International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026
Available at www.ijsred.com

RESEARCH ARTICI.E

OPEN ACCESS

Agentic Al Project Manager: Multi-Agent Orchestration with
Local LLMs

Aryan Kamble*

Department of Artificial Intelligence and Data Science, KLE College of Engineering and Technology, Karnataka, India
Email: aryank251203@gmail.com

st st st st st st st st st s s s s sk sk skeoskoskoskoskoskoskosk

Abstract:

The recent rise of large language models (LLMs) and autonomous multi-agent frameworks has
transformed software development and project automation. This paper presents the design and
implementation of the Agentic Al Project Manager, an autonomous orchestration system that can generate,
assign, execute, test, and deliver full-stack web and AI/ML projects end to-end using locally hosted language
models. The proposed system integrates multiple open-source 7B models such as Mistral, StarCoder2, and
CodeLlama with CrewAl orchestration for multi-role task delegation. Each agent assumes a specific role,
ranging from project planning and development to integration, testing, and delivery. The framework
automatically generates complete functional projects, including web applications, backend APIs, machine
learning pipelines, and documentation, all delivered as a downloadable ZIP file. The system is designed for
local execution with configurable timeout settings to accommodate limited hardware resources. This work
demonstrates a step toward practical, resource-aware Al-driven project automation capable of operating
offline, ensuring privacy and reproducibility.

Keywords — Multi-Agent Systems, LLM Orchestration, CrewAl, Agentic Al, Software Automation,
Local LLMs
s skoske sk sk sfe sk sk sk sk sk s skeoske sk sk sk sk sk sk sk sk sk

convert high-level project descriptions into

I.

INTRODUCTION

The automation of software engineering through
artificial intelligence (AI) has evolved rapidly
from simple autocompletion tools to autonomous
systems capable of planning and executing
complex engineering tasks. Large language
models enable agents that simulate high-level
roles—project manager, developer, tester—and
collaborate to transform human intents into
runnable software. While cloud-hosted models
provide large compute capacity, they introduce
concerns about cost, privacy, and reproducibility.
Local deployment of open-source models reduces
these risks but introduces new engineering
challenges: memory constraints, inference
latency, and model orchestration complexity.
This paper presents the Agentic Al Project
Manager, a local first framework designed to

working full-stack web applications and
lightweight AI/ML projects. The system
leverages CrewAl for multi-agent orchestration
and an Ollama-hosted local runtime to run LLMs
such as Mistral 7B (manager roles), StarCoder2
7B (senior developer and tester roles), and
CodeLlama-7B (junior developer roles). The
orchestration enforces modularization, role
separation, integration testing, and automatic
packaging into a downloadable ZIP archive.
Importantly, the system focuses primarily on
generating web and full-stack projects. For
machine learning tasks it intentionally uses only
built-in scikit-learn datasets (e.g., Iris, Wine,
Digits, fetch california housing). This design
choice guarantees reproducibility and allows the
system to generate complete ML pipelines (data
loading, feature processing, model training,

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 1108

ISSN : 2581-7175

evaluation, and deployment endpoints) even
when dataset upload functionality is not provided.
We implemented the framework using a modular
FastAPI backend that exposes a simple endpoint
for project submission and a single-page web Ul
for inputs. Agents coordinate via CrewAl-
managed message passing; generated projects are
assembled under a generated/ directory and
packaged by a Delivery Agent. The following
sections review prior work, describe the system
architecture and methods, and present
implementation details and representative results.

LITERATURE REVIEW

The study of autonomous agents for software
engineering and task automation has matured
rapidly. Foundational systems such as AutoGPT
and BabyAGI illustrated continuous LLM-driven
task generation and execution, showing how an
LLM can propose, prioritize, and attempt subtasks
autonomously [1], [2]. These systems, however,
often lacked robust role-based decomposition and
suffered from uncontrolled recursion and
instability.

MetaGPT proposed a structured, role-based multi-
agent architecture that aligns more closely with
human workflows, improving coordination and
traceability by enforcing role defined
responsibilities and standardized outputs [3]. The
design of MetaGPT influenced contemporary
orchestration practices by demonstrating the
benefits of SOP-like instruction templates for
agents and the value of explicit testing and
verification loops.

On the model side, code-focused models such as
StarCoder and StarCoder2 were developed to
specialize in program synthesis and code
completion tasks, often outperforming more
general-purpose models on code benchmarks [4].
CodeLlama variants provide further
improvements for code generation tasks, enabling
more reliable modular function generation and
code-level reasoning [5]. Conversely, general-
purpose instruction-following models like Mistral-
7B excel at task planning, multi-step reasoning,
and instruction decomposition, making them

O©IJSRED: All Rights are Reserved

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

Available at www.ijsred.com

suitable for manager-level roles in multi-agent
systems [6].

A parallel thread of research examines local
execution of LLMs for privacy and reproducibility.
Tools such as Ollama and local inference runtimes
enable the deployment of 7B class models on
commodity hardware via quantization and model
offloading strategies [7], [8]. Empirical guides and
community repositories highlight trade-offs:
quantized models (int8/int4) reduce memory
footprint but can impact generation fidelity, while
fpl6 operation delivers higher quality at larger
memory cost [9]. These trade-offs motivated our
configurable timeout windows and the choice to
restrict ML dataset sources to scikit-learn built-ins
to ensure deterministic reproducibility. Finally,
the literature on software automation emphasizes
the need for integrated testing and validation.
Automated integration testers and contract-
checking agents reduce the incidence of cascading
failures and behavioral drift in generated code.
Incorporating dedicated testing agents—
responsible for integration testing and final system
validation—emulates ~ standard engineering
practice and significantly increases the reliability
of autonomously generated projects [3], [10].

III. SYSTEM ARCHITECTURE

The architecture of the Agentic Al Project
Manager integrates multiple autonomous agents
coordinated through the CrewAl framework. Each
agent acts as an independent reasoning entity with
a specific responsibility, allowing the system to
mimic the collaborative workflow of a real-world
software engineering team.

The system operates on a modular architecture
with the following layers:

1) Frontend Interface: A responsive web interface
built with HTML, CSS, and JavaScript allows
users to submit project ideas. The UI
communicates with the backend using RESTful
APIs.

2) Backend Orchestration: Implemented using
FastAPI, it acts as the central control hub. It
receives project ideas, triggers agent

Page 1109

ISSN : 2581-7175

orchestration, and manages project lifecycle
stages.

3) CrewAl Layer: This layer coordinates
communication between specialized agents using
structured message passing. Each agent runs on a
local Ollama model instance.

4) Agent Roles: Eight agents operate collaboratively
Senior Manager, Project Manager, Senior
Developer, Junior Developers, Integrators,
Testers, and Delivery Agents—each driven by
distinct LLMs.

5) Project Generation Layer: Once tasks are
distributed, developer agents generate code for
full-stack web applications and AI/ML
workflows (limited to scikit-learn datasets for
reproducibility).

6) Testing and Packaging: The integrator and tester
agents verify functionality and package the output
into a downloadable ZIP file containing all
project files and documentation.

The architecture ensures scalability, modularity,
and transparency. Communication remains fully
localized to maintain

privacy and efficiency, making the system ideal
for resource constrained environments. This
configuration ensures smooth orchestration of
multiple LLM instances (Mistral, StarCoder2,
CodeLlama) without significant latency or timeout
failures.

Fig. 1. System Architecture of the Agentic Al Project Manager
showing multi-agent orchestration, local LLM interaction, and
automated project lifecycle.

O©IJSRED: All Rights are Reserved

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

Available at www.ijsred.com

Fig. 2. Flow diagram of the Agentic Al Project Manager showing multi-
agent orchestration, local LLM interaction, and automated project lifecycle.

Iv. METHODOLOGY

The proposed system follows a sequential
orchestration pipeline powered by CrewAl. The
workflow consists of multiple coordinated stages:

1) User Input: The process begins when a user
submits a project idea via the frontend interface.

2) Planning: The Senior Manager and Project
Manager agents interpret the project intent, define
architecture, and generate a task hierarchy.

3) Development: Developer agents autonomously
produce code modules for full-stack web apps or
ML workflows using LLM reasoning.

4) Integration: Integrator agents merge front-end and
back-end codebases, ensuring consistency and API
connectivity.

5) Testing: Testing agents evaluate generated code for
logical and structural correctness.

6) Delivery: The Delivery Agent generates a packaged
ZIP with all project files and a README,
completing the full Al-driven lifecycle.

Communication between agents uses structured
JSON-like messages that include task context,
dependencies, and responses. CrewAl ensures task
synchronization through message queues,
maintaining consistency during orchestration

IMPLEMENTATION

The system is implemented using FastAPI and
Python for backend logic and CrewAl as the
orchestration layer. Local models (via Ollama)
include:

* Mistral-7B Instruct: For high-level
reasoning tasks such as project management and
integration.

Page 1110

ISSN : 2581-7175

+ StarCoder2-7B: For technical supervision,
code review, and testing logic.

* CodeLlama-7B: For
development and helper functions.

module-level

The FastAPI service includes endpoints for
assigning projects, checking system health, and
monitoring execution logs. The generated code is
saved in a designated /generated directory. Each
generated project includes:

* Modular code files (backend, frontend, and
ML logic)

* README.md with setup instructions

* A compressed ZIP archive for easy
download

This approach reduces the need for manual coding,
enabling developers and students to experiment
with Al-driven project creation in a reproducible
environment

VI. DISCUSSION

The results indicate that local orchestration of
multi-agent LLMs is both feasible and efficient
for end-to-end project automation. Despite
hardware limitations, the modular architecture
ensures stable operation with predictable latency.
The integration of CrewAl with locally hosted
models promotes reproducibility and data privacy,
while role-based task decomposition mirrors
traditional human workflows. These outcomes
validate the system’s potential for scalable Al-
driven project management.

VII. RESULTS

The system was successfully tested for multiple
full-stack applications and ML workflows
(classification, regression, and data analysis tasks).
The Al Project Manager autonomously generated
functioning CRUD applications, API-based
systems, and scikit-learn—-based ML projects. The

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

Available at www.ijsred.com

observed latency primarily arose from model
loading times during initial orchestration, but
overall performance remained stable under
optimized timeout settings (600—1800 seconds).
This validates that local model-based
orchestration is feasible on consumer hardware
when properly optimized.

O©IJSRED: All Rights are Reserved

Model Avg.Time(s) Memory Success Rate
(GB) (%)
Mistral 7B 1450 10.2 90
(Quantized)
StarCoder2 1380 9.8 85
7B
CodeLlama 1280 8.9 87
7B
TABLE |

PROTOTYPE-LEVEL RESULTS (OBSERVATIONAL ESTIMATES)

VIII. LIMITATIONS AND FUTURE SCOPE

Currently, the system supports reproducible ML
workflows using scikit-learn datasets. Custom
dataset upload functionality is not yet integrated.
Future versions can include:

* Dataset upload and preprocessing modules
Integration with cloud LLM APIs for hybrid
orchestration

* Fine-tuned local models for domain-
specific code generation

* Performance optimization through parallel
agent execution

Beyond its current scope, the framework can be
adapted for educational use, enabling students to
prototype software systems quickly, or in
enterprise settings to automate routine full-stack
deployments and low-code project scaffolding.

IX. CONCLUSION

The Agentic Al Project Manager demonstrates
the potential of multi-agent systems for
automating project management and software
generation using local LLMs. It bridges reasoning,
collaboration, and automation to achieve a near
autonomous development workflow for web and

Page 1111

International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026
Available at www.ijsred.com

ML-based projects. The system lays a strong
foundation for future research into distributed,
agentic orchestration and localized Al-driven
software engineering.

ACKNOWLEDGMENT

The author acknowledges the use of Al-assisted
tools solely for improving grammar, language
clarity, and document formatting. All ideas,
implementation, analysis, experiments, and
technical contributions presented in this paper
were carried out independently by the author.

REFERENCES

[1] S. Gravitas, “AutoGPT:An autonomous gpt-4 experiment,” GitHub
repository,2023.[Online].Available:https://github.com/Torantulino
/Auto-GPT

[2] Y. Nakajima, “BabyAGIL: An autonomous Al task management
system,” GitHub repository, 2023. [Online] Available:
https://github.com/yoheinakajima/babyagi

[3] H.Hongetal., “MetaGPT: Meta programming for multi-agent
collaborative frameworks,” arXiv preprint arXiv:2308.00352,
2023. [Online]. Available: https:/arxiv.org/abs/2308.00352

[4] Bigcode Project, “StarCoder2: Open code generation model,”
Online,2024.[Online]. Available:https://huggingface.co/bigcode/sta
rcoder2

[5] M. AL “Code Llama: Open foundation models for code,” Online,
2023.[Online].Available:https://ai.meta.com/research/publications/
code-1lama/

[6] Mistral Al, “Mistral 7B: A dense model for high-performance
reasoning,”TechnicalReport,2024.[Online].Available:https://mistra
l.ai/news/announcing-mistral-7b/

[7] Ollama, “Run large language models locally,” Online, 2024
[Online]. Available: https://ollama.ai

[8] H.F. Team, “A practical guide to llm quantization,” Online, 2024.
[Online]. Available: https://huggingface.co/blog/Ilm-quantization

[91 H.F.T.Docs, “Memory optimization and model offloading for
1lms,”Online,2023.[Online].Available:https://huggingface.co/docs/
transformers/main/en/perf train_gpu one

[10] L. Weng, “Llm-powered autonomous agents,”’Online,2023.
[Online].Available: https://lilianweng.github.io/posts/2023-06-23-
agent/

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 1112

