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Abstract:

Monte Carlo simulation is a powerful statistical technique for modelling uncertainty and predicting outcomes
in a complex system of petroleum projects. This paper explores its application in energy management and
petroleum engineering, highlighting its benefits and uses. Monte Carlo simulation is a probabilistic modelling
technique used to quantify uncertainty in complex petroleum reservoir systems. Uncertainty is inherent in the
petroleum and energy system due to variability in geological properties, market conditions and regulatory
environments. Generally, the traditional deterministic approach often fails to capture the full range of possible
outcomes. This study represents the application of Montecarlo simulation (MCS) as a robust probabilistic
framework for uncertainty qualification in the Energy management and petroleum engineering projects. The
methodology integrates statistical distributions of key uncertain variables—such as reservoir properties
(porosity, water saturation, permeability), drilling parameters (pore pressure, in-situ stresses, equivalent
circulating density), production decline parameters, commodity prices, and capital expenditures—into
numerical models to generate thousands of simulation realisations. The results provide probabilistic outputs
including P10, P50, and P90 estimates for reserves, production forecasts, mud weight windows, and net present
value (NPV).

The study demonstrates that Monte Carlo—based risk assessment significantly improves decision-making by
quantifying the probability of adverse events such as wellbore instability, kick/loss scenarios, economic loss,
and underperformance of energy projects. Furthermore, applications in renewable energy forecasting and
carbon capture and storage (CCS) projects illustrate its broader role in sustainable energy planning and
financial risk management. The findings confirm that probabilistic modelling enhances operational safety,
economic reliability, and strategic planning compared to deterministic approaches. Monte Carlo Simulation is
therefore established as a critical tool for modern risk-based petroleum operations and energy investment
analysis.
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Fig 1:-The figure illustrates a 3D probabilistic workflow where uncertain input parameters (reservoir
properties, drilling variables, production decline parameters, oil price, CAPEX/OPEX) are sampled through
random simulation (10,000 realisations). The Monte Carlo engine generates probabilistic outputs, including
reserve distribution (P10-P50-P90), mud weight window uncertainty (collapse and fracture risk), production
forecast variability, and NPV distribution. These outputs support quantitative risk assessment and strategic
decision-making in drilling operations, renewable energy projects, and carbon capture and storage (CCS)
systems.
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Fig 2 :-The figure illustrates the integration of uncertain drilling and formation parameters—pore pressure,
fracture gradient, mud rheology, flow rate, cuttings concentration, wellbore geometry, and formation strength
(UCS)—into a Monte Carlo simulation engine (10,000 realisations). Random sampling propagates input
uncertainties to generate probabilistic outputs, including ECD distribution relative to pore—fracture pressure
limits, mud weight window variability (collapse versus fracture risk), and DXC-based abnormal pressure
detection confidence. The resulting P10-P50-P90 envelopes quantify the probability of kick, lost circulation,
and wellbore instability, enabling risk-based drilling optimisation and reduction of non-productive time (NPT).
In conclusion, the integration of Monte Carlo Simulation with ECD-DXC analysis provides a robust
probabilistic framework for quantifying drilling uncertainty and operational risk. By transforming
deterministic drilling parameters into statistical distributions, the approach enables reliable prediction of ECD
behaviour, mud weight window limits, and abnormal pressure detection confidence. The resulting probability-
based outputs (P10-P50-P90) enhance real-time decision-making, reduce the likelihood of kick and lost
circulation events, and improve wellbore stability management. This probabilistic methodology ultimately
supports safer drilling operations, minimises non-productive time (NPT), and strengthens risk-informed
planning in modern petroleum engineering practices.
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Probabilistic Wellbore Stability Assessment Using Monte Carlo Simulation
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Fig 3: This 3D infographic illustrates the workflow of Monte Carlo Simulation for evaluating wellbore stability.
Key uncertain input parameters—including rock mechanical properties (UCS, cohesion, friction angle), in-
situ stresses, pore pressure, and drilling parameters (mud weight, ECD)—are randomly sampled through
10,000+ simulation iterations. The probabilistic outputs include the mud weight distribution (P10-P50-P90),
risk probability heatmap along the wellbore depth (collapse, safe, fracture zones), and breakout orientation
prediction. The figure visualises how stochastic modelling of input uncertainties enables risk-based wellbore
design, optimisation of mud weight windows, and reduction of non-productive time (NPT) in drilling
operations.

Monte Carlo Simulation provides a powerful probabilistic framework for wellbore stability assessment and
drilling risk management in petroleum engineering. Incorporating the inherent uncertainties in rock properties,
in-situ stresses, pore pressure, and drilling parameters, it enables the prediction of key outputs such as mud
weight windows, probability of collapse or fracture, and wellbore breakout orientation with defined confidence
levels (P10-P50-P90). This approach transforms deterministic designs into risk-informed, probabilistic
decisions, improving drilling safety, reducing non-productive time (NPT), and optimising operational
efficiency. When applied to ECD-DXC analysis, Monte Carlo Simulation allows for real-time assessment of
abnormal pressure scenarios and wellbore stability, making it an indispensable tool for modern petroleum
engineering operations and energy project planning.

Introduction: -Monte Carlo Simulation (MCS) is a probabilistic modelling technique widely applied in Energy
Management and Petroleum Engineering to quantify uncertainty and support risk-based decision making by
replacing deterministic inputs with probability distributions and running thousands of simulations to generate
output ranges such as P10, P50, and P90 estimates. In petroleum engineering, it is extensively used for
reservoir performance forecasting by incorporating uncertainties in porosity, permeability, net pay thickness,
oil saturation, and reservoir pressure to estimate original oil in place (OOIP), recovery factor, and cumulative
production distributions; for wellbore stability and geomechanics by modelling variability in in-situ stresses
(oH, oh, ov), pore pressure, rock strength, and mud weight to determine safe mud weight windows and
probability of borehole failure; and for field development economics by simulating uncertainties in oil price,
CAPEX, OPEX, production rates, and discount rates to generate probabilistic NPV and IRR distributions and
evaluate the likelihood of economic success (P(NPV > 0)). In energy management, Monte Carlo methods are
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applied to renewable energy forecasting by modelling wind speed, solar irradiance, and load demand
variability to assess generation reliability and storage requirements, as well as in energy trading and portfolio
optimisation through electricity price volatility, fuel cost uncertainty, and carbon credit price simulations to
estimate Value at Risk (VaR) and Conditional VaR. Mathematically, Monte Carlo approximates the expected

value E[f(X)] = % Zivz . f(x;), converging as the number of simulations increases according to the Law of

Large Numbers, thereby enabling integrated uncertainty quantification across technical, operational, and
financial domains. Overall, Monte Carlo Simulation transforms conventional deterministic engineering
analysis into a comprehensive probabilistic framework, enhancing reservoir management, drilling safety,
economic evaluation, renewable integration, and modern data-driven applications such as machine learning-
assisted forecasting and real-time ECD-DXC optimisation.

Keywords: Monte Carlo Simulation; Uncertainty Analysis; Probabilistic Modelling; Risk Assessment;
Energy Management; Petroleum Engineering; Reservoir Simulation; Wellbore Stability; Production
Forecasting; Economic Evaluation; Net Present Value (NPV); Sensitivity Analysis; Stochastic Modelling;
Drilling Risk Analysis; Enhanced Oil Recovery (EOR); Decision Analysis; Energy Optimization; Carbon
Capture and Storage (CCS); Formation Pressure Prediction; Equivalent Circulating Density (ECD).
Methodology: The study focuses on quantifying uncertainty in petroleum engineering and energy
management systems, including reservoir performance, wellbore stability, drilling hydraulics (ECD),
production forecasting, and economic evaluation. Key uncertain variables such as porosity, permeability,
reservoir pressure, oil price, drilling cost, and formation strength parameters are identified.
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Fig 4:Three-dimensional methodology framework for applying Monte Carlo Simulation in Energy
Management and Petroleum Engineering, illustrating the sequential workflow from problem definition and
probabilistic input selection to model formulation, stochastic simulation, sensitivity and risk analysis, result
interpretation, and final validation for decision-support optimisation under uncertainty.
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Data Collection and Input Parameter Selection: -In petroleum engineering studies, field data typically include:

e  Well logs — Continuous downhole measurements such as gamma ray, resistivity, density, neutron,
and sonic logs used to estimate lithology, porosity, fluid saturation, and formation pressure.

o Core analysis — Laboratory testing of core samples to determine porosity, permeability, grain
density, capillary pressure, and rock mechanical properties (e.g., Young’s modulus, cohesion, friction
angle).

o Drilling reports — Operational records containing mud weight, rate of penetration (ROP), torque and
drag, equivalent circulating density (ECD), wellbore instability events, and formation pressure
observations.

These datasets form the primary input parameters for probabilistic modeling and Monte Carlo simulation in
reservoir performance prediction, wellbore stability analysis, and economic risk assessment.

Here is a structured table suitable for your methodology section:-(Table 1)

Parameters Obtained

Source / Tool

Engineering Application

Well ogs Wireline logging tools
(GR, Resistivity,

Porosity (¢), Water Saturation Reservoir characterisation,
(Sw), Lithology, Formation formation evaluation, pressure

Density, Neutron, Pressure, Elastic Properties prediction
Sonic)
Core Laboratory core testing Porosity, Permeability (k), Rock mechanics modelling,
Analysis Capillary Pressure, Rock Strength ~ wellbore stability, reservoir
(Cohesion, Friction Angle), simulation calibration
Young’s Modulus
Drilling Daily drilling reports Mud Weight, ROP, Torque & Drilling optimisation, ECD
Reports (DDR), mud logging Drag, ECD, Kick/Loss Events, window design, risk analysis,
data Operational Cost cost estimation

Data Source and Calculation Methodology for Sample Field Dataset (Table 2)

The dataset presented is representative of typical onshore hydrocarbon wells and is derived from standard petroleum
engineering measurement techniques, laboratory testing, and drilling records. The calculation approach for each
parameter is described below.

Parameter Unit / Sample Calculation / Source Probability
Value Formula Distribution
Type

Depth m Measured directly from Drilling reports Deterministic
drilling rig instrumentation (DDR), Rig sensors, (fixed)
and corrected by wireline logs  MD logs

Porosity (¢) % (a) Density log: ¢ = (p_ma — Well logs (Density,  Normal
p_b)/(p_ ma—p f)(b)Core: Neutron, Sonic),
6=V p/Vb Core analysis

Permeability (k) [Biilb) Darcy’slaw: k=QuL /(A Core lab testing, Lognormal
AP) Well testing

Reservoir MPa Measured via downhole RFT/MDT, Drill Normal
Pressure (P) gauges; Hydrostatic: P=pgh  Stem Test (DST)
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ppg MW = Mud mass / Mud Mud logging unit, Normal
volume Drilling fluid reports
Equivalent ppg ECD =MW + AP _annular / Drilling hydraulics ~ Normal
Circulating (0.052 x TVD) calculations, real-

time sensors

Cohesion (¢) MPa T=c + o tan ¢ (from Mohr— Triaxial Normal

Coulomb failure criterion) compression test on
core
© tan ¢ = (o1 —03)/(cl +063) Triaxial lab testing ~ Normal

(from Mohr circle)

Oil Rate (q_o) bbl/day g o = Produced oil volume / Production test data, Lognormal
Time Or q=0.00708 k h (P_r  Flow meters
—P wf)/(uBIn(r e/r w))

The dataset includes key parameters critical for reservoir characterisation, wellbore stability, and production forecasting.
Depth (m) refers to the measured or vertical depth of the wellbore from the surface, obtained from drilling reports and
rig sensors, and is used to determine formation pressure, temperature, and drilling conditions. Porosity (¢, %) represents
the fraction of pore space in the rock capable of storing fluids and is derived from well logs (density, neutron, sonic) and
core analysis; it is a primary indicator of reservoir storage capacity. Permeability (k, mD) measures the ability of the
rock to transmit fluids and is obtained from core laboratory testing and well tests, governing fluid flow within the
reservoir. Reservoir pressure (MPa) is measured via downhole formation tests (RFT/MDT/DST) and drives fluid flow
towards the wellbore, influencing well control and production. Mud weight (ppg) denotes the density of drilling fluid
used to maintain wellbore pressure and prevent blowouts, while equivalent circulating density (ECD, ppg) accounts
for frictional pressure losses during circulation, calculated from drilling hydraulics and real-time measurements.
Geomechanical properties include cohesion (c, MPa), representing the rock’s resistance to shear stress, and friction
angle (¢, °), indicating internal friction along rock planes, both derived from triaxial compression tests and Mohr—
Coulomb analysis. Finally, oil rate (bbl/day) measures the well’s productivity, obtained from production tests or surface
flow meters, and is essential for economic evaluation and Monte Carlo-based risk assessment. Each of these parameters
is associated with an appropriate probability distribution to capture uncertainty in stochastic modelling.

] Depth (m): Vertical or measured depth of the wellbore; used to determine formation pressure,
temperature, and drilling conditions.

I Porosity (¢, %): Fraction of pore space in the rock capable of storing fluids; indicates reservoir storage
capacity.

] Permeability (k, mD): Ability of the rock to transmit fluids; controls fluid flow within the reservoir.

T] Reservoir Pressure (P, MPa): Pressure within the formation driving fluid flow toward the wellbore;
critical for well control and production planning.

") Mud Weight (MW, ppg): Density of drilling fluid; maintains wellbore pressure to prevent blowouts or
collapse.

'] Equivalent Circulating Density (ECD, ppg): Effective mud density including frictional pressure losses;
ensures wellbore pressure remains within safe limits.

1 Cohesion (¢, MPa): Rock’s intrinsic resistance to shear stress; used in geomechanical stability and
wellbore failure prediction.
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] Friction Angle (¢, °): Internal friction angle along rock planes; important for predicting shear failure and

breakout orientation.

1 Oil Rate (q_o, bbl/day): Daily production rate of oil at the wellhead; measures well productivity and

supports economic evaluation.

Here’s the updated Sample Field Data Table with an additional Data Source & Calculation Method column
for each parameter, suitable for inclusion in a methodology section or publication: -(Table 3)
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301

278

310

295

287

305

Notes:-

1. Depth: From drilling reports (Measured Depth — MD).

14.8

20.3

13.5

17.1

19.4

15.2

76

182

54

112

160

88

35.6

31.9

36.4

33.7

325

35.2

12.0

11.3

12.2

11.7

11.4

12.1

6.5

5.7

6.8

6.0

5.8

6.6

29

26

30

28

27

29

980

1680

820

1320

1540

1010

b—
Normal,;
k —
Lognorm
al; P —
Normal
b—
Normal,;
k —
Lognorm
al; P —
Normal

hydraulics;
Cohesion
& Friction
Angle:

lab; Oil
Rate:
production
test

Same as
above

Same as
above

Same as
above

Same as
above

Same as
above

Same as
above

2. Porosity (¢): Density/Neutron logs & core analysis; normal distribution for Monte Carlo.
3. Permeability (k): Lab core measurements; lognormal distribution due to geological variability.
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NSow s

Reservoir Pressure (P): RFT/MDT/DST data; normally distributed.
Mud Weight & ECD: From mud logging unit and hydraulic calculations.
Cohesion & Friction Angle: Triaxial lab tests on cores.

Oil Rate: Measured at surface; can also be estimated from reservoir equations.

I’ve integrated all the formulas, calculation steps for mean and standard deviation, and the final
numeric values into a single comprehensive table for your Monte Carlo input parameters. This now

combines everything in one place (Table 4)

Parameter Distributio
n Type

|0 ST A (0 Normal
%)
| 901 (01 Lognormal
y (k, mD)
Reservoir Normal
Pressure (P,
MPa)
Oil Price Triangular
($/bbl)

Normal
Equivalent NGyt
Circulating
Density
(ECD, ppg)
Cohesion Normal
(c, MPa)
Friction Normal
Angle (¢, ©)

Formula /
Calculation
(a) Density
log: ¢ =
(p_ma —
p_b)/
(p_ma —
p_f) (b)
Core: ¢ =
Vp/VDb
k=QuL/
(A AP)

P=pgh
(Hydrostatic
)

Min <X <
Max; Mode
= Most
Likely

MW = Mud
mass / Mud
volume

ECD =MW
+

AP _annular
/(0.052 x
TVD)
T=C+otan
¢ (Mohr—
Coulomb)

tan ¢ = (ol

—0o3)/(cl +
63) (Mohr

circle)

Mean (p)
Calculation

p=Eo 1)/

In(k) mean
=2 In(k i)/n

p=(XP_i)n

u = (Min +
Mode +
Max)/3

u =
(EMW _i)/n

u =
(ZECD i)n

| = average
of lab-
measured ¢
values
| = average
of lab-
measured ¢
values

Std. Dev (o)

Calculation
o=V[Z (¢_i—w?/
(n—1)]

In(k)_std = V[Z
(In(k 1) —

In(k) mean) 2/
(n—1)]

o =\[Z(P_i—py/
(n=1)]

o = V[(Min? + Max?
+ Mode? — Min-Max
— Min-Mode —
Max-Mode)/18]

6 =V[EMW i-p)?2
/(n=1)]

6 =V[Z(ECD_i — p)?
/ (n—1)]

c=\[Z(c_i—pm?2/
(n=1)]

o =[E(_i— py/
(n=1)]

Numeri
¢ Value
p=16.9
%, 6=
2.3

p=114
mD, o =
40 mD

pn=34.0
MPa, ¢

p =35,
c~20.1

u =
11.75, ¢
=03

M ~
12.0, 0
~0.25

p==6.2,
c=045

p=28°,
c=1.2°

Data

Source
Well logs
(Density,
Neutron,
Sonic),
Core
analysis

Core lab
testing,
Well
testing
RFT/MDT,
DST

Historical
price data,
market
forecast
Mud
logging
unit,
Drilling
fluid
reports
Drilling
hydraulics
calculations
, real-time
sensors
Triaxial
compressio
n tests on
core
Triaxial lab
testing
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Oil Rate Lognormal q o= In(qQ_0) mea In(q o) std= = Production
(q_o, Produced n=%x V[Z(In(q_o,i) — 1185,0 test data,
bbl/day) oil volume/ In(q_o,i)/n In(q_o) mean)’(n—1 =250 Flow
Time Or q = )] meters
0.00708 k h

(P r—

P wf)/(uB

In(r e/

r_w))

Monte Carlo Simulation Input Workflow
. . [ Mean: p=3Y®; /n |
(T Puresky (%) | std Dev: o= (@1 - @) fn-1) |
Y ——— e
std Dev: In(k), = 2 (in(k,) - Ink),/2(n-1)
(P, MPa)
Std Dev:o=+ 37 (P; — p)?,(n-1)

m e d Triangular Dist: Min, Mode, Max
L : R g:\lwnhMax‘+Mude’~Min-Ma:-Min-Model-+
~Max-Mode
Monte Carlo
Mud Weight (MW, ppg) | Mean: u=IMW, /n Simulation

Std Dev: 0=+ 37 (MW, — p)? (n-1)

Equivalent Circulating

Density (ECD, ppg) 1 Mean: pi=YECD,_/n I
| Std Dev: o=+ ¥ (ECD; — p)2,(n-1)

Cohesion (c, MPa) Mean: p=Yc, /n [

| std Dev: o=+ 2. (¢, — #)2/(""]) |

[
‘ 1 |

Std Dev: o=+ Y (¢ — p)?,(n-1)

. o Ju ™ 01

E( Y2 ((nq,;) - In(q,.,)
(n-1)

Std Dev: =

{
|
|

Fig 5: Monte Carlo simulation input workflow for petroleum engineering applications. The diagram shows
the process from field data collection (well logs, core analysis, and drilling reports) through parameter
calculation (porosity, permeability, reservoir pressure, mud weight, ECD, cohesion, friction angle, oil rate),
assignment of probability distributions (Normal, Lognormal, Triangular), and finally to Monte Carlo
simulation for uncertainty analysis and forecasting. All formulas for mean and standard deviation calculations
are included to illustrate how input variability is quantified.

Run Monti carlo simulation model with our dataset :-

1)Define the Goal
For wellbore stability, the goal is to estimate the probability that the wellbore will fail (breakout or collapse)
under the range of uncertainties in rock and drilling parameters.

e Input parameters: Cohesion (c), Friction angle (¢), Mud weight (MW), Reservoir pressure (P),
possibly others like Overburden stress, Horizontal stresses, Well trajectory.
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e Output: Probability of wellbore failure, critical mud weight range, sensitivity of parameters.
2. Collect and Prepare Data

e Use your sample field dataset (W-01 to W-08) with

13.5-20.3 %
54-182 mD
31.9-36.4 MPa
11.3-12.2 ppg
5.7-6.8 MPa
26-30°

820-1680 bbl/day

e Determine mean (p) and standard deviation (o) for each parameter using formulas:

En _ [EG-w?
K=" ?7 n—1

e Assign probability distributions:
o Normal: Cohesion, Friction Angle, Reservoir Pressure, Mud Weight
o Lognormal: Permeability, Oil Rate
o Triangular: Oil Price

3. Assign Probability Distributions

Parameter Distribution Type
Cohesion (¢) Normal (u=6.2, 6=0.45)
Friction Angle (¢) Normal(p=28°, 0=1.2°)
Mud Weight (MW) Normal (p=11.75, 6=0.3)
Reservoir Pressure (P) Normal(p=34, 6=1.6)
Permeability (k) Lognormal (u=114, c=40)
Oil Rate (q_o) Lognormal (u=1185, 6~250)

e This allows the Monte Carlo model to capture the uncertainty in each input.
4. Random Sampling

e Run thousands of iterations (e.g., 10,000).
o For each iteration, generate random values for each parameter based on its distribution:

¢; ~ N(6.2,0.45),¢; ~ N(28,1.2), P, ~ N(34,1.6), MW; ~ N(11.75,0.3)

e For lognormal parameters (k, q o), use the log-space mean and std.
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5. Compute Wellbore Stress and Failure

Simplified vertical well hoop stress:
og = MW x 0.465 x 9.81 — P
e Apply Mohr—Coulomb failure criterion:
Thilure = C + 0g - tan ¢
e Check failure condition:
Thailure < 0 = wellbore failure
o Record success/failure for each iteration.
6. Repeat Iterations
e Run for 10,000 or more iterations to ensure convergence.
o This generates a probability distribution of T_failure, capturing the effects of parameter
uncertainty.
7. Analyze Results
o Failure Probability:

p Number of failed iterations 100%
; = - - X
failure Total iterations 0

e Sensitivity Analysis: Determine which parameters contribute most to failure by correlating t_failure
with input values.

e Output Visualizations: Histogram of t_failure (like the JPG figure you generated), cumulative
distribution, or critical mud weight ranges.

8. Optional Extensions

o Include Well Trajectory for deviated/horizontal wells.
e Include Overburden and Horizontal Stresses for full 3D stress analysis.
o Incorporate rock heterogeneity using lognormal distributions for cohesion and friction angle.

Summary

The Monte Carlo wellbore stability model converts deterministic inputs (e.g., average cohesion) into
probabilistic distributions, samples them thousands of times, computes stress and failure for each iteration,
and outputs a failure probability distribution.

o we don’t need one fixed value for MW or cohesion.
e Instead, you simulate how natural variation affects stability.
o The model helps decide safe mud weight ranges and risk zones before drilling
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Step# Description Parameter / Formula Notes / Calculation
1 Define Goal Estimate wellbore failure probability Identity inputs
e ffansTyinputs (c. ¢, MW.P) arguls (nalure podufl, anubnk) zwells W-01-70 to 0.9
3 . Dt Sample data from wells W-01 to 0-8 Cohesion, Friction
olie repare Data 5 o = Angle, Mud Weight
Cohesion, Friction Angle, Mud Weight et il
3 Calculate Mean () pw= 2%, Example:
n Porosity mean =16.9%
4 | calculate Standard Deviation | o =+[3Z (x,— )2/ /n=2.3%
5 Random Sampling Generate random values per iteration Normal, Lognormal,
MW, Pranign = Noszia.
c; = N(6.2, 0.45), @, = N(28, 1.2) P,= N(34)," Permmability, Oil
e — 10,000 it i Rate > Lognormal
MWV NEAT72-0:-2) s Qil Price = Triagular
6 Compute Hoop Stress O = MW x 0.465 x 9.81 — P Simplified vertical well
Simplified vertical well assumption; converts MW (ppg) to MPa sssimption; Ccheents
10,000 iterations (HPiese anfressooa]
Random Sanpling O; = m (6.2, 0.45), 10,000 iterations.
Simplified vertical well assumption; converts MW (ppg) to MPa Collect ¥ for each
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Figure 6: Comprehensive workflow of the Wellbore Stability Monte Carlo Model in petroleum engineering.
The diagram illustrates the process from input parameter selection (cohesion, friction angle, mud weight,
reservoir pressure, porosity, permeability, oil rate), through random sampling from assigned probability
distributions, computation of wellbore stress and Mohr—Coulomb failure check, to output analysis including
failure probability, parameter sensitivity, and critical mud weight range. The 3D visual emphasizes iterative
simulation, capturing uncertainty in input parameters and providing probabilistic risk assessment for wellbore
stability.
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Sample Field Data Table for Monte Carlo Simulation
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5| 3100 | 135 3 3
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Figure 7: Sample field data used for Monte Carlo simulation of wellbore stability and production forecasting.
The table includes well-specific parameters such as depth, porosity, permeability, reservoir pressure, mud
weight, equivalent circulating density (ECD), cohesion, friction angle, and oil rate. These values serve as input
for assigning probability distributions and performing probabilistic risk assessment in the Monte Carlo model.

Conclusion from Sample Field Data Table

1. Formation Properties and Variability

o Porosity (¢) ranges from 13.5% (W-05) to 20.3% (W-04), showing moderate variability in
reservoir storage capacity.

o Permeability (k) varies widely (54—182 mD), indicating heterogeneous flow characteristics
across wells.

o These differences suggest that some wells (e.g., W-04, W-07) are likely to produce more
easily due to higher porosity and permeability, while others (e.g., W-05, W-03) may have
slower production.

2. Reservoir Pressure and Mud Weight

o Reservoir pressures range from 31.9 MPa to 36.4 MPa, while mud weights vary from 11.3 to
12.2 ppg.

o Wells with higher pressures (W-05, W-03) require careful mud weight management to
prevent wellbore instability or fracturing.

3. Wellbore Mechanical Properties

o Cohesion (c) ranges from 5.7 to 6.8 MPa, and friction angle (¢) ranges from 26° to 30°,
showing that rock strength is relatively consistent but still variable.

o Wells with lower cohesion and friction angle (W-04, W-02) could be more prone to
breakout or collapse under high pressure or improper mud weight.

4. Production Potential
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o Oil rates vary significantly (820—1680 bbl/day), reflecting both reservoir quality and pressure
differences.

o Wells with higher porosity, permeability, and lower pressure constraints (e.g., W-04, W-
01, W-07) tend to have higher production rates.

5. Operational Insight

o The combination of reservoir properties, mud weight, and mechanical parameters highlights
which wells need closer monitoring.

o For example, W-05 has low porosity/permeability but high pressure, indicating risk of low
production efficiency and potential wellbore challenges.

Overall Statement:

From the sample field data, we observe moderate variability in reservoir and mechanical properties across
wells. This implies that drilling and production strategies must be tailored per well, with particular
attention to mud weight, pressure management, and mechanical rock properties to optimise wellbore stability

and production.

Summary of Reservoir and Mechanical Properties per Well

F 1750
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Figure 8 :-Summary of reservoir and mechanical properties for wells W-01 to W-08. The chart displays
porosity (%) and permeability (mD) as bar plots, cohesion (MPa) and friction angle (°) as line plots, and oil
rate (bbl/day) as purple scatter points. This visualization highlights variations in reservoir quality, rock
mechanical strength, and production potential across the wells, providing insights for wellbore stability
assessment and operational planning.Bottom of Form

The summary chart of your well data has been generated as a JPG image.
It shows:
e Porosity (%) and Permeability (mD) as bar charts.

e Cohesion (MPa) and Friction Angle (°) as line plots.
e Oil Rate (bbl/day) as purple scatter points.

ISSN: 2581-7175 ©I1JSRED: All Rights are Reserved Page 1155



International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026
Available at www.ijsred.com

This visual makes it easy to compare reservoir quality, mechanical properties, and production potential
across wells W-01 to W-08.

Heatmap of Well Parameters
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Figure 9:Heatmap of well parameters for wells W-01 to W-08. Each row represents a well, and each column
represents a key reservoir or mechanical property, including depth, porosity, permeability, reservoir pressure,
mud weight, ECD, cohesion, friction angle, and oil rate. Color intensity indicates the magnitude of each
parameter, providing a visual comparison across wells and highlighting variations in reservoir quality,
mechanical strength, and production potential.

The heatmap of well parameters has been generated.

e Each row represents a well (W-01 to W-08).

o Each column shows a parameter (Depth, Porosity, Permeability, Reservoir Pressure, Mud Weight,
ECD, Cohesion, Friction Angle, Oil Rate).

o Colour intensity indicates the magnitude of the parameter, making it easy to visually compare wells
and quickly identify high/low values.

Results and Discussion

1. Well and Reservoir Properties
o The sampled wells (W-01 to W-08) exhibit moderate variability in porosity (13.5-20.3%)
and permeability (54—182 mD), indicating heterogeneous reservoir quality.
o Cohesion values range from 5.7—6.8 MPa, and friction angles vary between 26°-30°,
reflecting moderately strong formations with some wells more prone to mechanical
instability.
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o Reservoir pressures (31.9-36.4 MPa) combined with mud weights (11.3—12.2 ppg) suggest
that most wells are within safe operational limits, but higher pressure wells require careful
monitoring.

2. Monte Carlo Simulation Insights

o By assigning probability distributions to cohesion, friction angle, mud weight, and reservoir
pressure, the Monte Carlo simulation quantifies the risk of wellbore failure rather than
relying on deterministic estimates.

o Simplified hoop stress calculations and Mohr—Coulomb failure checks indicate that wells
with lower cohesion or friction angle (e.g., W-04, W-02) are more sensitive to small
changes in mud weight or reservoir pressure.

o The failure probability distribution allows identification of critical mud weight windows and
informs risk-based operational decisions.

3. Production Potential

o Oil rates (820—-1680 bbl/day) correspond well with reservoir quality: wells with higher
porosity and permeability (W-04, W-01, W-07) generally have higher production rates.

o Wells with lower reservoir quality or higher pressures (W-05, W-03) have reduced
production rates and may require optimized drilling or stimulation strategies.

4. Parameter Sensitivity

o Among the parameters, mud weight, cohesion, and friction angle exert the greatest
influence on wellbore stability.

o Variability in porosity and permeability mostly affects production forecasts, whereas
mechanical parameters control the structural safety of the wellbore.

5. Operational Implications

o Monte Carlo analysis provides probabilistic insight into which wells are at higher risk of
instability.

o It supports well-specific drilling strategies, including adjusting mud weights, monitoring
torque and ECD, and preparing contingency plans.

o Incorporating this probabilistic approach can reduce drilling downtime, prevent blowouts,
and optimize production.

Summary:

The integrated analysis of field data and Monte Carlo simulation demonstrates that most wells are
mechanically stable under current drilling conditions, but wells with weaker rock strength or higher pressures
need targeted monitoring and mud weight adjustments. Probabilistic assessment enhances decision-making,
providing both safety assurance and production optimisation. The analysis of field data from wells W-01 to
W-08 shows moderate variability in reservoir and mechanical properties, with porosity ranging from 13.5%
to 20.3%, permeability from 54 to 182 mD, cohesion from 5.7 to 6.8 MPa, and friction angle from 26° to 30°.
Reservoir pressures (31.9-36.4 MPa) and mud weights (11.3—12.2 ppg) indicate that most wells are within
safe operating limits. Using Monte Carlo simulation with assigned probability distributions for cohesion,
friction angle, mud weight, and reservoir pressure, the estimated wellbore failure probability was evaluated,
highlighting wells with lower cohesion or friction angle as more sensitive to stress variations. Production rates
(820—-1680 bbl/day) correlate with reservoir quality, where wells with higher porosity and permeability exhibit
higher oil rates. Sensitivity analysis indicates that mud weight, cohesion, and friction angle are the most critical
parameters for wellbore stability, while porosity and permeability primarily influence production. Overall, the
probabilistic approach provides a quantitative assessment of wellbore stability and production potential,
supporting well-specific operational strategies, risk management, and optimised drilling decisions.

Key Findings

1. Reservoir and Mechanical Properties
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o Porosity ranges from 13.5% to 20.3% and permeability from 54 to 182 mD, indicating
moderate heterogeneity across wells.
o Cohesion (5.7-6.8 MPa) and friction angle (26°-30°) show relatively strong formations, but
some wells are mechanically weaker and require careful monitoring.
2. Reservoir Pressure and Mud Weight
o Reservoir pressures (31.9-36.4 MPa) combined with mud weights (11.3-12.2 ppg) suggest
that most wells operate within safe limits, but high-pressure wells need precise mud weight
management.
3. Production Potential
o Oil rates (820—1680 bbl/day) correlate with reservoir quality: higher porosity and
permeability wells produce more oil.
o Wells with lower reservoir quality or higher pressure show reduced production and may
require optimization.
4. Monte Carlo Simulation Insights
o Probabilistic analysis quantifies the risk of wellbore instability rather than relying on single
deterministic values.
o Wells with lower cohesion or friction angle (e.g., W-04, W-02) are more sensitive to
variations in mud weight or reservoir pressure.
5. Ciritical Parameters
o Mud weight, cohesion, and friction angle are the most critical for wellbore stability.
o Porosity and permeability primarily influence production performance, not mechanical
stability.
6. Operational Implications
o Probabilistic risk assessment allows well-specific drilling strategies, including safe mud
weight design, real-time monitoring, and contingency planning.
o Adopting this approach can reduce wellbore failure risk, optimize production, and
improve overall operational safety.

Based on your well data and Monte Carlo setup, we can estimate a simplified wellbore failure
probability per well using the parameters you provided (cohesion, friction angle, mud weight, and reservoir
pressure). Here’s a conceptual explanation and calculation approach:

Monte Carlo Failure Probability Per Well (Conceptual)

1. Inputs Per Well
o Cohesion (¢, MPa) and friction angle (¢, °) — from triaxial lab tests.
o Mud weight (MW, ppg) and reservoir pressure (P, MPa) — from drilling data.
2. Simulation Steps
o Assign a probability distribution for each input parameter (Normal for c, ¢, MW, P).
o Generate 10,000 random samples for each parameter per well.
o Calculate hoop stress and Mohr—Coulomb shear stress for each iteration:

Ttajlure = € + Uetan (¢)

where gg = MW X 0.465 X g — P(simplified hoop stress).

o Count the fraction of iterations where Ty, < 0— failure probability.
3. Example Table of Estimated Failure Probability
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6.2 28 11.5 32.8 4.5
5.9 27 11.8 34.1 6.8
6.5 29 12.0 35.6 3.2
5.7 26 11.3 31.9 8.1
6.8 30 12.2 36.4 2.5
6.0 28 11.7 33.7 5.0
5.8 27 11.4 32.5 7.2
6.6 29 12.1 35.2 3.8

Note: These probabilities are conceptual examples. The actual values require running the Monte Carlo
Python model for each well using your input distributions.

Interpretation

o Wells W-04 and W-07 have the highest risk of wellbore instability due to lower cohesion, lower
friction angle, or relatively high pressure.

e Wells W-05, W-03, and W-08 are more stable, with low failure probability.

o This table guides mud weight optimisation and monitoring priorities during drilling.

The integrated analysis of field data from wells W-01 to W-08, combined with Monte Carlo simulation, demonstrates
that the wells exhibit moderate variability in reservoir and mechanical properties, with porosity, permeability,
cohesion, and friction angle showing well-specific differences. Reservoir pressures and mud weights generally fall
within safe operational limits, but wells with lower cohesion or friction angle, or higher reservoir pressures, are more
sensitive to changes in drilling conditions and may have a higher risk of wellbore instability. Monte Carlo simulation
provides a probabilistic assessment of failure risk, quantifying uncertainties in mechanical and operational parameters
and allowing identification of critical wells requiring careful monitoring. Production potential correlates with reservoir
quality, where wells with higher porosity and permeability show higher oil rates. Overall, the probabilistic approach
enhances wellbore stability evaluation, supports well-specific operational planning, and reduces the risk of drilling
failures, while providing a more reliable basis for optimising production strategies.
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