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Abstract:

This paper presents a Particle Swarm Optimization (PSO)-based approach for the optimal placement
and sizing of multiple distributed generation (DG) units in a radial distribution network. The objective is to
minimize total real power losses while improving the voltage profile, subject to system operating constraints.
A backward—forward sweep (BFS) load flow algorithm is integrated with PSO to accurately model power
flow in radial systems. Unlike conventional methods that fix the number or capacity of DG units, the
proposed method simultaneously determines the optimal number, locations, and sizes of DGs without
predefined restrictions. The methodology is tested on the IEEE 33-bus radial distribution system using
MATLAB and validated with ETAP 2021. Simulation results demonstrate a significant reduction in real
power losses and notable voltage profile enhancement. Specifically, the optimized allocation of three DG
units achieves a loss reduction of approximately 47.05% and raises the minimum bus voltage close to
nominal limits. The close agreement between MATLAB and ETAP results confirms the effectiveness and
robustness of the proposed PSO-based optimization framework.

Keywords — MATLAB, Particle Swarm Optimization, Distributed Generation, ETAP, Simulation.
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distributed generation due to their modular design,

L INTRODUCTION ease of installation, and reliance on locally

Distributed generation refers to decentralized
electricity production systems that are installed
close to load centers rather than being integrated
into  conventional centralized transmission
networks. These systems supply power directly at
or near the point of consumption, thereby
minimizing the need for long-distance energy
transmission [1, 2]. In practice, distributed
generation consists of small- to medium-capacity
power units that are connected either to the
distribution network or located on the consumer
side of the electricity meter. Renewable energy
technologies, particularly solar photovoltaic and
solar thermal systems, are especially suitable for

available energy resources. By converting solar
radiation into electrical and thermal energy, these
technologies reduce dependence on fuel
transportation and enhance energy accessibility [3].
In addition to solar-based systems, distributed
generation frameworks also incorporate other
renewable energy sources such as small-scale
hydropower plants, wind energy conversion
systems, and bioenergy technologies, including
biogas and  biothermal units.  Growing
environmental concerns associated with the
continued use of fossil fuels particularly issues
related to greenhouse gas emissions and global
climate change have accelerated the adoption of
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renewable energy solutions. However, the
inherently intermittent and unpredictable nature of
solar and other renewable energy sources
introduces several operational challenges as their
level of integration into power networks increases.
These challenges include feeder congestion, power
quality degradation due to harmonics, and related
system stability concerns. Furthermore, factors
such as high initial investment costs, limited
operational reliability, and relatively low
conversion efficiency continue to restrict the large-
scale deployment of these technologies [1].
Moreover, rapid changes in solar irradiance cause
voltage flicker and power variability, which
represent significant challenges in power systems
with high photovoltaic integration [4]. The optimal
placement of distributed generation units within a
distribution network offers several benefits,
including enhanced voltage levels across the
system, a significant decrease in overall power
losses, improved power quality, and better support
for frequency control [7, 8]. Nevertheless,
achieving the full advantages of distributed
generation requires careful determination of both
the capacity and placement of the generators within
the distribution network [7, 9, 10].

Several researchers have suggested diverse
solution frameworks to meet this objective, which
are typically classified by their computational
approach as analytical, numerical, or metaheuristic
methods. Analytical approaches, in particular, have
been utilized to solve the distributed generation
siting problem [11-13]. Previous research has
investigated the coordinated siting of distributed
generators and reactive power support equipment
in distribution networks by employing numerical-
based optimization approaches [14]. In one study,
dynamic programming was applied to solve the
problem. Nevertheless, analytical and numerical
methods are typically resource-intensive, as they
involve assessing every possible combination of
DG placement to find the optimal solution.
Consequently, most studies using these approaches
consider only a limited number of variables [15].
Furthermore, because the problem is inherently
non-linear, linear programming techniques
frequently struggle to identify the true optimal
solutions [16]. Population-based meta-heuristic
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techniques—such as genetic algorithms, harmony
search, bat algorithm, artificial bee colony, particle
swarm  optimization, and ant  colony
optimization—offer notable advantages over
traditional analytical and numerical methods, as
they do not require exhaustive exploration of the
entire solution space to obtain satisfactory results.
This  characteristic ~ significantly  reduces
computational burden and makes it possible to
handle problems involving a large number of
decision variables and network buses. In addition,
these algorithms are valued for their conceptual
simplicity —and  adaptability to complex
optimization  problems. Nevertheless, they
typically yield approximate rather than exact
optimal solutions; however, the accuracy achieved
is generally sufficient for most practical
engineering applications [17]. A genetic algorithm
was employed to determine the optimal locations
and capacities of distributed generation units
within a distribution network, with the
optimization objectives and constraints formulated
to account for multiple planning horizons. The
problem of distributed generation siting in
distribution networks was solved using an
optimization framework that merges simulated
annealing with genetic algorithm techniques [18].
A technique was developed to minimize real power
losses, enhance voltage regulation, and relieve
substation loading in an electrical power system
through the evaluation of voltage sensitivity
indices [19]. To reduce the complexity of the
distributed generation placement and sizing
problem, many existing studies in the literature
typically impose constraints by fixing either the
number of DG units or their capacities. In contrast,
the approach presented in this work removes such
limitations by enabling a heuristic search that
explores the full solution space without predefined
restrictions on the quantity or rating of DG units.
This allows the simultaneous determination of the
optimal number, locations, and sizes of DGs
required to minimize both real and reactive power
losses within the network. Among the available
metaheuristic ~ techniques, particle  swarm
optimization is selected for this study due to its
effectiveness in identifying near-global optimal
solutions with relatively few iterations and its

ISSN : 2581-7175

O©IJSRED: All Rights are Reserved

Page 1019



International Journal of Scientific Research and Engineering Development-— Volume 9 Issue 1, Jan-Feb 2026

demonstrated  superior  performance = when
compared with other comparable algorithms [20,
21].

This work extends the investigation into the
practical use of particle swarm optimization by
employing it to determine the optimal locations
and capacities of distributed generation units in a
power distribution network. The objective is to
achieve a substantial reduction in total real power
losses while simultaneously improving the voltage
profile of the system.

Although extensive research has been conducted
on DG allocation and sizing using various
metaheuristic algorithms, several gaps remain.
Many existing studies focus on single DG units or
simplified system models, limiting their
applicability to real-world distribution networks
with multiple DG installations. Additionally,
limited attention has been given to combining PSO
with realistic load flow techniques such as the
backward—forward sweep method for radial
systems. The performance of the proposed method
was assessed through implementation on the
benchmark IEEE 33-bus distribution system using
MATLAB codes and validating it using ETAP
2021 software.

II. MATHEMATICAL FORMULATION

1) Bus Load Current Calculation
At iteration k, the injected current at bus i is:

100 _ P —jo;
t Vi(k)

Where:
s P,Q;i=
active and reactive power demand at bus i
J Vi(k) = bus voltage at iteration k

e ()" = complex conjugate
2a) Backward Sweep (Branch Current Calculation)

Starting from the leaf nodes and moving towards the slack
bus, branch currents are computed using Kirchhoff’s
Current Law (KCL). For a branch connecting bus i to bus j:

jm
mechildren(j)
This means each branch current is the sum of:
e Load current at the receiving bus
e  Currents of all downstream branches

() _ ;00 (F)
Iij —Ij + z I
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2b) Forward Sweep (Voltage Update)
Starting from the slack bus and moving outward, bus
voltages are updated using Kirchhoff’s Voltage Law
(KVL):
l§(1c+1) _ Vi(k+1) n Zijli(jk)
Where:

e Z;j = R;j + jX;; = branch impedance
Vi(k+1)

. = sending — end bus voltage

2c) Convergence Criterion
The iterative process continues until:
Max|Vi(k+1) - Vi(k)| <e€
where:
e ¢ is the convergence tolerance (typically 10—6)

3) Branch Power Loss Calculation
Ploss,ij = Rij|1ij|2

Quoss,ij = Xij|1ij|2

4) PSO Algorithm

High penetration of distributed generation
significantly affects power losses and voltage
profiles in radial distribution networks. The
objective is to optimally determine the location(s)
and size(s) of DG units such that total real power
loss is minimized while satisfying system
operating constraints. Particle Swarm
Optimization (PSO) is employed due to its fast
convergence, simple implementation, and
effectiveness in nonlinear, non-convex power
system problems.

Particle Swarm Optimization (PSO) is a stochastic,
population-oriented  optimization  technique
motivated by the collective movement patterns
observed in natural swarms, such as flocks of birds
and schools of fish. In PSO, each candidate
solution, referred to as a particle, navigates the
search space by continuously updating its position
based on both its own historical best solution and
the globally best solution identified by the swarm.
The particle positions, represented by randomly
initialized numerical values, define potential
solutions within a multi-dimensional optimization
space [13].
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5)Decision Variables 9) PSO Velocity and Position Update Equations
Velocity Update

For a system with Npg DG units, the particle vt = wolf + ¢yry(pbest; — x[) + ¢y (gbest — x)

position vector is defined as: where:

e w = inertia weight

e (i, C, = cognitive and social coefficients

e rl,r2 € [0,1] = random numbers
Position Update

X Ll LZ e LNDG ]

" 1Poe; Poe, - Pogpg
Where:
Lj, = location (bus number) of DG unit k
e Pjq =real power rating of DG unit k
DGs are assumed to operate at unity power factor
unless otherwise stated.

ik+1 — xik + ‘Uk+1

X = i

Discrete variables (DG locations) are rounded to nearest
integer after updating.

6) Objective Function Formulation III. The IEEE 33-Bus Radial Distribution Test
System
6a) Real Power Loss Minimization

The primary objective is to minimize the total real power The IEEE 33-bus network is a benchmark radial
loss of the distribution system: Ny Ny distribution test system that is widely adopted in
min f(X) = Py, = Z Z Ry | 1ij|2 research studies to engble effegtive gomparison of
= 5 proposed methods with existing literature. The
where: proposed PSO algorithm was implemented in
e R;; =resistance of branch ijijij MATLAB R2022a and executed on an Intel CORE
e I;;=branch current obtained from BFS load flow i7 vPro 8" Generation personal computer. The test
system carries an aggregate real power demand of
6b) Fitness Function 3.715 MW and a total reactive power demand of
Including penalty terms for constraint violations: 2.3 MVar. The load flow analysis was carried out

& using the Backward Forward Sweep algorithm

= . — 2 . . . . . . .
F=Pross 41 Z(max (0, Vi = Vmax)™ +max (0, Vinin while the optimal allocation of DG and its sizing to

= V)?) minimize the power loss and improve the voltage
where: profile was done using the PSO algorithm. A
* i =penalty coefficient comparative performance evaluation of the base
) ) case and distributed generation (DG) case on the
7). Power Balance with DG Integration IEEE-33 bus radial distribution network was
At each bus i: ot load DG carried out in this study. The assessment focuses on
i ;rpi_ lt:zdpi voltage profile improvement and real power loss
b minimization, which are critical indices for
This modified power demand is used in the BFS load-flow evaluating distribution network performance under
calculation. high penetration of distributed energy resources.
Overall, the test network consists of 33 buses
8) Constraints interconnected by 32 distribution lines. A
Power Balance Constraint schematic diagram is shown in fig 1.
ZPDG SZpload +Ploss
DG Size Limits 23 24 25
P%QSPDGRSP%‘? 26 27 28 29 30 31 32 33
Bus Voltage Limits { % % % | % % {
Vinin < Vil < Vipax ; f 3 ]t I% f',_/|7 T CI) 110 111 112 113 1|4 115 1]6 1I7 1]8

Typically: > NN I O B
0.95 < |V;| < 1.05 y i
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Fig 1: IEEE 33 bus test system

Iv. RESULTS AND DISCUSSION

Base case (without DG) and PSO-DG case results
using MATLAB

The voltage magnitude across all the buses in the
distribution system before and after PSO optimized
multiple DG allocation and siting are presented in
Fig. 2. It shows a significant improvement in the
system voltage profile. In the base case (no DG),
there is a decline in the per unit (pu) voltage
magnitude at the buses as we progress along the
system from bus 1 to bus 33. However, with the
DGs sited at the optimum buses as derived using
PSO, there is a significant improvement in the
voltage profile of the system with all the buses
approaching the nominal voltage.

Before DG allocation, the least voltage magnitude
across all the buses was obtained at bus 18 with a
per unit voltage of 0.87. However, after DG
allocation, this value increased to 0.993 per unit.
The remote bus; bus 33 has its per unit voltage as
0.886 for the base case while 0.995pu for the DG
case. Three DGs were optimized using PSO and the
optimal locations are buses 7, 29 and 14 while the
sizes are 1.3714MW, 1.6455MW and 0.8597MW
respectively. The base case power loss is
0.2959MW and that of the DG case is 0.1567MW
with 47.05% loss reduction.

Table 1:  Comparative analysis of base case and PSO-DG case using
MATLAB

location

2 Remote bus | 0.886pu 0.995pu
voltage

3 Minimum bus | 0.87pu 0.993pu
voltage

4 Optimal 7,29, 14

Optimal size

1.3714, 1.6455, &

0.8597TMW

Voltag

Voltage Profile Inprovement Comparison

—O—Base Case
—3¥— With Multiple DGs | |

10 15

20 25 30 35

Bus Number

Fig 2: Comparative voltage proﬁle using PSO

S/N Base Case | PSO-DG case
(without DG)
1 Total  power | 0.2959MW 0.1567MW
loss
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0.08 Branch Power Loss Comparison

Base Case
0.07 — With Multiple DGs | |

0.06

Real Power Loss (MW)
g

°l &/\J\
. | : .

0 5 10 15 20 25 30 35
Branch Number
Fig 3: Branch power loss for base case and DG case

Comparison of PSO results using MATLAB and
ETAP Validation

The analysis of the IEEE 33 bus distribution
system voltage profile as derived from ETAP
under base case and distributed generation
arrangement are illustrated in Fig. 4. The PSO
results as presented in table 1 with the obtained
results from ETAP shown in Fig. 4 for optimized
location plot are in good correlation. It is also
shown in Fig.4 that there is a significant
improvement in the voltage profile from bus 1 to
bus 33 when the system is fed by DGs compared to
the base case (without DG).

From the ETAP model, the base case minimum bus
voltage occurred in bus 18 with a value of
0.9057pu and 0.9833pu for the optimized DG case.
The remote bus (bus 33) voltage is 0.914pu and
that of the optimized DG case is 0.9931pu. The
base case total power loss 1s 0.175MW and that of
the optimized DG case is 0.0972MW. The branch
power losses are displayed in fig. 5. There is good
correlation between the PSO model in fig. 3 and the
ETAP model in fig. 5. For the ETAP model, the
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base case has 21 buses that have their voltages
below the minimum acceptable voltage limit of
0.95pu as shown in fig. 6, but after DG allocation
at the optimal site, there was significant voltage
profile improvement at all the affected buses as
shown in fig. 7.

Voltage Profile
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Bus number

=@==% kV for base case ==@==%kV after optimized DG siting

Fig 4: Comparative voltage profile for base case and DG case using ETAP

Comparative Branch Power Loss
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0
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== Base Case Branch Power Loss
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Fig 5: Comparative branch power loss for base case and DG case using
ETAP
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IEEE 33-BUS TEST SYSTEM |
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Fig 6: Base case BFS load flow analysis using ETAP
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Fig 7: DG case BFS load flow analysis using ETAP

Comparative Voltage Profile
A random DG allocation at buses 5, 31 and 11 shown

105
in fig. 10, were done to compare its impact on the © 100
voltage profile and branch power loss with those of ,_%D o5
the optimized and base cases to show the impact of 3
optimizing the system. Figure 8 and 9 shows the ® 0
voltage profile and branch power loss for base case, e o e e o
optimized case and random case. The results show 233223922323 232323289%99%
that PSO optimized DG case performed better than ® C;ujn?mc;; seeses
the base case and random case.

e 9 k\/ for base case

%kV after optimized DG siting
e %kV after random DG siting

Fig. 8: Comparative voltage profile for base case, optimized case and

random case
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Comparative branch power loss
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Fig. 9: Comparative branch power loss for base case, optimized case and random cas
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Fig 10: Random case BFS load flow analysis using ETAP

CONCLUSION

This study has successfully demonstrated the
effectiveness of Particle Swarm Optimization for the
optimal placement and sizing of multiple distributed
generation units in a radial distribution network. By
integrating PSO with the backward—forward sweep
load flow method, the proposed approach efficiently
addresses the nonlinear and non-convex nature of the
DG allocation problem. Application to the IEEE 33-
bus test system shows that optimal DG integration
leads to substantial real power loss reduction and
significant improvement in voltage profiles across
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all buses. Compared with the base case and random
DG placement, the PSO-optimized solution achieved
superior system performance, confirming the
importance  of  optimization-based  planning.
Validation using ETAP further reinforces the
reliability of the results obtained from the MATLAB
implementation. Overall, the proposed method
provides a practical and effective tool for distribution
network planners seeking to enhance efficiency,
voltage stability, and operational performance under
high penetration of distributed generation.
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