, model reasoning traces, user-facing

explanations, and executable command sequences,

along with simulated terminal output to enable

feedback-driven adaptation. For instance:

{

"dialogue": [

 {

"user_input": "<natural language request>",

 "thinking_output": "<model's internal

reasoning>",

 "user_output": "<explanation for user>",

 "orchestrator_output": "[{

\"action\": \"execute_command\",

\"command\": \"<shell command>\"}]"

 },

 {

 "orchestrator_input":

"[TERMINAL_OUTPUT]\n<simulated terminal

output>",

 "thinking_output": "<analysis of terminal

output>",

 "user_output": "<summary for user>",

 "orchestrator_output": null

 }

]

}

B. Model Fine-Tuning

A compact LLaMA-based model (1B–2B

parameters) was selected for its suitability for local

execution on laptops with limited resources.

Fine-tuning was performed using LoRA (Low-Rank

Adaptation) on a single T4 GPU (Google Colab),

with a custom training format that mirrors the

dialogue structure shown above. The objective was

to teach the odel to: (1) interpret natural-language

intents for common desktop tasks, (2) produce

structured three-part responses ([THINKING],

[USER], [ACTIONS]), and (3) adapt its reasoning

based on terminal feedback. Training leveraged the

simulated terminal output included in the dataset to

enable basic error-recovery behavior. After

fine-tuning, the model demonstrated improved

accuracy in command generation and the ability to

refine its outputs when presented with execution

results.

C. Orchestrator Development

The Orchestrator, implemented in Go, serves as the

central control unit that mediates between the user

interface, the LLM, and the underlying OS. Its

modular design includes:

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 50

• Request Handler: Formats user input into

context-rich prompts for the LLM.

• Safety & Validation Module: Performs basic

syntax checks on model-generated commands

to ensure they are appropriate for execution.

• Terminal Execution Environment: Manages

a persistent, isolated tmux session that

provides sandboxed command execution and

complete output capture, preventing direct

LLM access to the OS.

• Logging and Debugging

Subsystem: Supports two operational modes;

Normal (minimal overhead) and Debug

(detailed traces of user prompts, model

responses, validated actions, and terminal

output)—enabling analysis without impacting

runtime performance.

• Model-Engine Module: A dedicated helper

script that manages the local LLM server

lifecycle, monitoring health and ensuring

low-latency communication.

This architecture ensures that all commands are

validated and executed within a controlled

environment while keeping all processing offline.

VII. IMPLEMENTATION

The proposed AI-driven operating system was

implemented using a modular and incremental

development approach, integrating a locally

deployed Large Language Model (LLM), a

centralized Orchestrator framework, and a hardened

base operating system into a unified intelligent

desktop environment. Each subsystem was

developed, validated, and refined independently

prior to full-stack integration, ensuring stable

operation, basic safety guarantees, and complete

offline functionality.

A. Local LLM Deployment and Execution

Control.

The system utilizes a fine-tuned 1-billion-parameter

LLaMA-based language model deployed locally

using the llama.cpp inference framework. The

model is exposed as an HTTP-based inference

service through the native llama.cpp serving

interface, enabling CPU-optimized execution on

consumer-grade hardware without reliance on cloud

services or GPU acceleration.

A lightweight model engine control script manages

the complete lifecycle of the model server,

including startup, shutdown, restart, health

monitoring, and model selection. The Orchestrator

continuously monitors the availability of the model

server and initiates it on demand when user requests

are received, thereby optimizing system resource

utilization during idle periods.

Communication between the Orchestrator and the

language model occurs exclusively over a local

HTTP interface. Model responses are constrained to

a structured three-part format comprising

[THINKING], [USER], and [ACTIONS] sections.

The [THINKING] component contains internal

reasoning annotations used during development and

debugging, the [USER] section provides human-

readable explanations intended for user feedback,

and the [ACTIONS] section contains structured,

machine-readable commands encoded in JSON

format. Only the [ACTIONS] section is forwarded

to the execution pipeline, ensuring deterministic

parsing, reliable validation, and strict separation

between reasoning and execution.

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 51

Fig-2 Local LLM serving architecture using

llama.cpp and HTTP-based inference interface

B. Orchestrator Architecture and Control Flow.

The Orchestrator, implemented in Go to leverage its

low runtime overhead and native concurrency

support, functions as the central control layer of the

system. It mediates all interactions between user

interfaces, the local language model server, and the

underlying operating system, providing a structured

execution flow and centralized control over

command dispatch and logging.

User requests are received through a Unix Domain

Socket interface, enabling low-latency local inter-

process communication. The Orchestrator supports

concurrent client connections while maintaining

thread-safe internal state. Structured prompt

contexts are constructed by combining system

prompts, a bounded interaction history, and the

current user query before being forwarded to the

language model server. A lightweight state-tracking

mechanism, comprising idle, processing, waiting,

error, and completion states, is used to monitor

request progression and provide consistent status

updates to connected interfaces.

In the current prototype, model-generated actions

are parsed and inspected prior to execution to

ensure structural correctness and adherence to the

expected action format. Commands are executed

within a non-root user context to limit system

exposure. More advanced validation mechanisms—

such as semantic command analysis, detection of

destructive patterns, privilege-escalation prevention,

and policy-based execution control—are

intentionally deferred and identified as directions

for future work.

Command execution is performed within a

dedicated and persistent tmux session managed by

the Orchestrator, allowing isolation from the user’s

interactive shell while enabling full capture of

command output. Execution completion is inferred

through shell prompt detection, providing a

practical, non-intrusive mechanism for determining

command termination. Standard output and error

streams are captured and returned to the

Orchestrator, where they are either presented to the

user or supplied back to the language model to

support iterative reasoning and corrective response

generation.

Fig-3 Orchestrator-controlled tmux execution

pipeline and feedback loop

The Orchestrator supports two operational modes to

balance performance and observability. Normal

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 52

mode enables minimal logging to reduce runtime

overhead, while Debug mode records detailed

traces including model prompts, parsed responses,

validation decisions, executed commands, and

terminal output. This dual-mode design enables

effective debugging and system analysis without

requiring modifications to the core architecture.

C. User Interaction Layer.

Two complementary user interface implementations

were developed to evaluate system usability and

interaction flexibility.

A lightweight command-line interface supports

rapid testing and real-time inspection of system

behaviour. The interface streams structured

responses from the Orchestrator and clearly

distinguishes between reasoning output, proposed

actions, execution status, and terminal results.

A simple graphical desktop assistant interface

provides a natural-language input field, a scrollable

interaction history, and clear visualization of

executed commands and their outcomes. The

interface operates entirely offline and

communicates with the Orchestrator using the same

local socket-based protocol.

D. Base Operating System Preparation.

A minimal Debian-based environment was prepared

as the target deployment platform, referred to as the

Golden Master base operating system. Non-

essential packages were removed to reduce the

system attack surface, while essential system

utilities, tmux, and LLM runtime dependencies

were retained. User permissions were configured to

enforce non-root execution and controlled system

access. The Golden Master OS is currently

deployed within a controlled virtual machine for

stability validation, with bare-metal deployment

planned for future phases.

E. System Integration and Validation.

Following full system integration, an iterative

testing phase was conducted to validate end-to-end

functionality. Comprehensive tests verified the

complete LLM–Orchestrator–execution pipeline,

while stress tests evaluated latency, concurrency

handling, and overall system responsiveness.

Additional safety evaluations confirmed consistent

generation of warnings for potentially destructive

commands and strict enforcement of execution

constraints by the Orchestrator prior to command

execution.

VIII. RESULTS AND DISCUSSION

This section presents observations derived from

controlled execution traces collected during

interaction with the prototype system. The

evaluation focuses on end-to-end task latency and

execution behaviour as experienced by the user,

rather than establishing absolute performance

guarantees. The reported results serve as empirical

reference measurements, intended to demonstrate

system feasibility and architectural behaviour under

realistic usage conditions.

All measurements were obtained from real

executions of the implemented system and reflect

the combined effects of model inference, command

validation, execution, and output handling.

A. Experimental Setup and Benchmarking

Scope

The benchmarking experiments were conducted on

a consumer-grade system equipped with an Intel

Core i5-13450HX processor, 16 GB of RAM, and

an NVIDIA RTX 3050 GPU with 6 GB VRAM.

Although a discrete GPU was available, the system

primarily relied on CPU-based inference using the

llama.cpp backend, reflecting a practical offline

deployment scenario.

It is important to emphasize that absolute latency

values are highly dependent on system configuration,

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 53

including processor architecture, available memory,

storage performance, background load, and model

size. Consequently, the measurements reported in

this section should not be interpreted as fixed

performance benchmarks. Instead, they are provided

as observational reference values, demonstrating

how the system behaves on one representative

hardware configuration.

The benchmark dataset consists of multiple natural-

language requests grouped into four functional

categories:

• file operations,

• system information queries,

• development-related tasks, and

• package and tool operations.

For each task, a single end-to-end latency value was

recorded, measured from the point at which the

Orchestrator began processing the request to the

completion of command execution and response

generation.

B. End-to-End Latency Across Task Categories

Figure 4 presents the average end-to-end latency

observed for each task category.

Fig-4 Average End-to-End Latency per Task

Category

File operations and development-related tasks

generally exhibit lower average latency, as these

requests typically translate into lightweight shell

commands with limited output. System information

queries demonstrate moderately higher latency due

to increased command execution and output

processing.

Package and tool operations show the highest

average latency. These tasks often involve querying

package managers, enumerating system services, or

accessing documentation, all of which produce

larger outputs and incur additional I/O and parsing

overhead. The observed increase in latency is

therefore attributable to command complexity rather

than instability within the system architecture.

C. Latency Variability and Distribution

Figure 5 illustrates the distribution of task latency

across categories using box plots.

Fig-5 Latency Distribution by Task Category

File and development tasks exhibit relatively tight

latency distributions, indicating predictable

execution behaviour. In contrast, package-related

operations show greater variability, including higher

outliers. This reflects the non-deterministic nature of

system-level commands that depend on filesystem

state, package metadata size, and background

system activity. Despite this variability, all tasks

completed successfully without system crashes or

inconsistent states, indicating that the Orchestrator

and execution pipeline remain stable under diverse

workloads.

D. Effect of Command Output Characteristics

Figure 6 analyzes the relationship between

command output size and observed latency.

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 54

Fig-6 Latency vs. Command Output Characteristics

Tasks producing large volumes of output

consistently exhibit higher end-to-end latency. This

confirms that output handling and post-processing

contribute significantly to overall execution time,

often exceeding the cost of model inference itself.

Tasks with small or moderate output sizes remain

within interactive latency bounds, reinforcing the

suitability of the system for everyday desktop

operations.

E. Discussion

The observed results demonstrate that the proposed

architecture can support practical, offline, natural-

language-driven desktop automation on consumer

hardware. While latency varies depending on task

complexity and output size, the system exhibits

consistent behaviour and stable execution across all

tested scenarios.

Importantly, the benchmarks presented in this

section are not intended as definitive performance

claims. Instead, they provide concrete evidence that

a lightweight, locally deployed language model—

when combined with a structured orchestration and

execution framework—can effectively mediate real

operating system interactions. Performance

characteristics are expected to scale proportionally

with system hardware and configuration, reinforcing

the portability of the proposed design.

IX.CONCLUSION

This work explored the feasibility of integrating a

lightweight, locally deployed Large Language

Model into a desktop operating system environment

to enable natural-language-driven system interaction.

By combining a compact fine-tuned language model,

a centralized Orchestrator, and a minimal Debian-

based base system, the proposed prototype

demonstrates that meaningful OS-level automation

can be achieved without reliance on cloud services.

The implementation shows that common desktop

tasks—such as file management, project

organization, system inspection, and development-

related workflows—can be mediated through

natural-language interaction while preserving user

control and execution boundaries. The Orchestrator

plays a central role in this design, acting as an

intermediary that enforces structured parsing,

validation, and controlled execution rather than

granting the

language model direct access to the operating

system.

Experimental observations indicate that the system

operates with predictable end-to-end latency for a

range of everyday tasks on consumer hardware.

While absolute performance varies with task

complexity and system configuration, the results

provide empirical evidence that offline language

models can be practically integrated into interactive

desktop environments. Importantly, the evaluation

emphasizes observed system behavior rather than

fixed performance guarantees.

Overall, this work demonstrates the practicality of a

local, privacy-preserving approach to AI-assisted

desktop automation and highlights the potential of

combining language-based reasoning with

traditional operating system control mechanisms in

a structured and transparent manner.

X.FUTURE WORK

While the current prototype demonstrates the

feasibility of offline natural-language control for

desktop automation, several directions remain for

future exploration and refinement.

Voice-Based Interaction:

Future extensions may incorporate on-device speech

recognition models to enable hands-free interaction.

This would allow users to issue commands and

receive feedback through voice while preserving the

system’s local and privacy-focused design.

International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 55

Deeper System Awareness:

The Orchestrator could be extended to incorporate

additional system-level signals, such as I/O behavior,

resource contention, or hardware health indicators.

Integrating such information may enable more

informed diagnostics and context-aware assistance.

Cross-Device and Distributed Operation:

An extension of the framework to support multiple

machines—such as personal laptops, servers, or

edge devices—could enable coordinated task

execution and system management across

distributed environments, while maintaining

centralized control logic.

Multimodal Inputs:

Incorporating visual inputs, such as screenshots or

window-level state, could enhance troubleshooting

and user interaction. This would allow the assistant

to reason over graphical context in addition to

textual commands.

Extensible Plugin Architecture:

A controlled plugin mechanism could allow third-

party developers to add domain-specific capabilities,

such as integration with development tools or

creative software, without weakening the system’s

execution and isolation guarantees.

On-Device Adaptation:

Future work may explore lightweight

personalization techniques that allow the system to

adapt to user preferences or recurring workflows

over time. Such adaptation would need to remain

fully local and operate within strict safety

constraints.

These directions aim to extend the system’s

capabilities while preserving its core design

principles: locality, transparency, controlled

execution, and user authority.

XI. XI. REFERENCES

[1] A. Vaswani et al., “Attention is all you need,” in

Advances in Neural Information Processing

Systems, 2017, pp. 5998–6008.

[2] J. Devlin, M.-W. Chang, K. Lee, and K.

Toutanova, “BERT: Pre-training of deep

bidirectional transformers for language

understanding,” in Proc. NAACL-HLT, 2019, pp.

4171–4186.

[3] T. B. Brown et al., “Language models are few-

shot learners,” in Advances in Neural Information

Processing Systems, vol. 33, 2020, pp. 1877–1901.

[4] H. Touvron et al., “LLaMA: Open and efficient

foundation language models,”

arXiv preprint arXiv:2302.13971, 2023.

[5] S. Yao et al., “ReAct: Synergizing reasoning and

acting in language models,”

arXiv preprint arXiv:2210.03629, 2022.

[6] J. Wei et al., “Chain-of-thought prompting elicits

reasoning in large language models,” in Advances in

Neural Information Processing Systems, vol. 35,

2022, pp. 24824–24837.

[7] D. Schwartz-Narbonne et al., “Formal methods

for safe execution of learned control policies,” IEEE

Trans. Softw. Eng., vol. 48, no. 4, pp. 1243–1259,

Apr. 2022.

[8] M. A. Gulzar, S. M. A. H. Rizvi, and M. A.

Suleman, “Understanding and auto-fixing

configuration errors in Linux systems,” in Proc.

ACM SIGOPS 28th Symp. Operating Syst. Princ.,

2021, pp. 432–447.

[9] J. Mickens et al., “Pivot: Fast, synchronous

mashup isolation using generator chains,” in Proc.

IEEE Symp. Secur. Privacy, 2017, pp. 261–275.

[10] B. A. Myers, A. J. Ko, and T. D. LaToza,

“Natural programming languages and environments,”

Commun. ACM, vol. 59, no. 9, pp. 47–53, Sep.

2016.

