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Abstract: 
Chronic disease prediction has gained significant momentum with the rapid advancement of Internet of 
Medical Things (IoMT) and Healthcare 5.0, enabling continuous patient monitoring and large-scale health 
data acquisition. The integration of deep learning and machine learning models has shown strong potential 
in early disease diagnosis, progression analysis, and personalized treatment planning. While these intelligent 
systems improve predictive accuracy and clinical efficiency, their increasing complexity introduces 
challenges related to model interpretability, data heterogeneity, scalability, and clinical trust. This survey 
presents a structured and analytical review of chronic disease prediction methodologies in IoMT-enabled 
healthcare systems, with primary emphasis on multimodal data fusion, deep neural architectures, temporal 
health data modeling, and explainable AI frameworks. Mathematical formulations are discussed to provide 
theoretical grounding for feature extraction, temporal dependency learning, and disease risk estimation 
models. Furthermore, commonly used healthcare datasets, evaluation metrics, system architectures, open 
challenges, and emerging research directions are critically examined from a Healthcare 5.0 and clinical 
decision-support perspective. This study aims to serve as a comprehensive reference for researchers and 
practitioners working on trustworthy, interpretable, and scalable AI-driven healthcare systems, with 
Alzheimer’s disease considered as a representative chronic disease case study. 
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I.     INTRODUCTION 

The way healthcare systems understand and 
manage long-term illnesses has undergone a steady 
but profound transformation. Chronic diseases do 
not arrive suddenly or fade quickly; instead, they 
unfold over years, quietly reshaping a person’s 
daily life. Conditions such as diabetes, heart 
disease, kidney disorders, and neurodegenerative 
illnesses demand constant attention rather than 
occasional care. Each day produces new 

physiological signals—changes in glucose levels, 
heart rhythms, sleep cycles, or cognitive patterns—
that often go unnoticed until damage accumulates. 
Though symptoms may seem manageable at first, 
their long-term impact carries heavy personal, 
social, and economic costs. 
For decades, healthcare relied on scheduled 
hospital visits, clinician judgment, and 
retrospective analysis of patient records. While 
effective to an extent, this approach struggles to 
keep pace with diseases that evolve continuously. 
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Delays between appointments can allow subtle 
warning signs to pass undetected, and reliance on 
manual assessment places a heavy burden on 
already strained healthcare systems. As 
populations age and chronic conditions rise 
globally, these traditional models reveal clear 
limitations in scalability, timeliness, and 
personalization. 
The rise of the Internet of Medical Things (IoMT) 
marks a critical shift in how health data is gathered 
and interpreted. Wearable devices, implantable 
sensors, smart diagnostic tools, and connected 
imaging systems now stream data in real time, 
capturing the body’s behavior beyond the clinic 
walls. This constant flow of heterogeneous data—
ranging from numerical sensor readings to medical 
images and clinical notes—creates both 
opportunity and challenge. While rich in insight, 
such data is too vast and complex for human 
analysis alone. 
This is where machine learning and deep learning 
step in, offering tools capable of uncovering hidden 
patterns, predicting disease progression, and 
supporting early intervention. Modern AI models 
can learn from multimodal inputs, track subtle 
trends over time, and adapt as patient conditions 
change. Yet despite their promise, many existing 
solutions operate as opaque black boxes, making it 
difficult for clinicians to understand or trust their 
decisions. In high-stakes medical settings, lack of 
interpretability can be just as limiting as lack of 
accuracy. 
Against this backdrop, the need for intelligent, 
transparent, and adaptive predictive systems 
becomes clear. This survey explores how AI-
driven approaches are being applied to chronic 
disease prediction within IoMT-enabled healthcare 
environments. By examining evolving 
methodologies, real-world constraints, and open 
research gaps, it highlights how future systems can 
move beyond static predictions toward continuous, 
explainable, and clinically meaningful decision 
support. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

II.     REVIEW OF EXISTING RESEARCH 

PAPERS 

Chronic disease prediction has attracted increasing 
attention from researchers due to the growing 
availability of continuous health data generated by 
IoMT-enabled devices. Early studies in this 
domain focused on traditional machine learning 
techniques that relied on manually engineered 
clinical features derived from electronic health 
records, laboratory results, and basic sensor 
readings. Common representations included 
statistical summaries, threshold-based indicators, 
and handcrafted health indices. These features 
were typically fed into classical classifiers such as 
Logistic Regression, Naive Bayes, Support Vector 
Machines (SVM), and Random Forest models. 
While these approaches demonstrated reasonable 
performance for structured datasets, they struggled 
to generalize across diverse patient populations and 
often failed to capture subtle disease progression 
patterns present in longitudinal health data. 
As IoMT systems began producing large-scale, 
continuous, and heterogeneous data streams, 
researchers moved toward deep learning 
techniques to overcome the limitations of manual 
feature design. Neural network-based models such 
as Artificial Neural Networks (ANN), Recurrent 
Neural Networks (RNN), and Long Short-Term 
Memory (LSTM) networks became popular due to 
their ability to learn temporal dependencies in 
physiological signals. LSTM-based architectures 
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proved particularly effective for modeling time-
series health data such as heart rate variability, 
glucose levels, EEG signals, and activity patterns. 
Studies reported improved prediction accuracy for 
chronic conditions including diabetes, 
cardiovascular disease, and neurodegenerative 
disorders, as these models could capture long-term 
trends that traditional methods overlooked. 
Convolutional Neural Networks (CNNs) were also 
adopted in chronic disease research, especially for 
medical imaging and sensor signal transformation 
tasks. CNNs demonstrated strong performance in 
extracting local spatial features from medical 
images such as MRI scans, CT images, and retinal 
photographs. In IoMT environments, CNNs were 
applied to transformed physiological signals, 
enabling effective detection of disease-specific 
patterns. However, CNN-only approaches often 
lacked the ability to model temporal evolution, 
making them less suitable for diseases 
characterized by gradual progression over time. 
Recent advancements have introduced hybrid deep 
learning architectures that combine CNNs with 
LSTM or GRU models, aiming to capture both 
spatial and temporal characteristics of IoMT data. 
These hybrid models showed notable 
improvements in predicting disease onset and 
progression, particularly in complex conditions 
such as Alzheimer’s disease. By integrating CNN-
based feature extraction with LSTM-based 
temporal modeling, researchers achieved better 
robustness and adaptability across different patient 
profiles. Nevertheless, many of these systems still 
function as black-box models, limiting their 
interpretability and clinical acceptance. 
More recently, attention has shifted toward 
explainable and transformer-based models to 
improve trust and performance in healthcare 
applications. Transformer architectures and 
attention mechanisms have been explored to focus 
on critical time intervals and dominant 
physiological indicators influencing disease 
outcomes. Although these models demonstrate 
strong representational power, they are 
computationally intensive and often difficult to 
deploy in real-time IoMT settings. Furthermore, 
most existing studies focus primarily on binary 
disease classification, neglecting severity grading, 

progression stages, and early warning alerts that 
are crucial for proactive healthcare management. 
A careful review of the literature reveals several 
gaps in current research. Many models lack 
scalability across multimodal IoMT data sources, 
while others fail to provide real-time prediction 
and alerting capabilities. Interpretability remains a 
significant challenge, and few systems support 
multi-stage disease severity assessment. These 
limitations highlight the need for adaptive, hybrid, 
and explainable deep learning frameworks that can 
operate efficiently in real-world IoMT-enabled 
healthcare environments. 
 
A. A Retrospective View of Existing 
Approaches 
When examining prior research on chronic disease 
prediction, existing methodologies can broadly be 
categorized into three groups: traditional machine 
learning approaches, deep learning-based models, 
and advanced hybrid or attention-driven 
architectures. Each category exhibits distinct 
strengths and limitations depending on data 
complexity and clinical requirements. 
Traditional machine learning models primarily rely 
on structured clinical features such as laboratory 
measurements, demographic attributes, and basic 
statistical summaries. These features are 
commonly processed using algorithms like SVM, 
Decision Trees, and Random Forests. While 
computationally efficient and easy to interpret, 
these methods often fail to capture non-linear 
relationships and long-term disease progression 
trends inherent in chronic conditions. 
Deep learning approaches introduced architectures 
such as CNNs, RNNs, and LSTMs that 
automatically learn hierarchical features from raw 
IoMT data. CNNs excel at spatial feature 
extraction from medical images and transformed 
sensor data, whereas LSTMs effectively model 
temporal dependencies in longitudinal health 
records. These models generally outperform 
traditional approaches in terms of prediction 
accuracy; however, they require large labeled 
datasets and are sensitive to noise and data 
imbalance. 
Hybrid deep learning models and attention-based 
mechanisms represent the current state of the art. 
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By combining CNNs for feature extraction with 
LSTMs or attention layers for temporal modeling, 
these systems provide improved performance and 
adaptability. Despite their effectiveness, most 
existing implementations focus on prediction 
accuracy alone, with limited emphasis on 
explainability, severity estimation, or real-time 
alert generation. 
Overall, the literature suggests that integrated 
hybrid architectures tailored for IoMT 
environments offer the most promising direction 
for chronic disease prediction. Future systems must 
balance accuracy, interpretability, scalability, and 
real-time responsiveness to support effective 
clinical decision-making and early intervention. 
 

III. STRENGTHS AND WEAKNESSES OF 

EXISTING APPROACHES 

A. Strengths 

The existing approaches for chronic disease 
prediction in IoMT-enabled healthcare systems 
exhibit several notable strengths. Traditional 
machine learning techniques such as Logistic 
Regression, Naive Bayes, Support Vector 
Machines (SVM), and Random Forests are 
computationally efficient and relatively easy to 
implement. These models perform well on 
structured clinical datasets containing 
demographic information, laboratory test results, 
and basic physiological measurements. Their fast 
training time and lower hardware requirements 
make them suitable for early-stage decision-
support systems and resource-constrained 
healthcare environments. 
Deep learning-based approaches have significantly 
improved predictive performance by eliminating 
the need for manual feature engineering. 
Convolutional Neural Networks (CNNs) are 
particularly effective in extracting spatial features 
from medical imaging data such as MRI and CT 
scans, enabling accurate detection of disease-
specific patterns. Recurrent models such as Long 
Short-Term Memory (LSTM) networks are 
capable of modeling temporal dependencies in 
longitudinal IoMT data, including continuous vital 

signs, activity logs, and historical health records. 
This ability to learn disease progression trends over 
time enhances early diagnosis and prognosis 
accuracy. 
Recent advancements using transfer learning and 
hybrid architectures further strengthen chronic 
disease prediction systems. Pre-trained deep 
learning models such as ResNet and U-Net 
significantly reduce training time and data 
requirements by leveraging prior knowledge from 
large-scale datasets. When integrated within IoMT 
frameworks, these models enable scalable and 
continuous health monitoring, supporting 
proactive and personalized healthcare. Such 
approaches have demonstrated high accuracy, 
robustness, and adaptability across diverse patient 
datasets. 
 

B. Weaknesses 
Despite their advantages, existing approaches also 
present several limitations. Traditional machine 
learning models depend heavily on handcrafted 
features, which may fail to capture complex non-
linear relationships and subtle disease progression 
patterns. Their performance often degrades when 
applied to heterogeneous, high-dimensional, or 
noisy IoMT data, limiting their generalizability 
across different populations and healthcare 
settings. 
Deep learning models, while powerful, require 
large volumes of labeled data and substantial 
computational resources. CNN-based architectures 
alone struggle to capture long-term temporal 
dependencies, whereas LSTM-based models can 
be computationally expensive and slow during 
training and inference. Additionally, many datasets 
used in chronic disease research suffer from class 
imbalance, particularly when predicting early or 
rare disease stages, which can negatively affect 
model reliability. 
Although transfer learning and advanced deep 
architectures have improved performance, they 
introduce new challenges related to interpretability 
and clinical trust. Many deep learning systems 
operate as black-box models, providing limited 
insight into how predictions are made. This lack of 
explainability restricts adoption in real-world 
clinical environments, where transparent decision-
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making is critical. Furthermore, most existing 
models focus on binary disease classification and 
do not adequately support multi-stage severity 
assessment, real-time alerts, or continuous 
monitoring within IoMT ecosystems. 
These strengths and weaknesses collectively 
indicate the necessity for hybrid, explainable, and 
scalable prediction frameworks. An effective 
solution should combine spatial and temporal 
feature learning, leverage IoMT-generated 
multimodal data, support disease severity analysis, 
and enable timely clinical interventions to improve 
chronic disease management. 
 

IV. PROPOSED SYSTEM 

ARCHITECTURE 

 

 

 
 
 
 
 
 
 

V. DIFFERENCE BETWEEN ACUTE AND 

CHRONIC DISEASEE 

 

 
 

VI. CONCLUSION  

Chronic diseases continue to pose a significant 
challenge to global healthcare systems due to their 
long-term nature, high treatment costs, and 

increasing prevalence. Early detection and 
continuous monitoring are essential to reduce 
disease progression, improve patient outcomes, 
and optimize healthcare resources. This study 
reviewed and analyzed existing machine learning 
and deep learning approaches used for chronic 
disease prediction in IoMT-enabled healthcare 
environments. 
Traditional machine learning techniques such as 
Naive Bayes, Support Vector Machines, and 
Random Forests have demonstrated effectiveness 
in structured clinical datasets and low-resource 
settings. However, their dependency on 
handcrafted features and inability to model 
complex temporal and multimodal relationships 
limit their applicability in modern IoMT systems. 
With the rapid growth of wearable sensors, medical 
imaging devices, and real-time monitoring tools, 
healthcare data has become increasingly 
heterogeneous, high-dimensional, and time-
dependent. 
Deep learning approaches, including CNNs and 
LSTM-based models, have shown improved 
predictive performance by automatically learning 
spatial and temporal patterns from medical data. 
CNNs excel in medical image analysis, while 
LSTMs effectively capture disease progression 
through sequential patient records. Transformer-
based and attention-driven models further enhance 
contextual understanding, enabling more accurate 
disease risk assessment. Nevertheless, challenges 
such as high computational costs, lack of 
explainability, data imbalance, and limited real-
time deployment remain prevalent. 
This survey highlights the growing shift toward 
hybrid deep learning architectures that integrate 
semantic feature extraction, temporal modeling, 
and multimodal learning within IoMT frameworks. 
Such hybrid models demonstrate superior accuracy, 
robustness, and adaptability compared to 
standalone approaches. Moreover, incorporating 
explainable AI mechanisms and severity-level 
prediction enhances clinical trust and supports 
timely medical intervention. 
In conclusion, IoMT-enabled healthcare combined 
with advanced deep learning techniques offers a 
promising pathway toward proactive and 
personalized chronic disease management. Future 
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systems must emphasize scalability, real-time 
responsiveness, data privacy, and interpretability 
to ensure practical clinical adoption. The findings 
of this study serve as a foundation for developing 
intelligent, reliable, and patient-centric chronic 
disease prediction systems capable of transforming 
modern healthcare delivery. 
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