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Abstract:

Chronic disease prediction has gained significant momentum with the rapid advancement of Internet of
Medical Things (IoMT) and Healthcare 5.0, enabling continuous patient monitoring and large-scale health
data acquisition. The integration of deep learning and machine learning models has shown strong potential
in early disease diagnosis, progression analysis, and personalized treatment planning. While these intelligent
systems improve predictive accuracy and clinical efficiency, their increasing complexity introduces
challenges related to model interpretability, data heterogeneity, scalability, and clinical trust. This survey
presents a structured and analytical review of chronic disease prediction methodologies in loMT-enabled
healthcare systems, with primary emphasis on multimodal data fusion, deep neural architectures, temporal
health data modeling, and explainable Al frameworks. Mathematical formulations are discussed to provide
theoretical grounding for feature extraction, temporal dependency learning, and disease risk estimation
models. Furthermore, commonly used healthcare datasets, evaluation metrics, system architectures, open
challenges, and emerging research directions are critically examined from a Healthcare 5.0 and clinical
decision-support perspective. This study aims to serve as a comprehensive reference for researchers and
practitioners working on trustworthy, interpretable, and scalable Al-driven healthcare systems, with
Alzheimer’s disease considered as a representative chronic disease case study.

Keywords — D 1o0MT, Chronic Disease Prediction, Healthcare 5.0, Deep Learning, Multimodal
Learning, Explainable Al, Alzheimer’s Disease
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physiological signals—changes in glucose levels,

I INTRODUCTION heart rhythms, sleep cycles, or cognitive patterns—

The way healthcare systems understand and
manage long-term illnesses has undergone a steady
but profound transformation. Chronic diseases do
not arrive suddenly or fade quickly; instead, they
unfold over years, quietly reshaping a person’s
daily life. Conditions such as diabetes, heart
disease, kidney disorders, and neurodegenerative
illnesses demand constant attention rather than
occasional care. Each day produces new

that often go unnoticed until damage accumulates.
Though symptoms may seem manageable at first,
their long-term impact carries heavy personal,
social, and economic costs.

For decades, healthcare relied on scheduled
hospital  visits, clinician judgment, and
retrospective analysis of patient records. While
effective to an extent, this approach struggles to
keep pace with diseases that evolve continuously.
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Delays between appointments can allow subtle
warning signs to pass undetected, and reliance on
manual assessment places a heavy burden on
already  strained healthcare systems. As
populations age and chronic conditions rise
globally, these traditional models reveal clear
limitations in scalability, timeliness, and
personalization.

The rise of the Internet of Medical Things (IoMT)
marks a critical shift in how health data is gathered
and interpreted. Wearable devices, implantable
sensors, smart diagnostic tools, and connected
imaging systems now stream data in real time,
capturing the body’s behavior beyond the clinic
walls. This constant flow of heterogeneous data—
ranging from numerical sensor readings to medical
images and clinical notes—creates both
opportunity and challenge. While rich in insight,
such data is too vast and complex for human
analysis alone.

This is where machine learning and deep learning
step in, offering tools capable of uncovering hidden
patterns, predicting disease progression, and
supporting early intervention. Modern Al models
can learn from multimodal inputs, track subtle
trends over time, and adapt as patient conditions
change. Yet despite their promise, many existing
solutions operate as opaque black boxes, making it
difficult for clinicians to understand or trust their
decisions. In high-stakes medical settings, lack of
interpretability can be just as limiting as lack of
accuracy.

Against this backdrop, the need for intelligent,
transparent, and adaptive predictive systems
becomes clear. This survey explores how Al-
driven approaches are being applied to chronic
disease prediction within [oMT-enabled healthcare
environments. By examining evolving
methodologies, real-world constraints, and open
research gaps, it highlights how future systems can
move beyond static predictions toward continuous,
explainable, and clinically meaningful decision
support.
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II. REVIEW OF EXISTING RESEARCH
PAPERS

Chronic disease prediction has attracted increasing
attention from researchers due to the growing
availability of continuous health data generated by
IoMT-enabled devices. Early studies in this
domain focused on traditional machine learning
techniques that relied on manually engineered
clinical features derived from electronic health
records, laboratory results, and basic sensor
readings. Common representations included
statistical summaries, threshold-based indicators,
and handcrafted health indices. These features
were typically fed into classical classifiers such as
Logistic Regression, Naive Bayes, Support Vector
Machines (SVM), and Random Forest models.
While these approaches demonstrated reasonable
performance for structured datasets, they struggled
to generalize across diverse patient populations and
often failed to capture subtle disease progression
patterns present in longitudinal health data.

As IoMT systems began producing large-scale,
continuous, and heterogeneous data streams,
researchers moved toward deep learning
techniques to overcome the limitations of manual
feature design. Neural network-based models such
as Artificial Neural Networks (ANN), Recurrent
Neural Networks (RNN), and Long Short-Term
Memory (LSTM) networks became popular due to
their ability to learn temporal dependencies in
physiological signals. LSTM-based architectures
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proved particularly effective for modeling time-
series health data such as heart rate variability,
glucose levels, EEG signals, and activity patterns.
Studies reported improved prediction accuracy for
chronic conditions including diabetes,
cardiovascular disease, and neurodegenerative
disorders, as these models could capture long-term
trends that traditional methods overlooked.
Convolutional Neural Networks (CNNs) were also
adopted in chronic disease research, especially for
medical imaging and sensor signal transformation
tasks. CNNs demonstrated strong performance in
extracting local spatial features from medical
images such as MRI scans, CT images, and retinal
photographs. In IoMT environments, CNNs were
applied to transformed physiological signals,
enabling effective detection of disease-specific
patterns. However, CNN-only approaches often
lacked the ability to model temporal evolution,
making them less suitable for diseases
characterized by gradual progression over time.
Recent advancements have introduced hybrid deep
learning architectures that combine CNNs with
LSTM or GRU models, aiming to capture both
spatial and temporal characteristics of [oMT data.
These  hybrid models showed notable
improvements in predicting disease onset and
progression, particularly in complex conditions
such as Alzheimer’s disease. By integrating CNN-
based feature extraction with LSTM-based
temporal modeling, researchers achieved better
robustness and adaptability across different patient
profiles. Nevertheless, many of these systems still
function as black-box models, limiting their
interpretability and clinical acceptance.

More recently, attention has shifted toward
explainable and transformer-based models to
improve trust and performance in healthcare
applications.  Transformer architectures and
attention mechanisms have been explored to focus
on critical time intervals and dominant
physiological indicators influencing disease
outcomes. Although these models demonstrate
strong  representational power, they are
computationally intensive and often difficult to
deploy in real-time [oMT settings. Furthermore,
most existing studies focus primarily on binary
disease classification, neglecting severity grading,

Available at www.ijsred.com

progression stages, and early warning alerts that
are crucial for proactive healthcare management.
A careful review of the literature reveals several
gaps in current research. Many models lack
scalability across multimodal IoMT data sources,
while others fail to provide real-time prediction
and alerting capabilities. Interpretability remains a
significant challenge, and few systems support
multi-stage disease severity assessment. These
limitations highlight the need for adaptive, hybrid,
and explainable deep learning frameworks that can
operate efficiently in real-world IoMT-enabled
healthcare environments.

A. A Retrospective View
Approaches

When examining prior research on chronic disease
prediction, existing methodologies can broadly be
categorized into three groups: traditional machine
learning approaches, deep learning-based models,
and advanced hybrid or attention-driven
architectures. Each category exhibits distinct
strengths and limitations depending on data
complexity and clinical requirements.

Traditional machine learning models primarily rely
on structured clinical features such as laboratory
measurements, demographic attributes, and basic
statistical summaries. These features are
commonly processed using algorithms like SVM,
Decision Trees, and Random Forests. While
computationally efficient and easy to interpret,
these methods often fail to capture non-linear
relationships and long-term disease progression
trends inherent in chronic conditions.

Deep learning approaches introduced architectures
such as CNNs, RNNs, and LSTMs that
automatically learn hierarchical features from raw
IoMT data. CNNs excel at spatial feature
extraction from medical images and transformed
sensor data, whereas LSTMs effectively model
temporal dependencies in longitudinal health
records. These models generally outperform
traditional approaches in terms of prediction
accuracy; however, they require large labeled
datasets and are sensitive to noise and data
imbalance.

Hybrid deep learning models and attention-based
mechanisms represent the current state of the art.

of Existing
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By combining CNNs for feature extraction with
LSTMs or attention layers for temporal modeling,
these systems provide improved performance and
adaptability. Despite their effectiveness, most
existing implementations focus on prediction
accuracy alone, with limited emphasis on
explainability, severity estimation, or real-time
alert generation.

Overall, the literature suggests that integrated
hybrid architectures  tailored for IoMT
environments offer the most promising direction
for chronic disease prediction. Future systems must
balance accuracy, interpretability, scalability, and
real-time responsiveness to support effective
clinical decision-making and early intervention.

III. STRENGTHS AND WEAKNESSES OF
EXISTING APPROACHES

A. Strengths

The existing approaches for chronic disease
prediction in IoMT-enabled healthcare systems
exhibit several notable strengths. Traditional
machine learning techniques such as Logistic
Regression, Naive Bayes, Support Vector
Machines (SVM), and Random Forests are
computationally efficient and relatively easy to
implement. These models perform well on
structured clinical datasets containing
demographic information, laboratory test results,
and basic physiological measurements. Their fast
training time and lower hardware requirements
make them suitable for early-stage decision-
support  systems and  resource-constrained
healthcare environments.

Deep learning-based approaches have significantly
improved predictive performance by eliminating
the need for manual feature engineering.
Convolutional Neural Networks (CNNs) are
particularly effective in extracting spatial features
from medical imaging data such as MRI and CT
scans, enabling accurate detection of disease-
specific patterns. Recurrent models such as Long
Short-Term Memory (LSTM) networks are
capable of modeling temporal dependencies in
longitudinal IoMT data, including continuous vital
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signs, activity logs, and historical health records.
This ability to learn disease progression trends over
time enhances early diagnosis and prognosis
accuracy.

Recent advancements using transfer learning and
hybrid architectures further strengthen chronic
disease prediction systems. Pre-trained deep
learning models such as ResNet and U-Net
significantly reduce training time and data
requirements by leveraging prior knowledge from
large-scale datasets. When integrated within loMT
frameworks, these models enable scalable and
continuous  health  monitoring,  supporting
proactive and personalized healthcare. Such
approaches have demonstrated high accuracy,
robustness, and adaptability across diverse patient
datasets.

B. Weaknesses

Despite their advantages, existing approaches also
present several limitations. Traditional machine
learning models depend heavily on handcrafted
features, which may fail to capture complex non-
linear relationships and subtle disease progression
patterns. Their performance often degrades when
applied to heterogeneous, high-dimensional, or
noisy IoMT data, limiting their generalizability
across different populations and healthcare
settings.

Deep learning models, while powerful, require
large volumes of labeled data and substantial
computational resources. CNN-based architectures
alone struggle to capture long-term temporal
dependencies, whereas LSTM-based models can
be computationally expensive and slow during
training and inference. Additionally, many datasets
used in chronic disease research suffer from class
imbalance, particularly when predicting early or
rare disease stages, which can negatively affect
model reliability.

Although transfer learning and advanced deep
architectures have improved performance, they
introduce new challenges related to interpretability
and clinical trust. Many deep learning systems
operate as black-box models, providing limited
insight into how predictions are made. This lack of
explainability restricts adoption in real-world
clinical environments, where transparent decision-
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making is critical. Furthermore, most existing
models focus on binary disease classification and
do not adequately support multi-stage severity
assessment, real-time alerts, or continuous
monitoring within [oMT ecosystems.

These strengths and weaknesses collectively
indicate the necessity for hybrid, explainable, and
scalable prediction frameworks. An effective
solution should combine spatial and temporal
feature learning, leverage IoMT-generated
multimodal data, support disease severity analysis,
and enable timely clinical interventions to improve
chronic disease management.

IV.  PROPOSED SYSTEM
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V.DIFFERENCE BETWEEN ACUTE AND
CHRONIC DISEASEE

Chronic Disease

- Sudden onset - Gradual Onset

- Cure usual - Cure rare

- Course short - Course lengthy

- Patient active, caregiver

- Team care, patient included
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Acute Disease

- Patient passive

- Physician dominant
Return to normal likely
Future ubcertainity rare

VI. CONCLUSION

Chronic diseases continue to pose a significant
challenge to global healthcare systems due to their
long-term nature, high treatment costs, and
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increasing prevalence. Early detection and
continuous monitoring are essential to reduce
disease progression, improve patient outcomes,
and optimize healthcare resources. This study
reviewed and analyzed existing machine learning
and deep learning approaches used for chronic
disease prediction in IoMT-enabled healthcare
environments.

Traditional machine learning techniques such as
Naive Bayes, Support Vector Machines, and
Random Forests have demonstrated effectiveness
in structured clinical datasets and low-resource
settings. However, their dependency on
handcrafted features and inability to model
complex temporal and multimodal relationships
limit their applicability in modern IoMT systems.
With the rapid growth of wearable sensors, medical
imaging devices, and real-time monitoring tools,
healthcare data has become increasingly
heterogeneous, high-dimensional, and time-
dependent.

Deep learning approaches, including CNNs and
LSTM-based models, have shown improved
predictive performance by automatically learning
spatial and temporal patterns from medical data.
CNNs excel in medical image analysis, while
LSTMs effectively capture disease progression
through sequential patient records. Transformer-
based and attention-driven models further enhance
contextual understanding, enabling more accurate
disease risk assessment. Nevertheless, challenges
such as high computational costs, lack of
explainability, data imbalance, and limited real-
time deployment remain prevalent.

This survey highlights the growing shift toward
hybrid deep learning architectures that integrate
semantic feature extraction, temporal modeling,
and multimodal learning within loMT frameworks.
Such hybrid models demonstrate superior accuracy,
robustness, and adaptability compared to
standalone approaches. Moreover, incorporating
explainable Al mechanisms and severity-level
prediction enhances clinical trust and supports
timely medical intervention.

In conclusion, IoMT-enabled healthcare combined
with advanced deep learning techniques offers a
promising pathway toward proactive and
personalized chronic disease management. Future
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systems must emphasize scalability, real-time
responsiveness, data privacy, and interpretability
to ensure practical clinical adoption. The findings
of this study serve as a foundation for developing
intelligent, reliable, and patient-centric chronic
disease prediction systems capable of transforming
modern healthcare delivery.
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