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Abstract: 
            The recent rise of large language models (LLMs) and autonomous multi-agent frameworks has 
transformed software development and project automation. This paper presents the design and 
implementation of the Agentic AI Project Manager, an autonomous orchestration system that can generate, 
assign, execute, test, and deliver full-stack web and AI/ML projects end to-end using locally hosted language 
models. The proposed system integrates multiple open-source 7B models such as Mistral, StarCoder2, and 
CodeLlama with CrewAI orchestration for multi-role task delegation. Each agent assumes a specific role, 
ranging from project planning and development to integration, testing, and delivery. The framework 
automatically generates complete functional projects, including web applications, backend APIs, machine 
learning pipelines, and documentation, all delivered as a downloadable ZIP file. The system is designed for 
local execution with configurable timeout settings to accommodate limited hardware resources. This work 
demonstrates a step toward practical, resource-aware AI-driven project automation capable of operating 
offline, ensuring privacy and reproducibility. 
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I.     INTRODUCTION 

 The automation of software engineering through 
artificial intelligence (AI) has evolved rapidly 
from simple autocompletion tools to autonomous 
systems capable of planning and executing 
complex engineering tasks. Large language 
models enable agents that simulate high-level 
roles—project manager, developer, tester—and 
collaborate to transform human intents into 
runnable software. While cloud-hosted models 
provide large compute capacity, they introduce 
concerns about cost, privacy, and reproducibility. 
Local deployment of open-source models reduces 
these risks but introduces new engineering 
challenges: memory constraints, inference 
latency, and model orchestration complexity. 
This paper presents the Agentic AI Project 
Manager, a local first framework designed to 

convert high-level project descriptions into 
working full-stack web applications and 
lightweight AI/ML projects. The system 
leverages CrewAI for multi-agent orchestration 
and an Ollama-hosted local runtime to run LLMs 
such as Mistral 7B (manager roles), StarCoder2 
7B (senior developer and tester roles), and 
CodeLlama-7B (junior developer roles). The 
orchestration enforces modularization, role 
separation, integration testing, and automatic 
packaging into a downloadable ZIP archive. 
Importantly, the system focuses primarily on 
generating web and full-stack projects. For 
machine learning tasks it intentionally uses only 
built-in scikit-learn datasets (e.g., Iris, Wine, 
Digits, fetch_california_housing). This design 
choice guarantees reproducibility and allows the 
system to generate complete ML pipelines (data 
loading, feature processing, model training, 
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evaluation, and deployment endpoints) even 
when dataset upload functionality is not provided. 
We implemented the framework using a modular 
FastAPI backend that exposes a simple endpoint 
for project submission and a single-page web UI 
for inputs. Agents coordinate via CrewAI-
managed message passing; generated projects are 
assembled under a generated/ directory and 
packaged by a Delivery Agent. The following 
sections review prior work, describe the system 
architecture and methods, and present 
implementation details and representative results. 

II.     LITERATURE REVIEW 

The study of autonomous agents for software 
engineering and task automation has matured 
rapidly. Foundational systems such as AutoGPT 
and BabyAGI illustrated continuous LLM-driven 
task generation and execution, showing how an 
LLM can propose, prioritize, and attempt subtasks 
autonomously [1], [2]. These systems, however, 
often lacked robust role-based decomposition and 
suffered from uncontrolled recursion and 
instability.  
MetaGPT proposed a structured, role-based multi-
agent architecture that aligns more closely with 
human workflows, improving coordination and 
traceability by enforcing role defined 
responsibilities and standardized outputs [3]. The 
design of MetaGPT influenced contemporary 
orchestration practices by demonstrating the 
benefits of SOP-like instruction templates for 
agents and the value of explicit testing and 
verification loops.  
On the model side, code-focused models such as 
StarCoder and StarCoder2 were developed to 
specialize in program synthesis and code 
completion tasks, often outperforming more 
general-purpose models on code benchmarks [4]. 
CodeLlama variants provide further 
improvements for code generation tasks, enabling 
more reliable modular function generation and 
code-level reasoning [5]. Conversely, general-
purpose instruction-following models like Mistral-
7B excel at task planning, multi-step reasoning, 
and instruction decomposition, making them 

suitable for manager-level roles in multi-agent 
systems [6].  
A parallel thread of research examines local 
execution of LLMs for privacy and reproducibility. 
Tools such as Ollama and local inference runtimes 
enable the deployment of 7B class models on 
commodity hardware via quantization and model 
offloading strategies [7], [8]. Empirical guides and 
community repositories highlight trade-offs: 
quantized models (int8/int4) reduce memory 
footprint but can impact generation fidelity, while 
fp16 operation delivers higher quality at larger 
memory cost [9]. These trade-offs motivated our 
configurable timeout windows and the choice to 
restrict ML dataset sources to scikit-learn built-ins 
to ensure deterministic reproducibility. Finally, 
the literature on software automation emphasizes 
the need for integrated testing and validation. 
Automated integration testers and contract-
checking agents reduce the incidence of cascading 
failures and behavioral drift in generated code. 
Incorporating dedicated testing agents—
responsible for integration testing and final system 
validation—emulates standard engineering 
practice and significantly increases the reliability 
of autonomously generated projects [3], [10]. 

III. SYSTEM ARCHITECTURE 

The architecture of the Agentic AI Project 
Manager integrates multiple autonomous agents 
coordinated through the CrewAI framework. Each 
agent acts as an independent reasoning entity with 
a specific responsibility, allowing the system to 
mimic the collaborative workflow of a real-world 
software engineering team.  

 
The system operates on a modular architecture 
with the following layers: 

1) Frontend Interface: A responsive web interface 
built with HTML, CSS, and JavaScript allows 
users to submit project ideas. The UI 
communicates with the backend using RESTful 
APIs.  

2) Backend Orchestration: Implemented using 
FastAPI, it acts as the central control hub. It 
receives project ideas, triggers agent 
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orchestration, and manages project lifecycle 
stages.  

3) CrewAI Layer: This layer coordinates 
communication between specialized agents using 
structured message passing. Each agent runs on a 
local Ollama model instance.  

4) Agent Roles: Eight agents operate collaboratively 
Senior Manager, Project Manager, Senior 
Developer, Junior Developers, Integrators, 
Testers, and Delivery Agents—each driven by 
distinct LLMs.  

5) Project Generation Layer: Once tasks are 
distributed, developer agents generate code for 
full-stack web applications and AI/ML 
workflows (limited to scikit-learn datasets for 
reproducibility). 

6) Testing and Packaging: The integrator and tester 
agents verify functionality and package the output 
into a downloadable ZIP file containing all 
project files and documentation. 

The architecture ensures scalability, modularity, 
and transparency. Communication remains fully 
localized to maintain 
 
privacy and efficiency, making the system ideal 
for resource constrained environments. This 
configuration ensures smooth orchestration of 
multiple LLM instances (Mistral, StarCoder2, 
CodeLlama) without significant latency or timeout 
failures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. System Architecture of the Agentic AI Project Manager 
showing multi-agent orchestration, local LLM interaction, and 
automated project lifecycle. 

 
 
 

 
 
 
 
 
 
Fig. 2. Flow diagram of the Agentic AI Project Manager showing multi-
agent orchestration, local LLM interaction, and automated project lifecycle. 

IV.  METHODOLOGY 

The proposed system follows a sequential 
orchestration pipeline powered by CrewAI. The 
workflow consists of multiple coordinated stages:  
 

1) User Input: The process begins when a user 
submits a project idea via the frontend interface.  

 
2) Planning: The Senior Manager and Project 

Manager agents interpret the project intent, define 
architecture, and generate a task hierarchy.  

 
3) Development: Developer agents autonomously 

produce code modules for full-stack web apps or 
ML workflows using LLM reasoning. 

 
4) Integration: Integrator agents merge front-end and 

back-end codebases, ensuring consistency and API 
connectivity. 

  
5) Testing: Testing agents evaluate generated code for 

logical and structural correctness. 
 

6) Delivery: The Delivery Agent generates a packaged 
ZIP with all project files and a README, 
completing the full AI-driven lifecycle. 

 
Communication between agents uses structured 
JSON-like messages that include task context, 
dependencies, and responses. CrewAI ensures task 
synchronization through message queues, 
maintaining consistency during orchestration 

V.     IMPLEMENTATION 

The system is implemented using FastAPI and 
Python for backend logic and CrewAI as the 
orchestration layer. Local models (via Ollama) 
include:  
 

• Mistral-7B Instruct: For high-level 
reasoning tasks such as project management and 
integration. 
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• StarCoder2-7B: For technical supervision, 

code review, and testing logic.  
 

• CodeLlama-7B: For module-level 
development and helper functions.  
 
The FastAPI service includes endpoints for 
assigning projects, checking system health, and 
monitoring execution logs. The generated code is 
saved in a designated /generated directory. Each 
generated project includes:  
 

• Modular code files (backend, frontend, and 
ML logic)  
 

• README.md with setup instructions  
 

• A compressed ZIP archive for easy 
download  
 
This approach reduces the need for manual coding, 
enabling developers and students to experiment 
with AI-driven project creation in a reproducible 
environment 
 

VI. DISCUSSION 

The results indicate that local orchestration of 
multi-agent LLMs is both feasible and efficient 
for end-to-end project automation. Despite 
hardware limitations, the modular architecture 
ensures stable operation with predictable latency. 
The integration of CrewAI with locally hosted 
models promotes reproducibility and data privacy, 
while role-based task decomposition mirrors 
traditional human workflows. These outcomes 
validate the system’s potential for scalable AI-
driven project management. 

VII. RESULTS 

The system was successfully tested for multiple 
full-stack applications and ML workflows 
(classification, regression, and data analysis tasks). 
The AI Project Manager autonomously generated 
functioning CRUD applications, API-based 
systems, and scikit-learn–based ML projects. The 

observed latency primarily arose from model 
loading times during initial orchestration, but 
overall performance remained stable under 
optimized timeout settings (600–1800 seconds). 
This validates that local model-based 
orchestration is feasible on consumer hardware 
when properly optimized. 

 
TABLE I 

PROTOTYPE-LEVEL RESULTS (OBSERVATIONAL ESTIMATES) 

 

VIII. LIMITATIONS AND FUTURE SCOPE 

Currently, the system supports reproducible ML 
workflows using scikit-learn datasets. Custom 
dataset upload functionality is not yet integrated. 
Future versions can include:  
 

• Dataset upload and preprocessing modules 
Integration with cloud LLM APIs for hybrid 
orchestration 

 
• Fine-tuned local models for domain-
specific code generation  

 
• Performance optimization through parallel 
agent execution  

 
Beyond its current scope, the framework can be 
adapted for educational use, enabling students to 
prototype software systems quickly, or in 
enterprise settings to automate routine full-stack 
deployments and low-code project scaffolding. 

IX. CONCLUSION 

The Agentic AI Project Manager demonstrates 
the potential of multi-agent systems for 
automating project management and software 
generation using local LLMs. It bridges reasoning, 
collaboration, and automation to achieve a near 
autonomous development workflow for web and 

Model Avg.Time(s) Memory 
(GB) 

Success Rate 
(%) 

Mistral 7B 
(Quantized) 

1450 10.2 90 

StarCoder2 
7B 

1380 9.8 85 

CodeLlama 
7B 

1280 8.9 87 
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ML-based projects. The system lays a strong 
foundation for future research into distributed, 
agentic orchestration and localized AI-driven 
software engineering. 
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