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Abstract: 
            This paper presents a Particle Swarm Optimization (PSO)–based approach for the optimal placement 
and sizing of multiple distributed generation (DG) units in a radial distribution network. The objective is to 
minimize total real power losses while improving the voltage profile, subject to system operating constraints. 
A backward–forward sweep (BFS) load flow algorithm is integrated with PSO to accurately model power 
flow in radial systems. Unlike conventional methods that fix the number or capacity of DG units, the 
proposed method simultaneously determines the optimal number, locations, and sizes of DGs without 
predefined restrictions. The methodology is tested on the IEEE 33-bus radial distribution system using 
MATLAB and validated with ETAP 2021. Simulation results demonstrate a significant reduction in real 
power losses and notable voltage profile enhancement. Specifically, the optimized allocation of three DG 
units achieves a loss reduction of approximately 47.05% and raises the minimum bus voltage close to 
nominal limits. The close agreement between MATLAB and ETAP results confirms the effectiveness and 
robustness of the proposed PSO-based optimization framework. 
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I.     INTRODUCTION 

Distributed generation refers to decentralized 
electricity production systems that are installed 
close to load centers rather than being integrated 
into conventional centralized transmission 
networks. These systems supply power directly at 
or near the point of consumption, thereby 
minimizing the need for long-distance energy 
transmission [1, 2]. In practice, distributed 
generation consists of small- to medium-capacity 
power units that are connected either to the 
distribution network or located on the consumer 
side of the electricity meter. Renewable energy 
technologies, particularly solar photovoltaic and 
solar thermal systems, are especially suitable for 

distributed generation due to their modular design, 
ease of installation, and reliance on locally 
available energy resources. By converting solar 
radiation into electrical and thermal energy, these 
technologies reduce dependence on fuel 
transportation and enhance energy accessibility [3]. 
In addition to solar-based systems, distributed 
generation frameworks also incorporate other 
renewable energy sources such as small-scale 
hydropower plants, wind energy conversion 
systems, and bioenergy technologies, including 
biogas and biothermal units. Growing 
environmental concerns associated with the 
continued use of fossil fuels particularly issues 
related to greenhouse gas emissions and global 
climate change have accelerated the adoption of 
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renewable energy solutions. However, the 
inherently intermittent and unpredictable nature of 
solar and other renewable energy sources 
introduces several operational challenges as their 
level of integration into power networks increases. 
These challenges include feeder congestion, power 
quality degradation due to harmonics, and related 
system stability concerns. Furthermore, factors 
such as high initial investment costs, limited 
operational reliability, and relatively low 
conversion efficiency continue to restrict the large-
scale deployment of these technologies [1]. 
Moreover, rapid changes in solar irradiance cause 
voltage flicker and power variability, which 
represent significant challenges in power systems 
with high photovoltaic integration [4]. The optimal 
placement of distributed generation units within a 
distribution network offers several benefits, 
including enhanced voltage levels across the 
system, a significant decrease in overall power 
losses, improved power quality, and better support 
for frequency control [7, 8]. Nevertheless, 
achieving the full advantages of distributed 
generation requires careful determination of both 
the capacity and placement of the generators within 
the distribution network [7, 9, 10].  
Several researchers have suggested diverse 
solution frameworks to meet this objective, which 
are typically classified by their computational 
approach as analytical, numerical, or metaheuristic 
methods. Analytical approaches, in particular, have 
been utilized to solve the distributed generation 
siting problem [11–13]. Previous research has 
investigated the coordinated siting of distributed 
generators and reactive power support equipment 
in distribution networks by employing numerical-
based optimization approaches [14]. In one study, 
dynamic programming was applied to solve the 
problem. Nevertheless, analytical and numerical 
methods are typically resource-intensive, as they 
involve assessing every possible combination of 
DG placement to find the optimal solution. 
Consequently, most studies using these approaches 
consider only a limited number of variables [15]. 
Furthermore, because the problem is inherently 
non-linear, linear programming techniques 
frequently struggle to identify the true optimal 
solutions [16]. Population-based meta-heuristic 

techniques—such as genetic algorithms, harmony 
search, bat algorithm, artificial bee colony, particle 
swarm optimization, and ant colony 
optimization—offer notable advantages over 
traditional analytical and numerical methods, as 
they do not require exhaustive exploration of the 
entire solution space to obtain satisfactory results. 
This characteristic significantly reduces 
computational burden and makes it possible to 
handle problems involving a large number of 
decision variables and network buses. In addition, 
these algorithms are valued for their conceptual 
simplicity and adaptability to complex 
optimization problems. Nevertheless, they 
typically yield approximate rather than exact 
optimal solutions; however, the accuracy achieved 
is generally sufficient for most practical 
engineering applications [17]. A genetic algorithm 
was employed to determine the optimal locations 
and capacities of distributed generation units 
within a distribution network, with the 
optimization objectives and constraints formulated 
to account for multiple planning horizons. The 
problem of distributed generation siting in 
distribution networks was solved using an 
optimization framework that merges simulated 
annealing with genetic algorithm techniques [18]. 
A technique was developed to minimize real power 
losses, enhance voltage regulation, and relieve 
substation loading in an electrical power system 
through the evaluation of voltage sensitivity 
indices [19]. To reduce the complexity of the 
distributed generation placement and sizing 
problem, many existing studies in the literature 
typically impose constraints by fixing either the 
number of DG units or their capacities. In contrast, 
the approach presented in this work removes such 
limitations by enabling a heuristic search that 
explores the full solution space without predefined 
restrictions on the quantity or rating of DG units. 
This allows the simultaneous determination of the 
optimal number, locations, and sizes of DGs 
required to minimize both real and reactive power 
losses within the network. Among the available 
metaheuristic techniques, particle swarm 
optimization is selected for this study due to its 
effectiveness in identifying near-global optimal 
solutions with relatively few iterations and its 



International Journal of Scientific Research and Engineering Development-– Volume 9 Issue 1, Jan-Feb 2026  
          Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 1020 

demonstrated superior performance when 
compared with other comparable algorithms [20, 
21].  
This work extends the investigation into the 
practical use of particle swarm optimization by 
employing it to determine the optimal locations 
and capacities of distributed generation units in a 
power distribution network. The objective is to 
achieve a substantial reduction in total real power 
losses while simultaneously improving the voltage 
profile of the system.  
Although extensive research has been conducted 
on DG allocation and sizing using various 
metaheuristic algorithms, several gaps remain. 
Many existing studies focus on single DG units or 
simplified system models, limiting their 
applicability to real-world distribution networks 
with multiple DG installations. Additionally, 
limited attention has been given to combining PSO 
with realistic load flow techniques such as the 
backward–forward sweep method for radial 
systems. The performance of the proposed method 
was assessed through implementation on the 
benchmark IEEE 33-bus distribution system using 
MATLAB codes and validating it using ETAP 
2021 software.  
 

II. MATHEMATICAL FORMULATION 

1) Bus Load Current Calculation 
At iteration k, the injected current at bus i is: 

𝑖௜
(௞)

= ൭
𝑃௜ − 𝑗𝑄௜

𝑉
௜

(௞)
൱

∗

 

Where: 
 𝑃௜ , 𝑄௜ =

active and reactive power demand at bus i 

 𝑉௜
(௞)

= bus voltage at iteration k 
 (. )∗ = complex conjugate 

2a) Backward Sweep (Branch Current Calculation) 

Starting from the leaf nodes and moving towards the slack 
bus, branch currents are computed using Kirchhoff’s 
Current Law (KCL). For a branch connecting bus i to bus j: 

𝐼௜௝
(௞)

= 𝐼௝
(௞)

+ ෍ 𝐼௝௠
(௞)

௠∈௖௛௜௟ௗ௥௘௡(௝)

 

This means each branch current is the sum of: 
 Load current at the receiving bus 
 Currents of all downstream branches 

2b) Forward Sweep (Voltage Update) 
Starting from the slack bus and moving outward, bus 
voltages are updated using Kirchhoff’s Voltage Law 
(KVL): 

𝑉௝
(௞ାଵ)

= 𝑉௜
(௞ାଵ)

+ 𝑍௜௝𝐼௜௝
(௞) 

Where: 
 𝑍௜௝ = 𝑅௜௝ + 𝑗𝑋௜௝ = branch impedance 

 𝑉௜
(௞ାଵ)

= sending − end bus voltage 
2c) Convergence Criterion 
The iterative process continues until: 
Maxห𝑉௜

(௞ାଵ)
− 𝑉௜

(௞)
ห ≤ 𝜖 

where: 
 ϵ is the convergence tolerance (typically 10−6) 

3) Branch Power Loss Calculation 

𝑃௟௢௦௦,௜௝ = 𝑅௜௝ห𝐼௜௝ห
ଶ
 

𝑄௟௢௦௦,௜௝ = 𝑋௜௝ห𝐼௜௝ห
ଶ
 

4) PSO Algorithm 

High penetration of distributed generation 
significantly affects power losses and voltage 
profiles in radial distribution networks. The 
objective is to optimally determine the location(s) 
and size(s) of DG units such that total real power 
loss is minimized while satisfying system 
operating constraints. Particle Swarm 
Optimization (PSO) is employed due to its fast 
convergence, simple implementation, and 
effectiveness in nonlinear, non-convex power 
system problems. 

Particle Swarm Optimization (PSO) is a stochastic, 
population-oriented optimization technique 
motivated by the collective movement patterns 
observed in natural swarms, such as flocks of birds 
and schools of fish. In PSO, each candidate 
solution, referred to as a particle, navigates the 
search space by continuously updating its position 
based on both its own historical best solution and 
the globally best solution identified by the swarm. 
The particle positions, represented by randomly 
initialized numerical values, define potential 
solutions within a multi-dimensional optimization 
space [13]. 
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5)Decision Variables 

For a system with NDG DG units, the particle 
position vector is defined as: 

𝑋 = ൤
𝐿ଵ 𝐿ଶ …

𝑃஽ீభ
𝑃஽ீమ

…    
𝐿ேವಸ

𝑃஽ீವಸ

൨ 

Where: 
𝐿௞ = location (bus number) of DG unit k 

 𝑃஽ீ௞ =real power rating of DG unit k 
DGs are assumed to operate at unity power factor 

unless otherwise stated. 

6) Objective Function Formulation 

6a) Real Power Loss Minimization 

The primary objective is to minimize the total real power 
loss of the distribution system: 

min 𝑓(𝑋) = 𝑃௟௢௦௦ = ෍ ෍ 𝑅௜௝

ே್

௝ୀ௜ାଵ

ห𝐼௜௝ห
ଶ

ே್

௜ୀଵ

 

where: 
 𝑅௜௝ = resistance of branch ijijij 
 𝐼௜௝  = branch current obtained from BFS load flow 

6b) Fitness Function 

Including penalty terms for constraint violations: 

𝐹 = 𝑃௟௢௦௦ +⋌ଵ ෍(max (0, 𝑉௜ − 𝑉௠௔௫)ଶ + 𝑚𝑎𝑥(0, 𝑉௠௜௡

ே್

௜ୀଵ

− 𝑉௜)
ଶ) 

where: 
 λ1 = penalty coefficient 

7) Power Balance with DG Integration 

At each bus i: 
𝑃௜

௡௘௧ = 𝑃௜
௟௢௔ௗ − 𝑃௜

஽ீ  
𝑄௜

௡௘௧ = 𝑄௜
௟௢௔ௗ 

 
This modified power demand is used in the BFS load-flow 
calculation. 

8) Constraints 

Power Balance Constraint 

෍ 𝑃஽ீ ≤ ෍ 𝑃௟௢௔ௗ + 𝑃௟௢௦௦  

DG Size Limits 
𝑃஽ீೖ

௠௜௡ ≤ 𝑃஽ீೖ
≤ 𝑃஽ீೖ

௠௔௫  
Bus Voltage Limits 

𝑉௠௜௡ ≤ |𝑉௜| ≤ 𝑉௠௔௫  
Typically: 

0.95 ≤ |𝑉௜| ≤ 1.05 

9) PSO Velocity and Position Update Equations 

Velocity Update 
𝑣௜

௞ାଵ = 𝑤𝑣௜
௞ + 𝑐ଵ𝑟ଵ൫𝑝𝑏𝑒𝑠𝑡௜ − 𝑥௜

௞൯ + 𝑐ଶ𝑟ଶ(𝑔𝑏𝑒𝑠𝑡 − 𝑥௜
௞) 

where: 
 w = inertia weight 
 C1, C2 = cognitive and social coefficients 
 r1,r2 ∈ [0,1] = random numbers 

Position Update 
𝑥௜

௞ାଵ = 𝑥௜
௞ + 𝑣௜

௞ାଵ 

Discrete variables (DG locations) are rounded to nearest 
integer after updating. 

III. The IEEE 33-Bus Radial Distribution Test 
System 

The IEEE 33-bus network is a benchmark radial 
distribution test system that is widely adopted in 
research studies to enable effective comparison of 
proposed methods with existing literature. The 
proposed PSO algorithm was implemented in 
MATLAB R2022a and executed on an Intel CORE 
i7 vPro 8th Generation personal computer. The test 
system carries an aggregate real power demand of 
3.715 MW and a total reactive power demand of 
2.3 MVar. The load flow analysis was carried out 
using the Backward Forward Sweep algorithm 
while the optimal allocation of DG and its sizing to 
minimize the power loss and improve the voltage 
profile was done using the PSO algorithm. A 
comparative performance evaluation of the base 
case and distributed generation (DG) case on the 
IEEE-33 bus radial distribution network was 
carried out in this study. The assessment focuses on 
voltage profile improvement and real power loss 
minimization, which are critical indices for 
evaluating distribution network performance under 
high penetration of distributed energy resources. 
Overall, the test network consists of 33 buses 
interconnected by 32 distribution lines. A 
schematic diagram is shown in fig 1. 
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Fig 1: IEEE 33 bus test system 

IV. RESULTS AND DISCUSSION 
Base case (without DG) and PSO-DG case results 
using MATLAB 

The voltage magnitude across all the buses in the 
distribution system before and after PSO optimized 
multiple DG allocation and siting are presented in 
Fig. 2. It shows a significant improvement in the 
system voltage profile. In the base case (no DG), 
there is a decline in the per unit (pu) voltage 
magnitude at the buses as we progress along the 
system from bus 1 to bus 33. However, with the 
DGs sited at the optimum buses as derived using 
PSO, there is a significant improvement in the 
voltage profile of the system with all the buses 
approaching the nominal voltage.  

Before DG allocation, the least voltage magnitude 
across all the buses was obtained at bus 18 with a 
per unit voltage of 0.87. However, after DG 
allocation, this value increased to 0.993 per unit. 
The remote bus; bus 33 has its per unit voltage as 
0.886 for the base case while 0.995pu for the DG 
case. Three DGs were optimized using PSO and the 
optimal locations are buses 7, 29 and 14 while the 
sizes are 1.3714MW, 1.6455MW and 0.8597MW 
respectively. The base case power loss is 
0.2959MW and that of the DG case is 0.1567MW 
with 47.05% loss reduction. 

 

 

 

Table 1: Comparative analysis of base case and PSO-DG case using 
MATLAB 

S/N  Base Case 

(without DG) 

PSO-DG case 

1 Total power 

loss 

0.2959MW 0.1567MW 

2 Remote bus 

voltage 

0.886pu 0.995pu 

3 Minimum bus 

voltage 

0.87pu 0.993pu 

4 Optimal 

location 

- 7, 29, 14 

5 Optimal size - 1.3714, 1.6455, & 

0.8597MW 

 

 
Fig 2: Comparative voltage profile using PSO   
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Fig 3: Branch power loss for base case and DG case 

Comparison of PSO results using MATLAB and 
ETAP Validation 

The analysis of the IEEE 33 bus distribution 
system voltage profile as derived from ETAP 
under base case and distributed generation 
arrangement are illustrated in Fig. 4. The PSO 
results as presented in table 1 with the obtained 
results from ETAP shown in Fig. 4 for optimized 
location plot are in good correlation. It is also 
shown in Fig. 4 that there is a significant 
improvement in the voltage profile from bus 1 to 
bus 33 when the system is fed by DGs compared to 
the base case (without DG).  

From the ETAP model, the base case minimum bus 
voltage occurred in bus 18 with a value of 
0.9057pu and 0.9833pu for the optimized DG case. 
The remote bus (bus 33) voltage is 0.914pu and 
that of the optimized DG case is 0.9931pu. The 
base case total power loss is 0.175MW and that of 
the optimized DG case is 0.0972MW. The branch 
power losses are displayed in fig. 5. There is good 
correlation between the PSO model in fig. 3 and the 
ETAP model in fig. 5. For the ETAP model, the 

base case has 21 buses that have their voltages 
below the minimum acceptable voltage limit of 
0.95pu as shown in fig. 6, but after DG allocation 
at the optimal site, there was significant voltage 
profile improvement at all the affected buses as 
shown in fig. 7. 

 
Fig 4: Comparative voltage profile for base case and DG case using ETAP 
 

 
Fig 5: Comparative branch power loss for base case and DG case using 

ETAP 
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Fig 6: Base case BFS load flow analysis using ETAP 

 
Fig 7: DG case BFS load flow analysis using ETAP 

 

A random DG allocation at buses 5, 31 and 11 shown 
in fig. 10, were done to compare its impact on the 
voltage profile and branch power loss with those of 
the optimized and base cases to show the impact of 
optimizing the system. Figure 8 and 9 shows the 
voltage profile and branch power loss for base case, 
optimized case and random case. The results show 
that PSO optimized DG case performed better than 
the base case and random case.   

 

 

Fig. 8: Comparative voltage profile for base case, optimized case and 
random case 
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Fig. 9:  Comparative branch power loss for base case, optimized case and random cas 

 

Fig 10: Random case BFS load flow analysis using ETAP 

CONCLUSION 
This study has successfully demonstrated the 
effectiveness of Particle Swarm Optimization for the 
optimal placement and sizing of multiple distributed 
generation units in a radial distribution network. By 
integrating PSO with the backward–forward sweep 
load flow method, the proposed approach efficiently 
addresses the nonlinear and non-convex nature of the 
DG allocation problem. Application to the IEEE 33-
bus test system shows that optimal DG integration 
leads to substantial real power loss reduction and 
significant improvement in voltage profiles across 

all buses. Compared with the base case and random 
DG placement, the PSO-optimized solution achieved 
superior system performance, confirming the 
importance of optimization-based planning. 
Validation using ETAP further reinforces the 
reliability of the results obtained from the MATLAB 
implementation. Overall, the proposed method 
provides a practical and effective tool for distribution 
network planners seeking to enhance efficiency, 
voltage stability, and operational performance under 
high penetration of distributed generation. 
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