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Abstract: 
The use of massive labeled data to train machine learning models has been a major limiting factor to the brisk 
pace of machine learning development, as large-scale datasets are both costly, labor-intensive, and time-
consuming to acquire. This is especially a major limitation when dealing with large scale areas of application, 
like in healthcare, autonomous systems, and industrial monitoring, where labeled data can be very limited, 
sensitive or expensive to maintain. To address this dependency, self-supervised learning (SSL) has become a 
groundbreaking method that can be used to acquire informative and robust representations on unlabeled data. 
SSL uses pretext tasks, contrastive learning and generative reconstruction algorithms to learn the underlying 
structures and semantic features without direct supervision and therefore does not require large labeled datasets. 
The present paper introduces a wide survey of the state-of-the-art methods of the SSL, its architectures, training 
methods, and its performance in different areas of application, such as computer vision, natural language 
processing, and healthcare informatics. We offer a comprehensive discussion of the strengths, weaknesses, and 
trade-offs of the various paradigms of the SSL, in terms of their capacity to enhance label efficiency, model 
generalization, and scalability in the real world. In addition, we address the idea of combining downstream tasks 
with SSL and its prospects in the resource-constrained world and ways to make it more robust to noise and 
domain changes. Lastly, we determine the open research issues and suggest future ways forward on the 
development of theSSL methodologies with a focus on their role in democratizing AI as it would minimize the 
labeled data requirements whilst preserving high performance. The knowledge acquired in this paper will help 
researchers and practitioners to use the power of SSL to design scalable, effective, and robust machine learning 
systems with limited support of labelled data. 
 
Keywords: Self-Supervised Learning, Label-Efficient Machine Learning, Unlabeled Data Representation, 
Contrastive Learning, Predictive Pretext Tasks, Generative Reconstruction Methods, Resource-
Constrained AI 

------------------------------------------************************-------------------------------------------- 
I. INTRODUCTION 
Machine learning has achieved remarkable success 
across a wide range of domains, including computer 
vision, natural language processing, and healthcare. 
However, these successes are heavily dependent on 
large volumes of labeled data, which are often 
expensive, labor-intensive, or impractical to obtain 
in real-world scenarios (Li et al., 2023; Wu et al., 

2022). This challenge has motivated the 
development of self-supervised learning (SSL) 
techniques, which aim to reduce reliance on labeled 
data by learning informative representations from 
unlabeled datasets (Jaiswal et al., 2021; Liu et al., 
2023). SSL leverages pretext tasks, contrastive 
learning, and generative modeling to extract 
meaningful patterns and structures without explicit 
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supervision (Rani et al., 2023; Shwartz Ziv & 
LeCun, 2024). 
Recent research has demonstrated the applicability 
of SSL across diverse fields. In molecular modeling, 
SSL approaches have been used to capture gradients 
and energy landscapes, enabling accurate 
predictions of molecular properties with minimal 
supervision (Christensen & Anatole von Lilienfeld, 
2020). In agriculture, SSL has facilitated label-
efficient learning for plant phenotyping and crop 
monitoring, significantly reducing manual 
annotation costs (Li et al., 2023). Similarly, SSL has 
shown promise in medical imaging, where limited 
annotated data often constrain conventional 
supervised models (Shurrab & Duwairi, 2022). 
Graph-based SSL techniques have further expanded 
the ability to model relational data in applications 
such as social networks, molecular structures, and 
biomedical graphs (Liu et al., 2023). 
The integration of SSL with deep learning 
architectures has been explored in human-computer 
interface (HCI) systems and image classification 
tasks, demonstrating improved feature extraction 
capabilities and reduced annotation dependence 
(Kachhia et al., 2020; Kachhia & George, 2021). 
Additionally, SSL has been studied alongside 
transfer learning approaches, with comparative 
analyses highlighting its advantages in scenarios 
with limited labeled data and domain shifts (Zhao et 
al., 2024). Active learning and SSL have also been 
combined to further optimize label efficiency, 
particularly in complex computer vision tasks (Wu 
et al., 2022). 
Beyond performance, SSL methods offer robustness 
against adversarial and black-box attacks, 
enhancing model reliability when only partial label 
information is available (Ren et al., 2020). They also 
present opportunities for real-world applications in 
domains such as landfill waste classification (Single 
et al., 2023), precision oncology, and theranostics 
(Sadanandan & Behzadan, 2025), where data 
collection is costly or sensitive. Recent surveys have 
further emphasized the need to systematically 

understand the trade-offs between generative and 
contrastive SSL paradigms to maximize 
performance across different tasks (Liu et al., 2023; 
Jaiswal et al., 2021). 
Given these developments, there is a pressing need 
for a comprehensive examination of SSL 
methodologies, their architectures, training 
strategies, and practical applications. This paper 
aims to provide a detailed overview of SSL 
techniques, focusing on their ability to reduce 
labeled data dependency while maintaining model 
performance, interpretability, and robustness. 
Through this analysis, we aim to guide researchers 
and practitioners in effectively leveraging SSL 
across diverse real-world scenarios. 
 
II. BACKGROUND AND RELATED WORK 
A. Traditional Supervised Learning vs. Self-Supervised 
Learning 
Supervised learning has been the dominant 
paradigm in machine learning, relying on large 
volumes of labeled data to train models (Li et al., 
2023; Wu et al., 2022). While highly effective, 
supervised approaches are often impractical in real-
world applications due to the cost, time, and 
expertise required for annotation. Self-supervised 
learning (SSL) mitigates this limitation by creating 
surrogate tasks (pretext tasks) that allow models to 
learn representations from unlabeled data, which 
can then be fine-tuned for downstream tasks with 
minimal labeled examples (Jaiswal et al., 2021; Liu 
et al., 2023; Shwartz Ziv & LeCun, 2024). 
The main advantage of SSL is its ability to leverage 
vast amounts of unannotated data, reducing 
dependency on expensive labeling while preserving 
or even enhancing model performance in tasks such 
as image classification, natural language 
understanding, and biomedical signal analysis 
(Kachhia et al., 2020; Kachhia & George, 2021). In 
addition, SSL frameworks have shown robustness 
to domain shifts and adversarial perturbations, 
which are critical for high-stakes applications like 
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precision oncology and theranostics (Sadanandan & 
Behzadan, 2025; Ren et al., 2020). 
 
B. Pretext Tasks and Representation Learning 
Pretext tasks form the backbone of SSL approaches, 
guiding models to learn meaningful data 
representations without explicit labels. Common 
pretext strategies include contrastive learning, 
generative modeling, and predictive coding (Jaiswal 
et al., 2021; Liu et al., 2023). For example, 
contrastive SSL aims to bring similar samples closer 
in the feature space while pushing apart dissimilar 
ones, whereas generative SSL reconstructs or 
predicts parts of the input from other parts to capture 
latent structures (Christensen & Anatole von 
Lilienfeld, 2020; Liu et al., 2023). 
Graph-based SSL extends these principles to 
relational data, enabling applications in social 
networks, molecular graphs, and biomedical data, 
allowing models to capture interdependencies 
between entities (Liu et al., 2023). These methods 
also facilitate knowledge transfer to downstream 
tasks with limited labels, which is particularly 
beneficial in sensitive domains such as healthcare 
and precision medicine (Sadanandan & Behzadan, 
2025; Shurrab & Duwairi, 2022). 
C. Previous Applications in Vision, NLP, and Healthcare 
SSL has been successfully applied across multiple 
domains: 

 Computer Vision: SSL has reduced 
annotation requirements in large-scale 
image datasets and specialized domains like 
agriculture and landfill waste classification 
(Li et al., 2023; Single et al., 2023). 

 Natural Language Processing: SSL 
enables pretraining of language models on 
massive corpora without labels, followed by 
fine-tuning on specific tasks. This paradigm 
has achieved state-of-the-art results while 
lowering the need for labeled data (Jaiswal 
et al., 2021). 

 Healthcare: SSL has been used for medical 
imaging analysis, molecular energy 
prediction, and theranostics, reducing 
dependency on costly labeled data while 
maintaining high predictive performance 
and reliability (Shurrab & Duwairi, 2022; 
Christensen & Anatole von Lilienfeld, 2020; 
Sadanandan & Behzadan, 2025). 

D. Research Gaps 
Despite the progress, several gaps remain: 

1. Lack of unified frameworks that integrate 
generative, contrastive, and graph-based 
SSL for complex multi-modal datasets. 

2. Limited exploration of SSL interpretability 
and reliability in high-stakes domains like 
healthcare and environmental monitoring 
(Sadanandan & Behzadan, 2025). 

3. Challenges in handling non-IID, 
imbalanced, and noisy data when applying 
SSL at scale (Liu et al., 2023; Zhao et al., 
2024). 

4. Need for systematic evaluation of SSL 
methods in real-world applications with 
strict performance and robustness 
requirements. 

These gaps highlight the need for a comprehensive 
study of SSL methods, emphasizing both 
performance and practical applicability across 
diverse fields. 
 
TABLE 1. COMPARISON OF SUPERVISED LEARNING AND SELF-

SUPERVISED LEARNING APPROACHES 
Feature/Aspect Supervised 

Learning 
Self-Supervised 
Learning (SSL) 

Label 
Dependency 

High; requires 
extensive 
labeled datasets 

Low; leverages 
unlabeled data via 
pretext tasks 

Pretext Task N/A Contrastive, generative, 
predictive coding 

Data Efficiency Limited High; can exploit vast 
unlabeled datasets 

Transferability Moderate; needs 
retraining for 
new tasks 

High; learned 
representations are 
reusable 
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Robustness to 
Domain Shift 

Low Moderate to High 

Application 
Domains 

Vision, NLP, 
Healthcare 
(limited) 

Vision, NLP, 
Healthcare, Molecular, 
Graph data 

Scalability Limited by 
labeling cost 

Scalable; benefits from 
unlabeled data 

Interpretability & 
Reliability 

Moderate Emerging focus; critical 
in healthcare 
(Sadanandan & 
Behzadan, 2025) 

 
III. DATA DESCRIPTION AND PROBLEM 
FORMULATION 
A. Medical and Real-World Data Sources 
Self-supervised learning relies heavily on the 
availability of large volumes of unlabeled data to 
learn meaningful representations (Jaiswal et al., 
2021; Liu et al., 2023). In the context of healthcare 
and high-stakes applications, datasets can include 
electronic health records, medical imaging, 
molecular datasets, and sensor readings from 
industrial or environmental monitoring systems 
(Shurrab & Duwairi, 2022; Christensen & Anatole 
von Lilienfeld, 2020; Sadanandan & Behzadan, 
2025). 
Beyond healthcare, SSL has also been successfully 
applied in agriculture and environmental 
monitoring, leveraging unannotated image data to 
predict crop yield or classify landfill waste 
efficiently (Li et al., 2023; Single et al., 2023). 
These datasets often exhibit high dimensionality, 
temporal dependencies, and multimodal structures 
that pose unique challenges for SSL models. 
 
B. Failure Modes and Degradation Patterns 
In safety-critical applications, such as precision 
oncology and theranostics, understanding 
degradation patterns and failure precursors is 
essential (Sadanandan & Behzadan, 2025). SSL 
methods are particularly effective for capturing 
subtle variations in data that precede observable 
failures, enabling early detection or prediction even 
when labeled failure instances are rare. This aligns 
with generative and contrastive SSL strategies that 
model underlying data distributions to identify 

anomalies (Liu et al., 2023; Christensen & Anatole 
von Lilienfeld, 2020). 
 
C. Temporal, Multivariate, and Non-Stationary Behavior 
Many real-world datasets are temporal, 
multivariate, and non-stationary, especially in 
medical and industrial monitoring contexts (Shurrab 
& Duwairi, 2022; Zhao et al., 2024). SSL models 
must therefore handle dynamic changes in data 
distribution and correlations among multiple 
variables. Graph-based SSL approaches provide an 
effective solution for learning relational patterns 
over time and across heterogeneous data sources 
(Liu et al., 2023). 
 
D. Formal Definition of Prediction and Representation 
Learning Problem 
Let 𝑋 = {𝑥ଵ, 𝑥ଶ, . . . , 𝑥௡} denote the unlabeled 
dataset and 𝑓ఏ be a parameterized model learned 
through self-supervised pretext tasks. The objective 
of SSL can be formally defined as: 

𝜃∗ = arg min 
ఏ

ℒ௣௥௘௧௘௫௧(𝑓ఏ(𝑋)) 

Where ℒ௣௥௘௧௘௫௧ represents the loss function 
corresponding to the pretext task (contrastive, 
generative, or predictive). Once 𝑓ఏ is trained, it can 
be fine-tuned with a small labeled dataset 𝑌 =
{𝑦ଵ, 𝑦ଶ, . . . , 𝑦௠} or downstream tasks, reducing the 
dependency on labeled samples while maximizing 
predictive performance (Jaiswal et al., 2021; Liu et 
al., 2023; Sadanandan & Behzadan, 2025). 

This framework is critical for applications where 
labeled data is scarce, expensive, or sensitive, such 
as in medical imaging, environmental sensing, and 
molecular modeling (Christensen & Anatole von 
Lilienfeld, 2020; Shurrab & Duwairi, 2022; Li et al., 
2023). 
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TABLE 2. CHARACTERISTICS OF SELF-SUPERVISED LEARNING 
DATA FOR HIGH-STAKES APPLICATIONS 

Data 
Characteristic 

Description Example 
Applications 

Label 
Availability 

Mostly unlabeled or 
partially labeled 

Medical images, 
molecular data, 
sensor readings 

Temporal 
Dependencies 

Sequential or time-
varying patterns 

Vital signs 
monitoring, 
environmental 
sensor data 

Multivariate 
Nature 

Multiple 
interdependent 
features 

Multi-channel 
EEG, multi-sensor 
systems 

Non-Stationarity Data distribution 
changes over time 

Dynamic patient 
vitals, evolving 
industrial systems 

Dimensionality High-dimensional data 
requiring effective 
feature extraction 

Imaging, 
molecular 
descriptors 

Failure or 
Degradation 
Patterns 

Rare events or 
anomalies embedded 
in normal patterns 

Early disease 
onset, equipment 
failure 

Transferability Representations 
should generalize 
across tasks and 
domains 

Precision 
oncology, 
agricultural 
prediction 

Labeled Data 
Dependency 

Low for pretext 
training; high only for 
fine-tuning 
downstream tasks 

Limited annotated 
medical datasets 

 
IV. GENERATIVE AND CONTRASTIVE 
SELF-SUPERVISED LEARNING 
ARCHITECTURES 
A. Generative Self-Supervised Learning 
Generative SSL Generative SSL methods also strive 
to recover the input data or recreate missing 
elements so that models can be trained in the 
unlabeled setting on the underlying data distribution 
(Liu et al., 2023; Christensen and Anatole von 
Lilienfeld, 2020). Autoencoders, masked modeling, 
and variational generative structures are techniques 
that have become popular with images, text, and 
molecular data (Jaiswal et al., 2021; Shurrab and 
Duwairi, 2022). 
Generative SSL can enable models to identify subtle 
anomalies and indicators of failure that might not be 
prominent in small labeled data sets, which are high 
stakes applications (Sadanandan & Behzadan, 

2025). In medical imaging, masked reconstruction 
can be used, for instance, to make the network focus 
on the areas that are likely related to the disease 
development (Liu et al., 2023; Kachhia and George, 
2021). 
 
B. Contrastive Self-Supervised Learning. 
Contrastive SSL concentrates on learning 
discriminative representations, which means 
moving similar data points closer together on 
embedding space, and moving dissimilar points far 
apart (Jaiswal et al., 2021; Liu et al., 2023). This 
method has been successful in multi-modal and 
high-dimensional data, including EEG signal, 
sensor data and satellite images (Kachhia et al., 
2020; Li et al., 2023). 
 
Tasks used in contrastive pretext include: 

 Instance discrimination: It assumes that each 
sample is a separate class. 

 Temporal coherence: Matching sequential 
data representations. 

 Christ-modal alignment: Embedding 
multiple modalities in a common 
embedding. 

The above tasks allow the model to acquire strong 
and generalizable characteristics that can be trained 
on downstream tasks using little labelled data 
(Sadanandan and Behzadan, 2025; Liu et al., 2023). 
 
C. Hybrid Architectures 
However, modern studies prove the advantage of 
using both generative and contrastive algorithms to 
utilize both reconstructive and discriminative 
feedback (Shwartz Ziv and LeCun, 2024; Rani et al., 
2023). Hybrid architectures are especially useful in 
cases when there is a large amount of data 
complexity and where there are sparse labeled 
examples. To give an example, in precise oncology, 
generative models are able to learn latent disease 
patterns whereas contrastive embeddings are better 
to classify rare events (Sadanandan & Behzadan, 
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2025; Christensen and Anatole von Lilienfeld, 
2020). 
D. Design consideration of the model. 
The main architectural points to consider of the use 
of SSL in high-stakes environments are: 

 Scalability: Capacity to accommodate 
millions of samples or multi-channel sensor 
data (Liu et al., 2023; Jaiswal et al., 2021). 

 Roles: This is concerned with ensuring that 
representations are not sensitive to noise, 
outliers, or perturbations (Rani et al., 2023). 

 Interpretability: Helping to get clinical or 
operational understanding through latent 
embeddings or attention schemes (Shurrab 
and Duwairi, 2022; Shwartz Ziv and LeCun, 
2024). 

 Weak annotated data requirements Fine-
tuning on constrained annotated data to 
downstream tasks (Sadanandan and 
Behzadan, 2025; Li et al., 2023). 

TABLE 3. COMPARISON OF GENERATIVE, CONTRASTIVE, AND 
HYBRID SSL ARCHITECTURES 

SSL 
Architect
ure Type 

Core 
Idea 

Strengths Limitatio
ns 

Example 
Applicatio

ns 
Generativ
e SSL 

Reconstr
uct input 
/ predict 
missing 
data 

Captures 
latent 
distributio
ns; 
anomaly 
detection 

May 
ignore 
discriminat
ive 
features 

Medical 
imaging 
reconstruct
ion, 
molecular 
modeling 

Contrastiv
e SSL 

Learn 
embeddi
ngs by 
contrasti
ng 
positive 
& 
negative 
pairs 

Robust 
feature 
learning; 
generaliza
ble 

Requires 
careful 
pair 
selection; 
sensitive 
to 
augmentati
on 

EEG 
classificati
on, sensor 
data 
representati
on 

Hybrid 
SSL 

Combine
s 
generativ
e & 
contrasti
ve 
objective
s 

Best of 
both 
worlds; 
low 
labeled 
data 
dependen
cy 

Complex 
training; 
higher 
computatio
n 

Precision 
oncology, 
multi-
modal 
predictive 
tasks 

V. TRAINING STRATEGIES AND 
PATTERNS OF THE SSL ARCHITECTURES. 
A. Encoder-Decoder Frameworks 
Many self-supervised learning (SSL) systems, 
especially those based on generative models, are 
based on encoder-decoder architectures. The 
encoder is trained to learn small latent 
representations of raw inputs, and the decoder is 
trained to recreate the original data or even make 
predictions based on missing parts (Christensen and 
Anatole von Lilienfeld, 2020; Liu et al., 2023). 
These types of architectures have a wide range of 
applications in processes of masked modeling, 
autoencoding, and predictive coding, allowing the 
derivation of semantic features without label 
supervision (Rani et al., 2023). 
The quality of the representation of encoder-
decoder CSS frameworks has shown to be high in 
medical imaging or biosignal analysis, particularly 
in the case of limited labeled data (Shurrab and 
Duwairi, 2022; Kachhia and George, 2021). These 
architectures are also supportive of interpretability 
due to ability to inspect errors of reconstruction, 
which can be used to identify clinically or 
operationally important areas.  
B. The pipelines of representation learning are described. 
The manner in which the data is augmented or 
transformed, the representation learning, and 
adapting the downstream tasks are usually the 
components of the SSL pipelines. On the other 
hand, in contrastive SSL, similar samples are also 
taught using contrastive augmented views of the 
same input by shared encoders, and dissimilar 
samples are forced apart in embedding space 
(Jaiswal et al., 2021; Liu et al., 2023). Instead, 
generative SSL pipelines are aimed at the learning 
of latent distributions by means of reconstruction or 
prediction tasks (Shwartz Ziv and LeCun, 2024). 
In all fields of application trades, such as 
agriculture, healthcare, and industrial monitoring, 
effective architecture of the SSL pipelines makes 
annotation less expensive without impacting the 
downstream performance (Li et al., 2023; Single et 
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al., 2023). Prescribing in precision decision-support 
systems Pipeline allows heterogeneous, unlabeled 
sets of data to be learned at scale (Sadanandan and 
Behzadan, 2025). 
 
C. Fine-Tuning of Downstream Tasks. 
SSL models are often fine-tuned on a small set of 
labeled data, when after the pretraining phase. This 
transfer method greatly increases sample efficiency 
in comparison to the fully supervised learning, 
especially in a data-restricted setting (Zhao et al., 
2024; Wu et al., 2022). Finally, strategies of fine-
tuning can include freezing of initial layers, gradual 
unfreezing or complete optimization of the network 
in relation to the complexity of the task and 
availability of data. 
The generalization of the model and its strength 
have been enhanced in healthcare and scientific 
modeling, where there is an adaptation of 
downstream classification, regression, or anomaly 
detection tasks using an SSL-pretrained model 
(Shurrab and Duwairi, 2022; Sadanandan and 
Behzadan, 2025). This is particularly useful on high 
stakes applications where the cost of labeled data is 
prohibitive or in applications where ethics are 
limited. 
 
D. Loss Function and Optimization strategies. 
The design of loss forms the core of the effect of 
theSSL. On reconstruction-based losses, which 
entail a mean squared error or likelihood based loss, 
generative SSL is typically used, whereas 
contrastive SSL depends on similarity-based losses, 
which promote separation between positive sample 
pairs and negative sample pairs (Jaiswal et al., 2021; 
Liu et al., 2023). These goals are merged in hybrid 
methods aimed at toning down both the richness of 
semantics and the power of discriminatory decisions 
(Rani et al., 2023). 
The other aspect of optimization strategies should 
also focus on robustness and security since even 
with SSL models, there are always chances of an 
inference or label-only attack in the process of 

downstream adaptation (Ren et al., 2020). The 
literature on this topic shows the significance of 
steady optimization and information-theoretic 
views in order to avoid representation collapse and 
overfitting (Shwartz Ziv and LeCun, 2024). 
 
VI. EXPERIMENTAL DESIGN AND TEST. 
A. Dataset Partitions and Evaluation Procedures. 
In order to critically assess self-supervised learning 
(SSL) approaches, datasets are divided into 
pretraining, fine-tuning and test batches. The 
pretraining split also takes advantage of large 
amounts of unlabeled data to obtain representations 
and uses a small set of labeled data to fine-tune and 
evaluate in realistic situations with low annotations 
(Jaiswal et al., 2021; Rani et al., 2023). Stratified 
sampling is used in which there are labels to 
maintain distributions of classes in the fine-tuning 
and testing processes, which have been 
demonstrated to stabilize downstream performance 
(Li et al., 2023). 
Validation procedures usually involve cross-
validation on the labeled subset or a held-out 
validation set that uses k folds to estimate the 
hyperparameter values without observing the test 
data (Zhao et al., 2024). In more domain-specific 
tasks, including medical imaging or biosignal 
analysis, cross-domain or cross-device validation is 
also used to help in understanding generalization in 
a setting of distribution shifts (Shurrab and Duwairi, 
2022; Kachhia and George, 2021). These guidelines 
make sure that the improvement is due to the quality 
of representation and not to good data splits. 
 
B. Evaluation Metrics 
The evaluation of performance is based on standard 
classification metrics accuracy, precision, recall, 
and F1-score calculated on downstream tasks upon 
fine-tuning (Wu et al., 2022). When an imbalanced 
dataset is used, the macro-averaged F1 should be 
considered to prevent the bias in the majority 
classes, which is frequent in practice in agriculture 
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and medical practice (Li et al., 2023; Single et al., 
2023). 
In addition to task-level measures, the downstream 
task performance improvements with respect to 
labeled data size are used to measure sample 
efficiency. This involves learning curves in which 
the comparison of the SSL-pretrained models with 
the supervised baselines are training with equal 
labeled budgets (Zhao et al., 2024). Scientific and 
clinical decision-support settings are also reported 
to have robustness and interfold consistency, which 
indicate reliability requirements (Sadanandan and 
Behzadan, 2025). 
 
C. The results of the comparative analysis of the study 
against the supervised baselines 
Structural comparative analysis has invariably 
demonstrated that SSL-pretrained models are better 
than fully supervised baselines when the quantity of 
labeled information is limited, and they reach a 
higher accuracy and F1-scores with significantly 
less annotation (Jaiswal et al., 2021; Liu et al., 
2023). SSL representations achieve more rapid 
convergence when using fine-tuning and better 
generalization to unseen data than models trained 
without any knowledge (Kachhia et al., 2020; 
Kachhia and George, 2021). 
In a variety of fields, such as medical imaging, 
agriculture, and environmental monitoring, theSSL 
methods exhibit better downstream stability and 
lower overfitting and especially in non-stationary or 
noisy environments (Shurrab and Duwairi, 2022; Li 
et al., 2023). Such findings are consistent with the 
recent discoveries that SSL can facilitate multi-scale 
and data efficient learning streams that can be used 
in high-stakes and resource-limited settings 
(Sadanandan and Behzadan, 2025). 
 
VII. DISCUSSION AND PRACTICAL 
IMPLICATIONS. 
A. Analysis of SSL Performance 
The experimental findings indicate that self-
supervised learning (SSL) is always associated with 

excellent downstream performance in comparison 
to fully supervised baselines which are trained using 
a small amount of labeled data. SSL models are 
more generalized in their overall performance, 
converge more quickly in the fine-tuning phase, and 
able to withstand noise, and distribution shift 
(Jaiswal et al., 2021; Liu et al., 2023). These results 
also support theoretical viewpoints which consider 
SSL to be an efficient tool of intrinsic data structure 
capture beyond label-driven supervision (Shwartz 
Ziv and LeCun, 2024). 
In every area of application, including vision, 
biosignal analysis, and healthcare, the use of SSL-
pretrained encoders is shown to remain stable even 
when there is a severe lack of labels, which supports 
the appropriateness of these encoders in data-scarce 
settings (Kachhia et al., 2020; Shurrab and Duwairi, 
2022). The gains are specifically significant with the 
contrastive and hybrid generative-contrastive 
methods, which trade-off diversity in representation 
with semantic consistency (Liu et al., 2023; Rani et 
al., 2023). 
 
B. Advantages in the Minimization of Data Dependency on 
Labels. 
One of the primary practical benefits of the use of 
SSL is that it allows significantly decreasing the 
reliance on expensive labeled data sets. Using large 
quantities of unlabeled data, the encryption of the 
application of the newer version of the protocol 
prevents the annotation bottlenecks that occur in 
fields like medical imaging, agriculture, and 
scientific modeling (Li et al., 2023; Christensen and 
von Lilienfeld, 2020). Empirically, it has been 
demonstrated that at the fraction of the size of 
labeled samples, which are several folds less than 
those required by supervised models, the 
performance of an SSL-pretrained model can be 
either equivalent or superior, thereby reducing the 
cost of data acquisition and expert labeling by a 
significant margin (Zhao et al., 2024). 
This label dependency also leads to resilience to 
labeling noise and adversarial querying, where 
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labels can be scanty, unreliable and costly to acquire 
(Ren et al., 2020). SSL thus offers a scalable 
platform of data-driven modeling in realistic 
settings in the analysis of decision support and 
clinical analytics (Sadanandan and Behzadan, 
2025). 
 
C. Applicability to Actual Practical Application. 
The effectiveness of the use of the SSL is proven, 
which justifies its use in the real-world and large-
scale systems when continuous data streams are 
present, and annotations are scarce or slow. Its 
applications can be medical diagnostics, 
environmental monitoring, industrial inspection, 
and biosignal-based interfaces, where SSL can also 
be used as a pretraining backbone that is flexible to 
a variety of downstream tasks (Shurrab and 
Duwairi, 2022; Single et al., 2023). 
Furthermore, SSL can be combined with both the 
transfer learning and active learning pipelines, 
which allow improving it progressively with the 
arrival of new labeled data (Wu et al., 2022; Zhao et 
al., 2024). This flexibility is more appreciated in the 
dynamic fields, like healthcare and precision 
analytics, in which data distributions change over 
time and a quick model update is needed 
(Sadanandan and Behzadan, 2025). 
 
D. Constraints and Threats to Internal validity. 
Although there are benefits, there are limitations to 
the use of SSL. The pretext tasks, data 
augmentations, and architectural design are also 
very sensitive to performance and do not necessarily 
transfer across domains (Rani et al., 2023; Liu et al., 
2023). Mismatched pretext goals may result in 
suboptimal representations to downstream activities 
to decrease their practical benefits. 
Also, the biases of large unlabeled datasets can be 
transferred to the models based on the idea of SSL, 
which can be dangerous in the high-stakes 
environment, including healthcare and security 
(Shurrab and Duwairi, 2022). Regarding validity, 
most empirical assessments are based on benchmark 

data, which can be inadequate to represent the 
complexity of the real world, restricting the 
extrapolation to the outside world (Li et al., 2023). 
To overcome these threats, it is necessary to pay 
close attention to the curation of the data, powerful 
evaluation procedures, and supplementary methods, 
including domain adaptation and uncertainty-aware 
modeling. 
 
VIII. FUTURE RESEARCH DIRECTIONS 
AND CONCLUSION. 
A. Summary of Findings 
The current paper discussed self-supervised 
learning (SSL) as a potent paradigm that helps to 
decrease the use of labeled data but ensures high 
downstream performance. A systematic review and 
empirical discussion established that the use of 
unlabeled data to learn transferable representations 
effectively with competitive or better results is 
enabled by SSL in comparison to traditional 
supervised learning when faced with limited-label 
conditions. In fields like computer vision, medical, 
using scientific models, and biosignal analysis, SSL 
achieved better generalization, stability, and 
flexibility (Jaiswal et al., 2021; Liu et al., 2023; 
Shurrab and Duwairi, 2022). 
 
B. ML Efficiency and Reduction in Labeling Cost 
Contributions. 
The most important contribution of SSL is that it 
enables the representation learning to be decoupled 
with the costly manual annotation and produces a 
great increase in the efficiency of machine learning. 
Using unlabeled data in large quantities, SSL has a 
lower cost of labeling, labeling bias is minimized, 
and model development times are minimized (Li et 
al., 2023; Zhao et al., 2024). This has enabled the 
use of SSL especially in areas where expert labeling 
is either expensive, time-consuming, or does not 
scale, as in healthcare diagnostics, agriculture, and 
scientific discovery (Christensen and von 
Lilienfeld, 2020; Sadanandan and Behzadan, 2025). 
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C. Practitioner recommendations. 
There are a number of practical recommendations 
that come out of this study to practitioners. To begin 
with, the default pretraining strategy using the SSL 
is to be implemented in the situation where the 
suitable amount of unlabeled data is large, 
particularly in label-scarce conditions. Second, 
pretext activities, augmentations, and architectures 
are to be elected attentively to make sure that they 
align with downstream goals (Rani et al., 2023; Liu 
et al., 2023). Lastly, active learning, limited 
supervised fine-tuning, or both combined with SSL 
can result in strong and cost-effective deployment 
pipelines that can be used in practice (Wu et al., 
2022; Zhao et al., 2024). 
 
D. Future Research Opportunities. 
Future studies ought to be done on the area adaptive 
and task conscious SSL aims that can be generalized 
with a fairer degree of dependability across the 
heterogenous data sets. Another potential avenue 
would be to integrate SSL and privacy-preserving 
and federated learning frameworks, especially in 
domains that are sensitive like healthcare. Also, it is 
still a challenge to achieve better interpretability, 
resistance to information bias, and theoretical 
knowledge of the quality of representation (Shwartz 
Ziv and LeCun, 2024). The addition of the concept 
of the SSL together with the discussion of decision-
support systems and high-stakes applications will 
further expand its potential as a fundamental 
technology of scalable, efficient, and reliable 
machine learning (Sadanandan and Behzadan, 
2025). 
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