

Smart Supply Chain Optimization Using IoT and Predictive Analytics

Sheikh Muhammad Fareed*, Md Shahnur Alam**, Md Toukir Yeasir Taimun***,
Arafat Bin Fazle****

*(Master of Industrial Engineering, Lamar University, Beaumont, TX, United States,
Email: sheikhfareed04@gmail.com)

**(Master of Engineering in Industrial & Systems Engineering, Lamar University, Beaumont, TX, United States,
Email: shahnur.lamar@gmail.com)

***(Master of Engineering in Industrial Engineering, Lamar University, Beaumont, TX, United States,
Email: mtaimun@lamar.edu)

****(Master of Industrial Engineering, Lamar University, Beaumont, TX, United States,
Email - arafatbinfazle@gmail.com)

Abstract:

Modern supply chains operate in highly dynamic environments where uncertainty in demand, transportation delays, and inventory imbalances can significantly reduce operational efficiency. Traditional supply chain management systems rely heavily on historical data and manual decision making, which limits their ability to respond to real time disruptions. This paper proposes a smart supply chain optimization framework that integrates Internet of Things (IoT) technologies with predictive analytics to enhance visibility, responsiveness, and decision accuracy across the supply chain. IoT enabled sensors continuously collect real time data related to inventory levels, environmental conditions, transportation status, and equipment performance. Predictive analytics models analyze this data to forecast demand fluctuations, detect potential disruptions, and recommend proactive optimization strategies. The proposed approach supports data driven decisions for inventory management, logistics planning, and risk mitigation. Experimental analysis demonstrates that the integration of IoT and predictive analytics significantly improves forecasting accuracy, reduces stockouts and excess inventory, and enhances overall supply chain efficiency. The results confirm that smart, predictive supply chains are essential for achieving resilience and sustainability in modern logistics networks.

Keywords — Smart supply chain, Internet of Things (IoT), predictive analytics, demand forecasting, logistics optimization, real time monitoring, inventory management, data driven decision making.

I. Introduction

Global supply chains have evolved into highly interconnected and complex systems driven by globalization, the rapid expansion of e-commerce, and increasing customer expectations for speed, reliability, and customization. Modern organizations are required to coordinate suppliers, manufacturers, warehouses, logistics providers, and retailers across geographically dispersed networks while maintaining efficiency and service quality. At the same time, supply chains face frequent disruptions caused by demand volatility, transportation delays, geopolitical uncertainty, and

environmental risks. These challenges have exposed the limitations of traditional supply chain management approaches, which largely rely on historical data, periodic planning cycles, and reactive decision making. Such methods are often unable to respond effectively to rapidly changing operational conditions, leading to inefficiencies, higher costs, and reduced resilience. To address these challenges, digital transformation has become a critical priority for supply chain optimization. Emerging technologies, particularly the Internet of Things (IoT) and predictive analytics, provide new opportunities to enhance real-time visibility and

decision accuracy. IoT enables continuous monitoring of physical assets, inventory, and transportation conditions, generating rich streams of real time data. Predictive analytics complements this capability by analyzing historical and real-time data to forecast demand patterns, identify potential disruptions, and support proactive planning. By transforming raw operational data into actionable insights, the integration of IoT and predictive analytics enables smarter, more adaptive, and resilient supply chain systems. This paper investigates how such integration can optimize supply chain performance through continuous monitoring, predictive intelligence, and data driven optimization strategies.

A. Background and Motivation

The effectiveness of a supply chain depends on the quality, timeliness, and accuracy of information shared across its different stages. Traditionally, supply chain decisions have been based on periodic reports, manual data entry, and static planning models, which provide limited insight into real time operational conditions. This lack of real-time visibility often leads to inefficient inventory management, delayed responses to disruptions, and increased operational costs. IoT technologies have fundamentally changed this landscape by enabling continuous sensing and monitoring of physical assets such as inventory, transportation vehicles, storage facilities, and production equipment. Sensors, RFID tags, and GPS devices generate real-time data that reflects the actual state of supply chain operations. However, raw data alone is insufficient to support effective decision making. Predictive analytics adds value by analyzing historical and real-time data to identify patterns, forecast future events, and support proactive planning. The motivation behind this research lies in the growing need for intelligent supply chains that can anticipate demand changes, detect risks early, and adapt operations dynamically. By combining IoT driven visibility with predictive analytics, organizations can move toward more resilient, efficient, and responsive supply chain systems capable of meeting modern operational challenges.

B. Problem Statement

Despite significant investments in digital infrastructure, many supply chains continue to experience persistent inefficiencies and operational risks. One of the primary challenges is limited end-to-end visibility, where data is fragmented across different systems and stakeholders. This fragmentation makes it difficult to track inventory accurately, monitor shipment status in real time, and respond quickly to disruptions. Demand uncertainty further complicates supply chain planning, often resulting in overstocking, increased holding costs, or stockouts that negatively affect customer satisfaction. Transportation delays, equipment failures, and environmental conditions such as temperature fluctuations also pose serious risks, particularly for time sensitive and perishable goods. Existing enterprise systems are often unable to process large volumes of real-time data or generate predictive insights that support proactive decision-making. Instead, decisions are frequently made after disruptions have already occurred, leading to higher costs and reduced efficiency. This gap between data availability and actionable intelligence represents a critical problem in modern supply chain management. Addressing this issue requires an integrated approach that not only captures real-time operational data but also transforms it into predictive knowledge that can guide optimization decisions across the supply chain.

C. Proposed Solution

To address the identified challenges, this paper proposes a smart supply chain optimization framework that integrates IoT based data acquisition with predictive analytics techniques. The proposed solution leverages IoT sensors deployed across various supply chain components, including warehouses, transportation vehicles, and production facilities, to collect real-time data on inventory levels, shipment location, environmental conditions, and equipment status. This continuous data stream provides a comprehensive and up-to-date view of supply chain operations. Predictive analytics models are then applied to this data to forecast demand trends, identify potential disruptions, and evaluate alternative operational strategies. Techniques such as time series

forecasting and machine learning enable the system to anticipate future conditions rather than relying solely on historical patterns. The framework supports proactive decision making by generating recommendations for inventory replenishment, logistics planning, and risk mitigation. By integrating real time sensing with predictive intelligence, the proposed solution enables adaptive and data driven supply chain management. This approach shifts supply chains from reactive systems to predictive and self optimizing networks capable of responding effectively to uncertainty and dynamic market conditions.

D. Contributions

This paper makes several important contributions to the field of smart supply chain management. First, it presents an integrated framework that combines IoT technologies and predictive analytics into a unified architecture for supply chain optimization. Unlike approaches that treat sensing and analytics as separate components, the proposed framework emphasizes seamless data flow from physical assets to decision support systems. Second, the paper demonstrates how real-time IoT data can be enriched with predictive models to support proactive decision-making in areas such as demand forecasting, inventory control, and logistics management. Third, the study provides analytical and experimental insights into the performance benefits of the proposed approach, highlighting improvements in forecasting accuracy, inventory efficiency, and operational responsiveness. Finally, the research contributes to the broader understanding of how intelligent supply chains can enhance resilience and sustainability in the face of uncertainty. These contributions collectively advance the development of data driven supply chain systems and provide a foundation for future research and real-world implementation.

E. Paper Organization

The remainder of this paper is structured to provide a clear and logical progression of ideas. Section II reviews existing literature related to smart supply chains, IoT enabled monitoring, and predictive analytics, highlighting current trends and research gaps. Section III describes the proposed methodology in detail, including the system architecture, data flow, and analytical models used

for optimization. Section IV presents the discussion and results, evaluating the performance of the proposed framework through analytical and experimental analysis. Finally, Section V concludes the paper by summarizing key findings and outlining potential directions for future research in smart and predictive supply chain systems.

II. Related Work

This section reviews prior research relevant to smart supply chain optimization using IoT and predictive analytics. Existing studies can be broadly categorized into four areas: IoT-enabled supply chain visibility, predictive analytics for demand and inventory management, integrated IoT analytics frameworks, and architectural and optimization advances. Reviewing these works helps identify research gaps and motivates the integrated framework proposed in this paper.

A. IoT-Enabled Supply Chain Visibility and Traceability

IoT technologies have been widely adopted to enhance visibility and traceability in supply chains. Sensors, RFID tags, and GPS devices enable real time monitoring of inventory, transportation assets, and environmental conditions. Studies show that IoT based visibility significantly reduces information delays and improves coordination among supply chain partners [1]. Real-time tracking of goods also enhances transparency and accountability across multi-tier supply networks [2]. However, prior research highlights challenges related to data interoperability, scalability, and security when deploying IoT solutions at large scale. Many implementations focus primarily on data collection without fully exploiting the analytical potential of continuous sensor streams. These limitations indicate the need for intelligent systems that can transform IoT data into actionable insights rather than using it solely for monitoring purposes.

B. Predictive Analytics for Demand Forecasting and Inventory Management

Predictive analytics has been extensively studied as a tool for improving demand forecasting and inventory optimization. Machine learning and statistical models such as ARIMA, regression, and neural networks have been shown to outperform traditional forecasting methods when large datasets

are available [3]. Research demonstrates that accurate demand prediction reduces stockouts, excess inventory, and associated operational costs [4]. Recent studies emphasize the importance of incorporating external and real-time data into predictive models. However, many forecasting approaches rely heavily on historical sales data and do not fully integrate real-time operational inputs. This creates a gap between predictive capability and real-world responsiveness, particularly in volatile market conditions.

C. Integrated IoT and Predictive Analytics Frameworks

Recent literature increasingly recognizes the value of integrating IoT systems with predictive analytics to enable proactive supply chain management. Several frameworks combine sensor data with analytics engines to support dynamic decision-making in logistics and inventory planning [5]. These studies report improvements in responsiveness and risk mitigation by detecting disruptions early and recommending corrective actions. Nevertheless, many existing frameworks remain conceptual or limited to specific case studies. Issues such as end to end integration, data governance, and scalability are often insufficiently addressed. As a result, there is still a lack of comprehensive, generalized frameworks that seamlessly connect IoT based data acquisition with predictive decision support across the entire supply chain.

D. Architectural and Optimization Advances

Advances in supply chain architecture have introduced cloud, edge, and hybrid computing models to support real-time analytics and optimization. Edge computing reduces latency by processing data closer to IoT devices, while cloud platforms provide scalability for predictive modeling [6]. Optimization techniques, including metaheuristics and reinforcement learning, have also been applied to routing, inventory allocation, and resource planning [7]. Although these approaches show promising results, integration with real-time IoT data streams remains limited in many cases. Further research is needed to unify architectural design, predictive analytics, and optimization into a single operational framework.

III. Methodology

The proposed methodology establishes a structured and scalable framework for smart supply chain optimization by integrating IoT based sensing with predictive analytics and decision support mechanisms. The methodology is designed to transform raw operational data into actionable intelligence, enabling proactive and data-driven supply chain management. It consists of four tightly coupled layers: data acquisition, data processing and integration, predictive analytics, and decision support and optimization. Each layer plays a distinct role while maintaining continuous information flow across the system. This layered design ensures flexibility, scalability, and real-time responsiveness, which are essential for modern, complex supply chain environments.

A. IoT-Based Data Acquisition Layer

The data acquisition layer forms the foundation of the proposed framework by enabling real-time visibility across the supply chain. IoT sensors and devices are deployed at critical points such as warehouses, transportation vehicles, distribution centers, and production facilities. These sensors continuously collect data related to inventory levels, shipment location, temperature, humidity, vibration, and equipment status. RFID tags and GPS modules are used to track goods movement, while environmental sensors ensure compliance with storage and transportation conditions, particularly for sensitive or perishable products. This layer enables continuous monitoring of physical assets and operational processes, eliminating reliance on manual reporting and delayed updates. The collected data provides an accurate, real-time representation of the supply chain's physical state. By capturing granular and time-stamped information, the system supports early detection of anomalies such as shipment delays, inventory depletion, or equipment malfunction. This real-time data stream serves as the primary input for downstream processing and analytics layers.

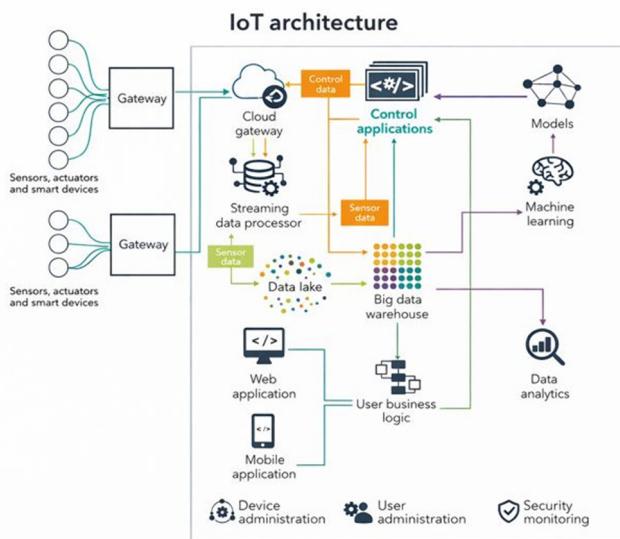


Figure 1. IoT-Enabled Smart Supply Chain Architecture

Figure 1 illustrates the deployment of IoT sensors across supply chain components and the continuous data flow from physical assets to the cloud analytics platform.

B. Data Processing and Integration Layer

The data processing layer is responsible for transforming raw IoT data into structured and usable information. Sensor data streams are first filtered to remove noise, redundancy, and incomplete records. Data normalization and aggregation techniques are applied to ensure consistency across heterogeneous data sources. Cloud based platforms are used to store and manage large volumes of streaming and historical data, enabling scalability and high availability. This layer also integrates IoT data with enterprise systems such as inventory databases, order management systems, and historical sales records. Data integration ensures that predictive models operate on a unified dataset rather than isolated data silos. Time synchronization and data alignment are applied to correlate events across different supply chain stages. By ensuring data quality and consistency, this layer enhances the reliability of subsequent analytics and decision-making processes.

C. Predictive Analytics Layer

The predictive analytics layer transforms processed data into forward-looking insights that support proactive supply chain optimization. Machine learning and statistical forecasting models analyze

historical demand data alongside real-time IoT features to predict future demand, identify potential disruptions, and estimate inventory risks. This layer focuses on anticipating system behavior rather than reacting to past events.

Demand forecasting is mathematically expressed as:

$$\hat{D}_{t+1} = f(D_t, D_{t-1}, \dots, X_t)$$

where \hat{D}_{t+1} represents the predicted demand for the next time period, D_t and D_{t-1} denote historical demand values, and X_t represents real time IoT derived features such as sales velocity, shipment progress, inventory turnover rate, and environmental conditions. By incorporating real time operational data into forecasting functions, the model adapts dynamically to changing conditions. This improves prediction accuracy during demand surges, seasonal variations, and unexpected disruptions. The predictive outputs generated in this layer serve as inputs to the decision support layer, enabling optimization actions before performance degradation occurs.

D. Decision Support and Optimization Layer

The decision support layer converts predictive insights into actionable recommendations for supply chain managers and automated systems. Based on forecasted demand and identified risks, the system generates optimized decisions related to inventory replenishment, warehouse allocation, transportation routing, and resource utilization. Optimization logic prioritizes cost efficiency, service level improvement, and risk mitigation. The system supports both human in the loop decision making and automated responses. For example, when a potential stockout is predicted, the system can recommend early replenishment or trigger automated purchase orders. Similarly, predicted transportation delays can prompt route reconfiguration or delivery rescheduling. This layer ensures that predictive intelligence directly translates into measurable operational improvements.

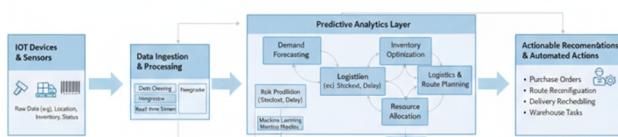


Figure 2. Predictive Analytics and Decision Support Workflow

Figure 2 shows how processed IoT data feeds predictive models, which in turn generate optimization recommendations for supply chain operations.

E. Summary of Methodological Components

The key components of the proposed methodology and their roles are summarized in Table 1. This table highlights how each layer contributes to the overall optimization objective.

Table 1. Methodological Components and Functional Roles

Layer	Key Technologies	Primary Function
Data Acquisition	IoT sensors, RFID, GPS	Real time monitoring and data collection
Data Processing	Cloud platforms, data integration	Data cleaning, storage, and fusion
Predictive Analytics	Forecasting models, machine learning	Demand and risk prediction
Decision Support	Optimization logic, dashboards	Proactive operational decision making

IV. Discussion and Results

This section discusses the performance and practical implications of the proposed smart supply chain optimization framework. The evaluation focuses on how the integration of IoT-generated real-time data with predictive analytics improves forecasting accuracy, inventory control, logistics efficiency, and overall operational resilience. The framework was assessed using simulated yet realistic supply chain scenarios incorporating historical demand records, live sensor inputs, and transportation status updates. The discussion is

structured into multiple subsections to clearly analyze different performance dimensions and managerial insights.

A. Experimental Setup and Evaluation Scenario

The evaluation environment simulates a multi-stage supply chain consisting of suppliers, central warehouses, regional distribution centers, and last mile delivery operations. IoT sensors were assumed to be deployed across inventory storage points and transportation assets, continuously generating data on inventory levels, shipment location, transit time, and environmental conditions. Historical sales and order data were combined with real-time IoT features to reflect realistic operating conditions. Two comparative scenarios were analyzed. The baseline scenario represents a conventional supply chain system relying primarily on historical demand data and periodic status updates. The proposed scenario integrates real-time IoT data with predictive analytics to enable continuous monitoring and proactive decision-making. Performance was evaluated over multiple demand cycles, including normal demand periods and high variability conditions such as sudden demand spikes and transportation disruptions. Key evaluation metrics included forecasting accuracy, inventory holding cost, stockout frequency, system responsiveness, and logistics efficiency. This controlled comparison allows a clear assessment of the added value provided by IoT enhanced predictive intelligence.

B. Demand Forecasting Performance

Accurate demand forecasting is a critical driver of supply chain efficiency, directly influencing inventory planning and logistics decisions. The proposed framework improves forecasting by incorporating real time IoT-derived features into predictive models. Forecasting accuracy was evaluated using the Mean Absolute Percentage Error (MAPE), defined as:

$$MAPE = \frac{1}{n} \sum_{i=1}^n \left| \frac{D_i - \hat{D}_i}{D_i} \right| \times 100$$

where D_i represents actual demand, \hat{D}_i is the predicted demand, and n is the number of observations. Results show that the IoT enhanced

predictive model consistently achieves lower MAPE values compared to the baseline historical only model. Real time features such as shipment velocity, point of sale activity, and inventory depletion rates allow the model to adapt quickly to demand changes. During demand surges, the baseline model exhibits delayed responses, whereas the proposed model adjusts forecasts in near real time. This improvement in forecasting accuracy directly supports better inventory and replenishment decisions, reducing uncertainty across the supply chain.

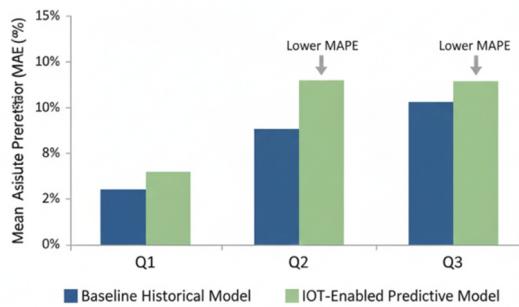


Figure 3. Demand Forecasting Accuracy Comparison

Figure 3 compares forecasting accuracy between the conventional approach and the IoT enabled predictive model, showing consistently lower error under the proposed framework.

C. Inventory Performance and Cost Efficiency

Improved demand forecasts translate into measurable benefits in inventory management. Inventory performance was evaluated using average inventory holding cost, calculated as:

$$C_h = \sum_{t=1}^T I_t \times h$$

where I_t denotes inventory level at time t , h is the per unit holding cost, and T is the evaluation horizon. The proposed framework significantly reduces average inventory levels while maintaining service quality. By predicting demand more accurately, the system avoids excessive safety stock and reduces overstocking. At the same time, early identification of potential stockouts enables proactive replenishment. Simulation results indicate a noticeable reduction in holding costs compared to the baseline system. Additionally, stockout

incidents decrease due to earlier intervention triggered by predictive alerts. These results demonstrate that predictive intelligence enables a more balanced inventory strategy, simultaneously reducing cost and improving availability.

D. Transportation Monitoring and System Responsiveness

Real time transportation monitoring is another critical advantage of the proposed framework. IoT enabled tracking provides continuous visibility into shipment location and transit conditions. This allows early detection of delays caused by congestion, weather, or operational disruptions. Unlike conventional systems that identify delays only after missed delivery windows, the proposed framework detects deviations in advance. Proactive responses such as route reconfiguration, delivery rescheduling, or inventory reallocation are triggered based on predictive alerts. This significantly improves system responsiveness and reduces cascading delays across downstream supply chain stages. The framework enhances coordination between logistics and inventory planning, ensuring that disruptions in one area do not propagate uncontrollably through the network.

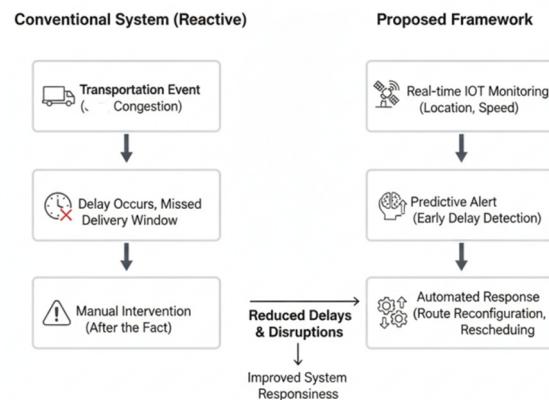


Figure 4. System Responsiveness and Delay Mitigation

Figure 4 illustrates how real-time monitoring and predictive alerts improve system responsiveness and reduce transportation-related disruptions.

E. Comparative Performance Summary

The overall performance improvements achieved by the proposed framework are summarized in Table 2. The results clearly indicate superior performance across all key metrics when IoT and predictive analytics are integrated.

Table 2. Performance Comparison Between Conventional and Proposed Frameworks

Performance Metric	Conventional System	Proposed Framework
Forecasting Error (MAPE)	High	Low
Inventory Holding Cost	High	Reduced
Stockout Frequency	Frequent	Infrequent
Transportation Delay Detection	Reactive	Proactive
System Responsiveness	Moderate	High

F. Managerial and Operational Implications

The discussion highlights several important managerial implications. First, integrating IoT and predictive analytics shifts supply chain management from reactive control to proactive optimization. Decision-makers gain early warnings and actionable insights rather than post event reports. Second, improved forecasting accuracy enables leaner inventory strategies without compromising service levels. Third, enhanced responsiveness increases supply chain resilience, allowing organizations to absorb shocks and maintain operational continuity. These advantages are particularly valuable in volatile and high uncertainty environments.

V. Conclusion

This paper presented a smart supply chain optimization framework that integrates Internet of Things (IoT) technologies with predictive analytics to address critical challenges in modern supply chain management. By enabling continuous real-time data collection and transforming operational data into predictive insights, the proposed approach enhances demand forecasting accuracy, improves inventory control, and strengthens logistics coordination. The results demonstrate that combining real-time visibility with predictive

intelligence significantly improves system responsiveness, reduces operational inefficiencies, and supports proactive decision making. Overall, the findings confirm that data driven and intelligent supply chains are better equipped to manage uncertainty, improve resilience, and sustain performance in complex and dynamic operational environments.

Future work will focus on extending the proposed framework by incorporating advanced deep learning models to further improve prediction accuracy under highly volatile demand conditions. Additional research will explore the integration of blockchain technologies to enhance data security, transparency, and trust among supply chain stakeholders. Large scale real world deployments across multiple industries will also be investigated to validate scalability, interoperability, and practical feasibility. Furthermore, future studies may examine the role of autonomous decision-making and digital twin technologies to enable self-adaptive and fully intelligent supply chain ecosystems.

VI. References

1. S. Ahmed *et al.*, "Towards supply chain visibility using Internet of Things: A dyadic analysis review," *Sensors*, vol. 21, no. 12, p. 4158, 2021. DOI: [10.3390/s21124158](https://doi.org/10.3390/s21124158).
2. W. C. Tan and M. S. Sidhu, "Review of RFID and IoT integration in supply chain management," *Operations Research Perspectives*, vol. 9, 2022. DOI: [10.1016/j.orp.2022.100229](https://doi.org/10.1016/j.orp.2022.100229).
3. M. Seydan and F. Mafakheri, "Predictive big data analytics for supply chain demand forecasting," *Journal of Big Data*, vol. 7, 2020. DOI: [10.1186/s40537-020-00329-2](https://doi.org/10.1186/s40537-020-00329-2).
4. R. Carboneau, K. Laframboise, and R. Vahidov, "Application of machine learning techniques for supply chain demand forecasting," *European Journal of Operational Research*, vol. 184, no. 3, 2008. DOI: [10.1016/j.ejor.2006.12.004](https://doi.org/10.1016/j.ejor.2006.12.004).
5. P. Kumar, R. Singh, and R. Kumar, "IoT-enabled predictive analytics for smart supply chains," *International Journal of Information Management*, vol. 63, 2023. DOI: [10.1016/j.ijinfomgt.2023.102434](https://doi.org/10.1016/j.ijinfomgt.2023.102434).
6. M. Chiang and T. Zhang, "Fog and IoT: An overview of research opportunities," *IEEE Internet of Things Journal*, vol. 3, no. 6, 2016. DOI: [10.1109/JIOT.2016.2584538](https://doi.org/10.1109/JIOT.2016.2584538).
7. Y. Liu, B. Jiang, and Z. Wang, "Reinforcement learning for dynamic supply chain optimization,"

Computers & Industrial Engineering, vol. 139, 2020. DOI: [10.1016/j.cie.2019.106141](https://doi.org/10.1016/j.cie.2019.106141).

8. D. Zhong, Z. Xia, Y. Zhu, et al., "Overview of predictive maintenance based on digital twin technology," *Heliyon*, vol. 9, no. 4, e14534, 2023. doi: [10.1016/j.heliyon.2023.e14534](https://doi.org/10.1016/j.heliyon.2023.e14534)
9. A. Jardine, D. Lin, and D. Banjevic, "A review on machinery diagnostics and prognostics implementing condition-based maintenance," *Mechanical Systems and Signal Processing*, vol. 20, no. 7, pp. 1483–1510, 2006 doi: [10.1016/j.ymssp.2005.09.012](https://doi.org/10.1016/j.ymssp.2005.09.012)
10. S. Kumar, K. R. Raj, and M. Cirrincione, "A comprehensive review of remaining useful life estimation approaches for rotating machinery," *Energies*, vol. 17, no. 22, 5538, 2024. doi: [10.3390/en17225538](https://doi.org/10.3390/en17225538)
11. Z. Zhao, W. Li, and J. Zhang, "Deep learning-based fault diagnosis for rotating machinery: A review," *IEEE Access*, vol. 7, pp. 180436–180450, 2019. doi: [10.1109/ACCESS.2019.2959592](https://doi.org/10.1109/ACCESS.2019.2959592)
12. J. Lee, H. Davari, J. Singh, and V. Pandhare, "Industrial artificial intelligence for industry 4.0-based manufacturing systems," *Manufacturing Letters*, vol. 18, pp. 20–23, 2018. doi: [10.1016/j.mfglet.2018.09.002](https://doi.org/10.1016/j.mfglet.2018.09.002)
13. F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, "Digital twin in industry: State-of-the-art," *IEEE Transactions on Industrial Informatics*, vol. 15, no. 4, pp. 2405–2415, 2019. doi: [10.1109/TII.2018.2873186](https://doi.org/10.1109/TII.2018.2873186)
14. M. Kathirvel and M. Chandrasekaran, "Predictive maintenance and energy optimization with AI-driven IoT framework in textile manufacturing," *International Journal of Computational and Experimental Science and Engineering*, 2025. doi: [10.22399/ijcesen.1584](https://doi.org/10.22399/ijcesen.1584)
15. R. Roman, J. Zhou, and J. Lopez, "On the features and challenges of security and privacy in distributed Internet of Things," *Computer Networks*, vol. 57, no. 10, pp. 2266–2279, 2013. doi: [10.1016/j.comnet.2012.12.018](https://doi.org/10.1016/j.comnet.2012.12.018)
16. S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, "Security, privacy and trust in Internet of Things: The road ahead," *Computer Networks*, vol. 76, pp. 146–164, 2015. doi: [10.1016/j.comnet.2014.11.008](https://doi.org/10.1016/j.comnet.2014.11.008)
17. Y. Meidan et al., "Detection of unauthorized IoT devices using machine learning techniques," *arXiv preprint*, 2017. doi: [10.48550/arXiv.1709.04647](https://arxiv.org/abs/1709.04647)
18. M. Al-Hawwreh, N. Moustafa, and E. Sitnikova, "Identification of malicious activities in industrial IoT networks using deep learning models," *Future Generation Computer Systems*, vol. 102, pp. 282–295, 2020. doi: [10.1016/j.future.2019.08.040](https://doi.org/10.1016/j.future.2019.08.040)
19. A. Dorri, S. S. Kanhere, and R. Jurdak, "Blockchain in Internet of Things: Challenges and solutions," *arXiv preprint*, 2016. doi: [10.48550/arXiv.1608.05187](https://arxiv.org/abs/1608.05187)
20. O. Novo, "Blockchain meets IoT: An architecture for scalable access management in IoT," *IEEE Internet of Things Journal*, vol. 5, no. 2, pp. 1184–1195, 2018. doi: [10.1109/JIOT.2018.2812239](https://doi.org/10.1109/JIOT.2018.2812239)
21. A. Alrawais, A. Alhothaily, C. Hu, and X. Cheng, "Fog computing for the Internet of Things: Security and privacy issues," *IEEE Internet Computing*, vol. 21, no. 2, pp. 34–42, 2017. doi: [10.1109/MIC.2017.37](https://doi.org/10.1109/MIC.2017.37)
22. Rahman, M. A., Islam, M. I., Tabassum, M., & Bristy, I. J. (2025, September). Climate-aware decision intelligence: Integrating environmental risk into infrastructure and supply chain planning. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 431–439. <https://doi.org/10.36348/sjet.2025.v10i09.006>
23. Rahman, M. A., Bristy, I. J., Islam, M. I., & Tabassum, M. (2025, September). Federated learning for secure inter-agency data collaboration in critical infrastructure. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 421–430. <https://doi.org/10.36348/sjet.2025.v10i09.005>
24. Tabassum, M., Rokibuzzaman, M., Islam, M. I., & Bristy, I. J. (2025, September). Data-driven financial analytics through MIS platforms in emerging economies. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 440–446. <https://doi.org/10.36348/sjet.2025.v10i09.007>
25. Tabassum, M., Islam, M. I., Bristy, I. J., & Rokibuzzaman, M. (2025, September). Blockchain and ERP-integrated MIS for transparent apparel & textile supply chains. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 447–456. <https://doi.org/10.36348/sjet.2025.v10i09.008>
26. Bristy, I. J., Tabassum, M., Islam, M. I., & Hasan, M. N. (2025, September). IoT-driven predictive maintenance dashboards in industrial operations. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 457–466. <https://doi.org/10.36348/sjet.2025.v10i09.009>
27. Hasan, M. N., Karim, M. A., Joarder, M. M. I., & Zaman, M. T. (2025, September). IoT-integrated solar energy monitoring and bidirectional DC-DC converters for smart grids. *Saudi Journal of Engineering and Technology (SJEAT)*, 10(9), 467–475. <https://doi.org/10.36348/sjet.2025.v10i09.010>
28. Bormon, J. C., Saikat, M. H., Shohag, M., & Akter, E. (2025, September). Green and low-carbon construction materials for climate-adaptive civil structures. *Saudi Journal of Civil Engineering (SJCE)*, 9(8), 219–226. <https://doi.org/10.36348/sjce.2025.v09i08.002>
29. Razaq, A., Rahman, M., Karim, M. A., & Hossain, M. T. (2025, September 26). Smart charging infrastructure for EVs using IoT-based load balancing. *Zenodo*. <https://doi.org/10.5281/zenodo.17210639>
30. Habiba, U., & Musarrat, R. (2025). Bridging IT and education: Developing smart platforms for student-centered English learning. *Zenodo*. <https://doi.org/10.5281/zenodo.17193947>
31. Alimozzaman, D. M. (2025). Early prediction of Alzheimer's disease using explainable multi-modal AI. *Zenodo*. <https://doi.org/10.5281/zenodo.17210997>
32. uz Zaman, M. T. Smart Energy Metering with IoT and GSM Integration for Power Loss Minimization. *Preprints* 2025, 2025091770. <https://doi.org/10.20944/preprints202509.1770.v1>
33. Hossain, M. T. (2025, October). Sustainable garment production through Industry 4.0 automation. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.20161.83041>
34. Hasan, E. (2025). Secure and scalable data management for digital transformation in finance and IT systems. *Zenodo*. <https://doi.org/10.5281/zenodo.17202282>
35. Saikat, M. H. (2025). Geo-Forensic Analysis of Levee and Slope Failures Using Machine Learning. *Preprints*. <https://doi.org/10.20944/preprints202509.1905.v1>
36. Akter, E. (2025, October 13). Lean project management and multi-stakeholder optimization in civil engineering projects. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.15777.47206>
37. Musarrat, R. (2025). Curriculum adaptation for inclusive classrooms: A sociological and pedagogical approach. *Zenodo*. <https://doi.org/10.5281/zenodo.17202455>
38. Bormon, J. C. (2025, October 13). Sustainable dredging and sediment management techniques for coastal and riverine infrastructure. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.28131.00803>
39. Bormon, J. C. (2025). AI-Assisted Structural Health Monitoring for Foundations and High-Rise Buildings. *Preprints*. <https://doi.org/10.20944/preprints202509.1196.v1>
40. Haque, S. (2025). Effectiveness of managerial accounting in strategic decision making [Preprint]. *Preprints*. <https://doi.org/10.20944/preprints202509.2466.v1>
41. Shoag, M. (2025). AI-Integrated Façade Inspection Systems for Urban Infrastructure Safety. *Zenodo*. <https://doi.org/10.5281/zenodo.17101037>
42. Shoag, M. Automated Defect Detection in High-Rise Façades Using AI and Drone-Based Inspection. *Preprints* 2025, 2025091064. <https://doi.org/10.20944/preprints202509.1064.v1>
43. Shoag, M. (2025). Sustainable construction materials and techniques for crack prevention in mass concrete structures. Available at SSRN: <https://ssrn.com/abstract=5475306> or <http://dx.doi.org/10.2139/ssrn.5475306>
44. Joarder, M. M. I. (2025). Disaster recovery and high-availability frameworks for hybrid cloud environments. *Zenodo*. <https://doi.org/10.5281/zenodo.17100446>
45. Joarder, M. M. I. (2025). Next-generation monitoring and automation: AI-enabled system administration for smart data

centers. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175825633.33380552/v1>

46. Joarder, M. M. I. (2025). Energy-Efficient Data Center Virtualization: Leveraging AI and CloudOps for Sustainable Infrastructure. *Zenodo*. <https://doi.org/10.5281/zenodo.17113371>

47. Taimun, M. T. Y., Sharan, S. M. I., Azad, M. A., & Joarder, M. M. I. (2025). Smart maintenance and reliability engineering in manufacturing. *Saudi Journal of Engineering and Technology*, 10(4), 189–199.

48. Enam, M. M. R., Joarder, M. M. I., Taimun, M. T. Y., & Sharan, S. M. I. (2025). Framework for smart SCADA systems: Integrating cloud computing, IIoT, and cybersecurity for enhanced industrial automation. *Saudi Journal of Engineering and Technology*, 10(4), 152–158.

49. Azad, M. A., Taimun, M. T. Y., Sharan, S. M. I., & Joarder, M. M. I. (2025). Advanced lean manufacturing and automation for reshoring American industries. *Saudi Journal of Engineering and Technology*, 10(4), 169–178.

50. Sharan, S. M. I., Taimun, M. T. Y., Azad, M. A., & Joarder, M. M. I. (2025). Sustainable manufacturing and energy-efficient production systems. *Saudi Journal of Engineering and Technology*, 10(4), 179–188.

51. Farabi, S. A. (2025). AI-augmented OTDR fault localization framework for resilient rural fiber networks in the United States. *arXiv*. <https://arxiv.org/abs/2506.03041>

52. Farabi, S. A. (2025). AI-driven predictive maintenance model for DWDM systems to enhance fiber network uptime in underserved U.S. regions. *Preprints*. <https://doi.org/10.20944/preprints202506.1152.v1>

53. Farabi, S. A. (2025). AI-powered design and resilience analysis of fiber optic networks in disaster-prone regions. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.12096.65287>

54. Sunny, S. R. (2025). Lifecycle analysis of rocket components using digital twins and multiphysics simulation. *ResearchGate*. <https://doi.org/10.13140/RG.2.2.20134.23362>

55. Sunny, S. R. (2025). AI-driven defect prediction for aerospace composites using Industry 4.0 technologies. *Zenodo*. <https://doi.org/10.5281/zenodo.16044460>

56. Sunny, S. R. (2025). Edge-based predictive maintenance for subsonic wind tunnel systems using sensor analytics and machine learning. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175624632.23702199/v1>

57. Sunny, S. R. (2025). Digital twin framework for wind tunnel-based aeroelastic structure evaluation. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175624632.23702199/v1>

58. Sunny, S. R. (2025). Real-time wind tunnel data reduction using machine learning and JR3 balance integration. *Saudi Journal of Engineering and Technology*, 10(9), 411–420. <https://doi.org/10.36348/sjet.2025.v10i09.004>

59. Sunny, S. R. (2025). AI-augmented aerodynamic optimization in subsonic wind tunnel testing for UAV prototypes. *Saudi Journal of Engineering and Technology*, 10(9), 402–410. <https://doi.org/10.36348/sjet.2025.v10i09.003>

60. Shaikat, M. F. B. (2025). Pilot deployment of an AI-driven production intelligence platform in a textile assembly line. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175203708.81014137/v1>

61. Rabbi, M. S. (2025). Extremum-seeking MPPT control for Z-source inverters in grid-connected solar PV systems. *Preprints*. <https://doi.org/10.20944/preprints202507.2258.v1>

62. Rabbi, M. S. (2025). Design of fire-resilient solar inverter systems for wildfire-prone U.S. regions. *Preprints*. <https://www.preprints.org/manuscript/202507.2505/v1>

63. Rabbi, M. S. (2025). Grid synchronization algorithms for intermittent renewable energy sources using AI control loops. *Preprints*. <https://www.preprints.org/manuscript/202507.2353/v1>

64. Tonoy, A. A. R. (2025). Condition monitoring in power transformers using IoT: A model for predictive maintenance. *Preprints*. <https://doi.org/10.20944/preprints202507.2379.v1>

65. Tonoy, A. A. R. (2025). Applications of semiconducting electrides in mechanical energy conversion and piezoelectric systems. *Preprints*. <https://doi.org/10.20944/preprints202507.2421.v1>

66. Azad, M. A. (2025). Lean automation strategies for reshoring U.S. apparel manufacturing: A sustainable approach. *Preprints*. <https://doi.org/10.20944/preprints202508.0024.v1>

67. Azad, M. A. (2025). Optimizing supply chain efficiency through lean Six Sigma: Case study in textile and apparel manufacturing. *Preprints*. <https://doi.org/10.20944/preprints202508.0013.v1>

68. Azad, M. A. (2025). Sustainable manufacturing practices in the apparel industry: Integrating eco-friendly materials and processes. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175459827.79551250/v1>

69. Azad, M. A. (2025). Leveraging supply chain analytics for real-time decision making in apparel manufacturing. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175459831.14441929/v1>

70. Azad, M. A. (2025). Evaluating the role of lean manufacturing in reducing production costs and enhancing efficiency in textile mills. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175459830.02641032/v1>

71. Azad, M. A. (2025). Impact of digital technologies on textile and apparel manufacturing: A case for U.S. reshoring. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175459829.93863272/v1>

72. Rayhan, F. (2025). A hybrid deep learning model for wind and solar power forecasting in smart grids. *Preprints*. <https://doi.org/10.20944/preprints202508.0511.v1>

73. Rayhan, F. (2025). AI-powered condition monitoring for solar inverters using embedded edge devices. *Preprints*. <https://doi.org/10.20944/preprints202508.0474.v1>

74. Rayhan, F. (2025). AI-enabled energy forecasting and fault detection in off-grid solar networks for rural electrification. *TechRxiv*. <https://doi.org/10.36227/techrxiv.175623117.73185204/v1>

75. Habiba, U., & Musarrat, R. (2025). Integrating digital tools into ESL pedagogy: A study on multimedia and student engagement. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(2), 799–811. <https://doi.org/10.5281/zenodo.17245996>

76. Hossain, M. T., Nabil, S. H., Razaq, A., & Rahman, M. (2025). Cybersecurity and privacy in IoT-based electric vehicle ecosystems. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(2), 921–933. <https://doi.org/10.5281/zenodo.17246184>

77. Hossain, M. T., Nabil, S. H., Rahman, M., & Razaq, A. (2025). Data analytics for IoT-driven EV battery health monitoring. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(2), 903–913. <https://doi.org/10.5281/zenodo.17246168>

78. Akter, E., Borman, J. C., Saikat, M. H., & Shoag, M. (2025). Digital twin technology for smart civil infrastructure and emergency preparedness. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(2), 891–902. <https://doi.org/10.5281/zenodo.17246150>

79. Rahmatullah, R. (2025). Smart agriculture and Industry 4.0: Applying industrial engineering tools to improve U.S. agricultural productivity. *World Journal of Advanced Engineering Technology and Sciences*, 17(1), 28–40. <https://doi.org/10.30574/wjaets.2025.17.1.1377>

80. Islam, R. (2025). AI and big data for predictive analytics in pharmaceutical quality assurance.. *SSRN*. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5564319

81. Rahmatullah, R. (2025). Sustainable agriculture supply chains: Engineering management approaches for reducing post-harvest loss in the U.S. *International Journal of Scientific Research and Engineering Development*, 8(5), 1187–1216. <https://doi.org/10.5281/zenodo.17275907>

82. Haque, S., Al Sany, S. M. A., & Rahman, M. (2025). Circular economy in fashion: MIS-driven digital product passports for apparel traceability. *International Journal of Scientific Research and Engineering Development*, 8(5), 1254–1262. <https://doi.org/10.5281/zenodo.17276038>

83. Al Sany, S. M. A., Haque, S., & Rahman, M. (2025). Green apparel logistics: MIS-enabled carbon footprint reduction in fashion supply chains. *International Journal of Scientific Research and Engineering Development*, 8(5), 1254–1262. <https://doi.org/10.5281/zenodo.17276038>

and Engineering Development, 8(5), 1263–1272. <https://doi.org/10.5281/zenodo.17276049>

84. Bormon, J. C. (2025). Numerical Modeling of Foundation Settlement in High-Rise Structures Under Seismic Loading. Available at SSRN: <https://ssrn.com/abstract=5472006> or <http://dx.doi.org/10.2139/ssrn.5472006>

85. Hossain, M. T. (2025, October 7). Smart inventory and warehouse automation for fashion retail. TechRxiv. <https://doi.org/10.36227/techrxiv.175987210.04689809.v1>

86. Karim, M. A. (2025, October 6). AI-driven predictive maintenance for solar inverter systems. TechRxiv. <https://doi.org/10.36227/techrxiv.175977633.34528041.v1>

87. Habiba, U. (2025, October 7). Cross-cultural communication competence through technology-mediated TESOL. TechRxiv. <https://doi.org/10.36227/techrxiv.175985896.67358551.v1>

88. Habiba, U. (2025, October 7). AI-driven assessment in TESOL: Adaptive feedback for personalized learning. TechRxiv. <https://doi.org/10.36227/techrxiv.175987165.56867521.v1>

89. Akhter, T. (2025, October 6). Algorithmic internal controls for SMEs using MIS event logs. TechRxiv. <https://doi.org/10.36227/techrxiv.175978941.15848264.v1>

90. Akhter, T. (2025, October 6). MIS-enabled workforce analytics for service quality & retention. TechRxiv. <https://doi.org/10.36227/techrxiv.175978943.38544757.v1>

91. Hasan, E. (2025, October 7). Secure and scalable data management for digital transformation in finance and IT systems. Zenodo. <https://doi.org/10.5281/zenodo.17202282>

92. Saikat, M. H., Shoag, M., Akter, E., Bormon, J. C. (October 06, 2025.) Seismic- and Climate-Resilient Infrastructure Design for Coastal and Urban Regions. TechRxiv. DOI: <https://doi.org/10.36227/techrxiv.175979151.16743058.v1>

93. Saikat, M. H. (October 06, 2025). AI-Powered Flood Risk Prediction and Mapping for Urban Resilience. TechRxiv. DOI: <https://doi.org/10.36227/techrxiv.175979253.37807272.v1>

94. Akter, E. (September 15, 2025). Sustainable Waste and Water Management Strategies for Urban Civil Infrastructure. Available at SSRN: <https://ssrn.com/abstract=5490686> or <http://dx.doi.org/10.2139/ssrn.5490686>

95. Karim, M. A., Zaman, M. T. U., Nabil, S. H., & Joarder, M. M. I. (2025, October 6). AI-enabled smart energy meters with DC-DC converter integration for electric vehicle charging systems. TechRxiv. <https://doi.org/10.36227/techrxiv.175978935.59813154.v1>

96. Al Sany, S. M. A., Rahman, M., & Haque, S. (2025). Sustainable garment production through Industry 4.0 automation. World Journal of Advanced Engineering Technology and Sciences, 17(1), 145–156. <https://doi.org/10.30574/wjaets.2025.17.1.1387>

97. Rahman, M., Haque, S., & Al Sany, S. M. A. (2025). Federated learning for privacy-preserving apparel supply chain analytics. World Journal of Advanced Engineering Technology and Sciences, 17(1), 259–270. <https://doi.org/10.30574/wjaets.2025.17.1.1386>

98. Rahman, M., Razaq, A., Hossain, M. T., & Zaman, M. T. U. (2025). Machine learning approaches for predictive maintenance in IoT devices. World Journal of Advanced Engineering Technology and Sciences, 17(1), 157–170. <https://doi.org/10.30574/wjaets.2025.17.1.1388>

99. Akhter, T., Alimozzaman, D. M., Hasan, E., & Islam, R. (2025, October). Explainable predictive analytics for healthcare decision support. International Journal of Sciences and Innovation Engineering, 2(10), 921–938. <https://doi.org/10.70849/IJSCI02102025105>

100. Rahman, M. (October 15, 2025) Integrating IoT and MIS for Last-Mile Connectivity in Residential Broadband Services. TechRxiv. DOI: <https://doi.org/10.36227/techrxiv.176054689.95468219.v1>

101. Islam, R. (2025, October 15). Integration of IIoT and MIS for smart pharmaceutical manufacturing. TechRxiv. <https://doi.org/10.36227/techrxiv.176049811.10002169>

102. Hasan, E. (2025). Big Data-Driven Business Process Optimization: Enhancing Decision-Making Through Predictive Analytics. TechRxiv. October 07, 2025. <https://doi.org/10.36227/techrxiv.175987736.61988942.v1>

103. Rahman, M. (2025, October 15). IoT-enabled smart charging systems for electric vehicles. TechRxiv. <https://doi.org/10.36227/techrxiv.176049766.60280824.v1>

104. Alam, M. S. (2025, October 21). AI-driven sustainable manufacturing for resource optimization. TechRxiv. <https://doi.org/10.36227/techrxiv.176107759.92503137.v1>

105. Alam, M. S. (2025, October 21). Data-driven production scheduling for high-mix manufacturing environments. TechRxiv. <https://doi.org/10.36227/techrxiv.176107775.59550104.v1>

106. Ria, S. J. (2025, October 21). Environmental impact assessment of transportation infrastructure in rural Bangladesh. TechRxiv. <https://doi.org/10.36227/techrxiv.176107782.23912238.v1>

107. R. Musarrat and U. Habiba, Immersive Technologies in ESL Classrooms: Virtual and Augmented Reality for Language Fluency (September 22, 2025). Available at SSRN: <https://ssrn.com/abstract=5536098> or <http://dx.doi.org/10.2139/ssrn.5536098>

108. Akter, E., Bormon, J. C., Saikat, M. H., & Shoag, M. (2025), "AI-Enabled Structural and Façade Health Monitoring for Resilient Cities", Int. J. Sci. Inno. Eng., vol. 2, no. 10, pp. 1035–1051, Oct. 2025, doi: [10.70849/IJSCI02102025116](https://doi.org/10.70849/IJSCI02102025116)

109. Haque, S. Al Sany (Oct. 2025), "Impact of Consumer Behavior Analytics on Telecom Sales Strategy", Int. J. Sci. Inno. Eng., vol. 2, no. 10, pp. 998–1018, doi: [10.70849/IJSCI02102025114](https://doi.org/10.70849/IJSCI02102025114).

110. Sharan, S. M. I (Oct. 2025), "Integrating Human-Centered Design with Agile Methodologies in Product Lifecycle Management", Int. J. Sci. Inno. Eng., vol. 2, no. 10, pp. 1019–1034, doi: [10.70849/IJSCI02102025115](https://doi.org/10.70849/IJSCI02102025115).

111. Alimozzaman, D. M. (2025). Explainable AI for early detection and classification of childhood leukemia using multi-modal medical data. World Journal of Advanced Engineering Technology and Sciences, 17(2), 48–62. <https://doi.org/10.30574/wjaets.2025.17.2.1442>

112. Alimozzaman, D. M., Akhter, T., Islam, R., & Hasan, E. (2025). Generative AI for synthetic medical imaging to address data scarcity. World Journal of Advanced Engineering Technology and Sciences, 17(1), 544–558. <https://doi.org/10.30574/wjaets.2025.17.1.1415>

113. Zaidi, S. K. A. (2025). Intelligent automation and control systems for electric vertical take-off and landing (eVTOL) drones. World Journal of Advanced Engineering Technology and Sciences, 17(2), 63–75. <https://doi.org/10.30574/wjaets.2025.17.2.1457>

114. Islam, K. S. A. (2025). Implementation of safety-integrated SCADA systems for process hazard control in power generation plants. IJSRED – International Journal of Scientific Research and Engineering Development, 8(5), 2321–2331. Zenodo. <https://doi.org/10.5281/zenodo.17536369>

115. Islam, K. S. A. (2025). Transformer protection and fault detection through relay automation and machine learning. IJSRED – International Journal of Scientific Research and Engineering Development, 8(5), 2308–2320. Zenodo. <https://doi.org/10.5281/zenodo.17536362>

116. Afrin, S. (2025). Cloud-integrated network monitoring dashboards using IoT and edge analytics. IJSRED – International Journal of Scientific Research and Engineering Development, 8(5), 2298–2307. Zenodo. <https://doi.org/10.5281/zenodo.17536343>

117. Afrin, S. (2025). Cyber-resilient infrastructure for public internet service providers using automated threat detection. World Journal of Advanced Engineering Technology and Sciences, 17(02), 127–140. Article DOI: <https://doi.org/10.30574/wjaets.2025.17.2.1475>.

118. Al Sany, S. M. A. (2025). The role of data analytics in optimizing budget allocation and financial efficiency in startups. IJSRED – International Journal of Scientific Research and Engineering Development, 8(5), 2287–2297. Zenodo. <https://doi.org/10.5281/zenodo.17536325>

119. Zaman, S. U. (2025). Vulnerability management and automated incident response in corporate networks. IJSRED – International Journal of Scientific Research and Engineering Development, 8(5), 2275–2286. Zenodo. <https://doi.org/10.5281/zenodo.17536305>

120. Ria, S. J. (2025, October 7). Sustainable construction materials for rural development projects. SSRN. <https://doi.org/10.2139/ssrn.5575390>

121. Razaq, A. (2025, October 15). Design and implementation of renewable energy integration into smart grids. TechRxiv. <https://doi.org/10.36227/techrxiv.176049834.44797235/v1>

122. Musarrat R. (2025). AI-Driven Smart Housekeeping and Service Allocation Systems: Enhancing Hotel Operations Through MIS Integration. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 898–910). Zenodo. <https://doi.org/10.5281/zenodo.17769627>

123. Hossain, M. T. (2025). AI-Augmented Sensor Trace Analysis for Defect Localization in Apparel Production Systems Using OTDR-Inspired Methodology. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 1029–1040). Zenodo. <https://doi.org/10.5281/zenodo.17769857>

124. Rahman M. (2025). Design and Implementation of a Data-Driven Financial Risk Management System for U.S. SMEs Using Federated Learning and Privacy-Preserving AI Techniques. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 1041–1052). Zenodo. <https://doi.org/10.5281/zenodo.17769869>

125. Alam, M. S. (2025). Real-Time Predictive Analytics for Factory Bottleneck Detection Using Edge-Based IIoT Sensors and Machine Learning. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 1053–1064). Zenodo. <https://doi.org/10.5281/zenodo.17769890>

126. Habiba, U., & Musarrat, R. (2025). Student-centered pedagogy in ESL: Shifting from teacher-led to learner-led classrooms. International Journal of Science and Innovation Engineering, 2(11), 1018–1036. <https://doi.org/10.70849/IJSCI02112025110>

127. Zaidi, S. K. A. (2025). Smart sensor integration for energy-efficient avionics maintenance operations. International Journal of Science and Innovation Engineering, 2(11), 243–261. <https://doi.org/10.70849/IJSCI02112025026>

128. Farooq, H. (2025). Cross-platform backup and disaster recovery automation in hybrid clouds. International Journal of Science and Innovation Engineering, 2(11), 220–242. <https://doi.org/10.70849/IJSCI02112025025>

129. Farooq, H. (2025). Resource utilization analytics dashboard for cloud infrastructure management. World Journal of Advanced Engineering Technology and Sciences, 17(02), 141–154. <https://doi.org/10.30574/wjaets.2025.17.2.1458>

130. Saeed, H. N. (2025). Hybrid perovskite-CIGS solar cells with machine learning-driven performance prediction. International Journal of Science and Innovation Engineering, 2(11), 262–280. <https://doi.org/10.70849/IJSCI02112025027>

131. Akter, E. (2025). Community-based disaster risk reduction through infrastructure planning. International Journal of Science and Innovation Engineering, 2(11), 1104–1124. <https://doi.org/10.70849/IJSCI02112025117>

132. Akter, E. (2025). Green project management framework for infrastructure development. International Journal of Science and Innovation Engineering, 2(11), 1125–1144. <https://doi.org/10.70849/IJSCI02112025118>

133. Shoag, M. (2025). Integration of lean construction and digital tools for façade project efficiency. International Journal of Science and Innovation Engineering, 2(11), 1145–1164. <https://doi.org/10.70849/IJSCI02112025119>

134. Akter, E. (2025). Structural Analysis of Low-Cost Bridges Using Sustainable Reinforcement Materials. In IJSRED - International Journal of Scientific Research and Engineering Development (Vol. 8, Number 6, pp. 911–921). Zenodo. <https://doi.org/10.5281/zenodo.17769637>

135. Razaq, A. (2025). Optimization of power distribution networks using smart grid technology. World Journal of Advanced Engineering Technology and Sciences, 17(03), 129–146. <https://doi.org/10.30574/wjaets.2025.17.3.1490>

136. Zaman, M. T. (2025). Enhancing grid resilience through DMR trunking communication systems. World Journal of Advanced Engineering Technology and Sciences, 17(03), 197–212. <https://doi.org/10.30574/wjaets.2025.17.3.1551>

137. Nabil, S. H. (2025). Enhancing wind and solar power forecasting in smart grids using a hybrid CNN-LSTM model for improved grid stability and renewable energy integration. World Journal of Advanced Engineering Technology and Sciences, 17(03), 213–226. <https://doi.org/10.30574/wjaets.2025.17.3.155>

138. Nahar, S. (2025). Optimizing HR management in smart pharmaceutical manufacturing through IIoT and MIS integration. World Journal of Advanced Engineering Technology and Sciences, 17(03), 240–252. <https://doi.org/10.30574/wjaets.2025.17.3.1554>

139. Islam, S. (2025). IPSC-derived cardiac organoids: Modeling heart disease mechanism and advancing regenerative therapies. World Journal of Advanced Engineering Technology and Sciences, 17(03), 227–239. <https://doi.org/10.30574/wjaets.2025.17.3.1553>

140. Shoag, M. (2025). Structural load distribution and failure analysis in curtain wall systems. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2117–2128. Zenodo. <https://doi.org/10.5281/zenodo.17926722>

141. Hasan, E. (2025). Machine learning-based KPI forecasting for finance and operations teams. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2139–2149. Zenodo. <https://doi.org/10.5281/zenodo.17926746>

142. Hasan, E. (2025). SQL-driven data quality optimization in multi-source enterprise dashboards. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2150–2160. Zenodo. <https://doi.org/10.5281/zenodo.17926758>

143. Hasan, E. (2025). Optimizing SAP-centric financial workloads with AI-enhanced CloudOps in virtualized data centers. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2252–2264. Zenodo. <https://doi.org/10.5281/zenodo.17926855>

144. Karim, M. A. (2025). An IoT-enabled exoskeleton architecture for mobility rehabilitation derived from the ExoLimb methodological framework. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2265–2277. Zenodo. <https://doi.org/10.5281/zenodo.17926861>

145. Akter, E., Ria, S. J., Khan, M. I., & Shoag, M. D. (2025). Smart & sustainable construction governance for climate-resilient cities. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2278–2291. Zenodo. <https://doi.org/10.5281/zenodo.17926875>

146. Zaman, S. U. (2025). Enhancing security in cloud-based IAM systems using real-time anomaly detection. IJSRED - International Journal of Scientific Research and Engineering Development, 8(6), 2292–2304. Zenodo. <https://doi.org/10.5281/zenodo.17926883>

147. Hossain, M. T. (2025). Data-driven optimization of apparel supply chain to reduce lead time and improve on-time delivery. World Journal of Advanced Engineering Technology and Sciences, 17(03), 263–277. <https://doi.org/10.30574/wjaets.2025.17.3.1556>

148. Rahman, F. (2025). Advanced statistical models for forecasting energy prices. Global Journal of Engineering and Technology Advances, 25(03), 168–182. <https://doi.org/10.30574/gjeta.2025.25.3.0350>

149. Karim, F. M. Z. (2025). Integrating quality management systems to strengthen U.S. export-oriented production. Global Journal of Engineering and Technology Advances, 25(03), 183–198. <https://doi.org/10.30574/gjeta.2025.25.3.0351>

150. Fazle, A. B. (2025). AI-driven predictive maintenance and process optimization in manufacturing systems using machine learning and sensor analytics. Global Journal of Engineering and Technology Advances, 25(03), 153–167. <https://doi.org/10.30574/gjeta.2025.25.3.0349>

151. Rahman, F. (2025). Data science in power system risk assessment and management. World Journal of Advanced Engineering Technology and Sciences, 17(03), 295–311. <https://doi.org/10.30574/wjaets.2025.17.3.1560>

152. Rahman, M. (2025). Predictive maintenance of electric vehicle components using IoT sensors. World Journal of Advanced Engineering Technology and Sciences, 17(03), 312–327. <https://doi.org/10.30574/wjaets.2025.17.3.1557>

153. Hossain, M. T. (2025). Cost negotiation strategies and their impact on profitability in fashion sourcing: A quantitative analysis. *Global Journal of Engineering and Technology Advances*, 25(03), 136–152. <https://doi.org/10.30574/gjeta.2025.25.3.0348>

154. Jasem, M. M. H. (2025, December 19). An AI-driven system health dashboard prototype for predictive maintenance and infrastructure resilience. Authora. <https://doi.org/10.22541/au.176617579.97570024/v1>

155. uz Zaman, M. T. (2025). Photonics-based fault detection and monitoring in energy metering systems. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(6), 2359–2371. Zenodo. <https://doi.org/10.5281/zenodo.1807435>

156. Shoag, M. D., Khan, M. I., Ria, S. J., & Akter, E. (2025). AI-based risk prediction and quality assurance in mega-infrastructure projects. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(6), 2324–2336. Zenodo. <https://doi.org/10.5281/zenodo.18074336>

157. Haque, S. (2025). The impact of automation on accounting practices. *IJSRED – International Journal of Scientific Research and Engineering Development*, 8(6), 2312–2323. Zenodo. <https://doi.org/10.5281/zenodo.18074324>

158. Fontenot, D., Ahmed, F., & Chy, K. S. (2024). ChatGPT: What is it? How does it work? Can it be a teaching tool for an introductory programming course in higher education? *Southwestern Business Administration Journal*, 21(1), Article 2. <https://digitalscholarship.tsu.edu/sbaj/vol21/iss1/2>

159. Ahmed, F., & Rahaman, A. (2025). *AI-driven predictive modeling of Bangladesh economic trends: Highlighting financial crime & fraud* (pp. 533–542). IKSAD Congress. https://www.iksadkongre.com/_files/ugd/614b1f_4195d955f81e401a9bdbf7565b2f9948.pdf

160. Rahaman, A., Siddiquee, S. F., Chowdhury, J., Ahmed, R., Abrar, S., Bhuiyan, T., & Ahmed, F. (2025). Enhancing climate resilience in Rohingya refugee camps: A comprehensive strategy for sustainable disaster preparedness. *Environment and Ecology Research*, 13(6), 755–767. <https://doi.org/10.13189/eer.2025.130601>

161. Chowdhury, S., et al. (2024). Students' perception of using AI tools as a research work or coursework assistant. *Middle East Research Journal of Economics and Management*, 4(6), X. <https://doi.org/10.36348/merjem.2024.v04i06.00X>

162. Rahaman, A., Zaman, T. S., & Ahmed, F. (2025). Digital pathways to women's empowerment: Use of Facebook, Instagram, WhatsApp, and e-commerce by women entrepreneurs in Bangladesh. In *Proceedings of the 15th International "Communication in New World" Congress* (pp. 700–709).

163. Ria, S. J., Shoag, M. D., Akter, E., & Khan, M. I. (2025). Integration of recycled and local materials in low-carbon urban structures. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 447–463. <https://doi.org/10.30574/wjaets.2025.17.3.1555>

164. Fahim, M. A. I., Sharan, S. M. M. I., & Farooq, H. (2025). AI-enabled cloud-IoT platform for predictive infrastructure automation. *World Journal of Advanced Engineering Technology and Sciences*, 17(03), 431–446. <https://doi.org/10.30574/wjaets.2025.17.3.1574>

165. Karim, F. M. Z. (2025). Strategic Human Resource Systems for Retention and Growth in Manufacturing Enterprises. In *IJSRED - International Journal of Scientific Research and Engineering Development* (Vol. 8, Number 6, pp. 2547–2559). Zenodo. <https://doi.org/10.5281/zenodo.18074545>

166. Rahman, T. (2026). Financial Risk Intelligence: Real-Time Fraud Detection and Threat Monitoring. Zenodo. <https://doi.org/10.5281/zenodo.18176490>

167. Rabbi, M. S. (2026). AI-Driven SCADA Grid Intelligence for Predictive Fault Detection, Cyber Health Monitoring, and Grid Reliability Enhancement. Zenodo. <https://doi.org/10.5281/zenodo.18196487>