

A Thorough Overview of Current Developments in Imidazole Derivatives for Anticancer Drug Development

Dhivya R

Head, Department of Chemistry, Sri Sarada Niketan College of Science for Women, Karur - 05.

Email : che_sridr@ssnc.ac.in

Abstract:

Cancer remains a leading cause of mortality worldwide. This necessitates the development of novel, effective therapeutic agents. Nitrogen-containing heterocycles play a vital role in medicinal chemistry. Among them, imidazole and its derivatives have gained attention for their broad biological activities. Recently, imidazole-based compounds have shown promise as anticancer agents by inhibiting kinases, inducing apoptosis, causing cell-cycle arrest, and targeting DNA-associated enzymes. This review analyzes journal studies on imidazole derivatives with anticancer potential, focusing on their synthesis, structure–activity relationships, biological evaluation, and molecular targets. The references provide a scientific foundation for further design and development of imidazole-based anticancer drugs.

Keywords: Imidazole derivatives, anticancer agents, heterocyclic compounds, structure–activity relationship, molecular targets.

I INTRODUCTION

Cancer is a complex group of diseases characterized by uncontrolled cell growth, invasion, and metastasis. Despite remarkable progress in cancer diagnosis and therapy, cancer remains a major global health burden due to limitations such as multidrug resistance, severe side effects, and the lack of selectivity of existing chemotherapeutic agents. Hence, the identification and development of new anticancer agents with improved efficacy and reduced toxicity is an urgent need.

Heterocyclic compounds form a fundamental class of molecules in medicinal chemistry. Nitrogen-containing heterocycles are particularly significant because they interact with diverse biological targets. The imidazole ring system is a five-membered aromatic heterocycle with two nitrogen atoms. It is considered a privileged scaffold in drug discovery. Imidazole moieties appear in several clinically used drugs, including antifungal, antibacterial, anti-inflammatory, and anticancer agents.

In recent decades, imidazole and benzimidazole derivatives have garnered increasing attention due to their anticancer properties. These compounds demonstrate activity against a broad spectrum of cancer cell lines, including those of the breast, lung, colon, cervical, and prostate cancers. Their anticancer effects are attributed to multiple

mechanisms, including apoptosis induction, inhibition of kinases and enzymes, DNA intercalation, and disruption of microtubule dynamics. This review comprehensively discusses journal-published research on imidazole derivatives as anticancer agents, emphasizing their chemical features, mechanisms of action, structure–activity relationships, and future research perspectives.

II CHEMICAL AND PHARMACOLOGICAL IMPORTANCE OF THE IMIDAZOLE SCAFFOLD

The imidazole nucleus consists of a planar five-membered ring with two nitrogen atoms located at the 1 and 3 positions. This structural arrangement provides unique physicochemical properties such as aromaticity, polarity, and the ability to act as both a hydrogen bond donor and acceptor. These features facilitate strong interactions with enzymes, receptors, and nucleic acids, making imidazole derivatives highly relevant in medicinal chemistry. From a pharmacological perspective, imidazole derivatives exhibit favorable bioavailability and metabolic stability. Substitution at different positions of the imidazole ring allows fine-tuning of lipophilicity, electronic distribution, and steric effects, which directly influence biological activity. Benzimidazoles, fused imidazoles, and hybrid

imidazole systems have shown enhanced anticancer activity compared to simple imidazole analogues. Several marketed anticancer drugs and lead compounds contain imidazole or benzimidazole motifs, validating the scaffold's clinical relevance. The versatility of the imidazole ring enables its incorporation into diverse molecular frameworks, thereby expanding the chemical space for anticancer drug discovery.

III MECHANISMS OF ANTICANCER ACTION OF IMIDAZOLE DERIVATIVES

Imidazole derivatives exhibit anticancer activity through multiple molecular and cellular mechanisms, which enhances their therapeutic potential and reduces the likelihood of resistance development.

3.1 Induction of Apoptosis and Cell-Cycle Arrest

Apoptosis, or programmed cell death, is a key mechanism targeted in cancer therapy. Numerous imidazole derivatives have been reported to induce apoptosis in cancer cells by activating intrinsic (mitochondrial) and extrinsic apoptotic pathways. These compounds modulate the expression of pro-apoptotic and anti-apoptotic proteins, leading to DNA fragmentation and cell death.

In addition to apoptosis, imidazole derivatives can arrest the cell cycle at specific phases such as G0/G1, S, or G2/M. Cell-cycle arrest prevents uncontrolled proliferation of cancer cells and enhances the sensitivity of tumors to chemotherapeutic agents.

3.2 Enzyme and Kinase Inhibition

Protein kinases play a crucial role in cancer cell signaling, growth, and survival. Imidazole-based compounds have been identified as potent inhibitors of kinases such as epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), and mitogen-activated protein kinases (MAPKs). Inhibition of these targets disrupts oncogenic signaling pathways and suppresses tumor progression.

Additionally, several imidazole and benzimidazole derivatives inhibit DNA-associated enzymes such as topoisomerase I and II. These enzymes are essential for DNA replication and transcription, and

their inhibition results in DNA damage and cancer cell death.

3.3 Tubulin Polymerization Inhibition

Microtubules are essential for mitosis and cell division. Certain imidazole-chalcone hybrids and related derivatives inhibit tubulin polymerization, leading to mitotic arrest at the G2/M phase. This mechanism is similar to that of clinically used anticancer drugs such as paclitaxel and vincristine, highlighting the therapeutic relevance of imidazole-based tubulin inhibitors.

IV STRUCTURE-ACTIVITY RELATIONSHIP (SAR) STUDIES

Structure-activity relationship studies play a vital role in understanding how chemical modifications influence the biological activity of imidazole derivatives. SAR analyses reveal that both electronic and steric factors significantly affect anticancer potency.

Electron-withdrawing substituents such as halogens, nitro, and cyano groups often enhance anticancer activity by increasing target binding affinity. Electron-donating groups, including methoxy and alkyl substituents, influence lipophilicity and membrane permeability. Substitution at the C-2, C-4, and N-1 positions of the imidazole ring has been shown to be particularly important for anticancer activity.

Hybrid molecules combining imidazole with other pharmacophores such as chalcones, triazoles, oxazoles, and pyrimidines frequently exhibit synergistic effects. These hybrids demonstrate improved cytotoxicity, selectivity, and multi-target activity, making them promising candidates for further development.

V RECENT ADVANCES AND EXPERIMENTAL STUDIES

In recent years have witnessed significant progress in the development of imidazole-based anticancer agents. Numerous journal reports describe the synthesis of novel imidazole derivatives followed by in vitro cytotoxicity evaluation against a variety of human cancer cell lines, including MCF-7 (breast), HeLa (cervical), A549 (lung), and HCT-116 (colon). Several studies integrate experimental biology with computational approaches such as molecular docking and molecular dynamics

simulations to elucidate binding modes and predict target interactions. These studies confirm strong interactions between imidazole derivatives and key cancer-related-targets. In vivo studies, although limited, have demonstrated promising antitumor activity with acceptable toxicity profiles, further supporting the potential of imidazole derivatives as lead compounds in anticancer drug discovery.

VI FUTURE PERSPECTIVES

While imidazole and its derivatives have shown significant promise as anticancer agents, several challenges remain. Optimization of pharmacokinetic properties, reduction of off-target toxicity, and improvement of selectivity toward cancer cells are critical areas for future research. Advanced drug design strategies, including structure-based drug design, artificial intelligence-assisted screening, and prodrug approaches, may accelerate the development of clinically viable imidazole-based anticancer agents. Furthermore, combination therapy involving imidazole derivatives and existing chemotherapeutics may offer synergistic benefits and overcome drug resistance.

VII REPRESENTATIVE IMIDAZOLE COMPOUNDS AND THEIR ANTICANCER BENEFITS

Numerous imidazole-based molecules have been synthesized and evaluated for anticancer activity. These compounds often show enhanced potency, diverse mechanisms of action, and improved selectivity compared to simpler imidazole analogues.

A) SPECIFIC IMIDAZOLE-DERIVED ANTICANCER AGENTS

7.1 Imidazole-1,2,4-oxadiazole Hybrid (Compound 1)

A fused imidazole hybrid, reported as (E)-N-(2-(5-(3,5-dichloro-4-methoxyphenyl)-1,2,4-oxadiazol-3-yl)ethyl)-1-(1-methyl-1H-imidazol-2-yl)methanamine, displayed strong cytotoxicity against MCF-7 breast cancer cells with an IC₅₀ of ~3.02 μM and showed promising anti-EGFR activity (IC₅₀ ~1.21 μM). [MDPI](#)

7.2 Imidazole-Pyrazole Hybrids (Compounds 2 and 3)

Two hybrid compounds combining imidazole and pyrazole moieties demonstrated **potent anticancer effects** in breast cancer models — notably **higher potency than imatinib** in MDA-MB-231 and MCF-7 cell lines, and **inhibitory effects on Aurora A kinase**, making them valuable multitarget candidates. [MDPI](#)

7.3 Benzimidazolium Salts (Compounds 192–199)

Benzimidazolium derivatives showed significant cytotoxicity in several cancer cell lines, including **prostate (PC-3), ovarian (A2780), lung (A549), and colon (SW480)** cancers. For example, compounds 193 and 194 exhibited IC₅₀ values as low as 0.20 μM in SW480 cells, confirming strong anticancer activity. [MDPI](#)

7.4 EGFR-Targeting Imidazole Derivatives (e.g., 2c, 2d, 3c)

Designed imidazole compounds inhibiting **epidermal growth factor receptor (EGFR)** signaling have shown strong antiproliferative effects against breast, lung, and colorectal cancer cells. One optimized derivative, **3c**, displayed potent EGFR inhibition with IC₅₀ ~236 nM and IC₅₀ ~1.98–4.07 μM across multiple cancer cell lines. [RSC Publishing](#)

7.5 Imidazole-Chalcone Hybrids (e.g., Compounds 9g and 9j')

These hybrids acted as **tubulin polymerization inhibitors** and triggered **G2/M cell-cycle arrest and apoptosis** in lung (A549) and other cancer cells, with IC₅₀ values ranging from ~7 μM to ~63 μM, demonstrating dual mode activities. [PubMed](#)

7.6 New Benzimidazole Derivatives (1,2-Disubstituted)

Recent benzimidazole analogues synthesized via coupling with aryl halides showed **cytotoxic activity against A549 and DLD-1 cancer cells**, with some compounds exhibiting potency comparable to or greater than cisplatin in vitro. [SpringerLink](#)

B) RECENT TRENDS IN IMIDAZOLE-BASED CANCER DRUG RESEARCH

a) Hybrid Molecules & Multi-Target Agents

A major trend is the design of **imidazole hybrids** with other pharmacophores (pyrazole, oxadiazole, chalcone), which significantly enhances cytotoxic efficacy and allows **multiple target interactions**—such as EGFR inhibition and cell-cycle disruption.

[MDPI](#)

b) Focus on Kinase Inhibitors

Targeting dysregulated kinases remains highly impactful. Optimized imidazole derivatives achieve **nanomolar potency** against enzymes like EGFR and Aurora kinase, crucial in controlling cancer cell proliferation. [MDPI+](#)

c) Tunable Substituent Patterns

Recent SAR studies emphasize **strategic aromatic and heterocyclic substitutions** (e.g., halogen, methoxy, methyl groups) to improve cellular uptake, target affinity, and “drug-like” properties. [MDPI](#)

d) Nanotechnology & Drug Delivery Innovations

Imidazole frameworks are being incorporated into advanced nanotherapeutic systems such as **zeolitic imidazolate frameworks (ZIFs)**, which enhance targeted delivery, reduce **systemic** toxicity, and improve therapeutic index in cancer nanomedicine. [RSC Publishing](#)

e) Multidisciplinary Integration

Modern research combines **computational modeling, docking, ADME analysis, and experimental validation**, accelerating lead optimization and mechanistic understanding, making imidazole derivatives more translational for clinical development. [SpringerLink](#)

VIII EXAMPLES OF IMIDAZOLE-CONTAINING DRUGS WITH ANTICANCER RELEVANCE

Although intended for other indications, several marketed imidazole-containing drugs also show anticancer implications or structural relevance:

8.1 Anastrozole – an aromatase inhibitor used in **breast cancer therapy**; contains an imidazole ring that contributes to its enzyme inhibitory function.

[ajrconline.org](#)

8.2 Metronidazole and **clotrimazole** – primarily antimicrobial but reported to exhibit **anticancer cell interactions**, demonstrating the versatility of the imidazole scaffold. [ajrconline.org](#)

8.3 NAMI-A – an **imidazolium ruthenium complex** investigated as an anticancer agent with unique metal-based mechanisms.

IX CONCLUSION

Imidazole and benzimidazole derivatives are a very promising group of heterocyclic compounds for anticancer drug research because they have a wide range of biological activities, good physicochemical properties, and flexible structures. A substantial body of literature indicates that judicious modification of the imidazole scaffold yields compounds with considerable anticancer efficacy against diverse malignancies, including breast, lung, colon, cervical, and prostate cancers. These compounds exert their anticancer effects through multiple mechanisms such as induction of apoptosis, cell-cycle arrest, inhibition of kinases and DNA-associated enzymes, and disruption of microtubule dynamics.

Structure-activity relationship studies have played a crucial role in optimizing the anticancer efficacy of imidazole derivatives by guiding strategic substitution and hybrid molecule design. Recent advances emphasize the development of multi-target imidazole hybrids, kinase-focused inhibitors, and compounds with improved selectivity and pharmacokinetic profiles. Furthermore, the integration of computational modeling, molecular docking, and advanced drug-delivery approaches has significantly accelerated lead optimization and enhanced therapeutic potential. In conclusion, the accumulated journal research highlights imidazole derivatives as valuable scaffolds for the development of next-generation anticancer agents. Continued interdisciplinary efforts involving synthetic chemistry, biological evaluation, and *in silico* studies are expected to facilitate the translation of promising imidazole-based compounds into clinically effective anticancer therapies.

REFERENCES

1. Kumar, N., & Goel, N. Recent development of imidazole derivatives as potential anticancer agents. *Physical Sciences Reviews*, 2022.
2. Kalra, S., Joshi, G., Kumar, M., et al. Anticancer potential of imidazole and fused imidazole derivatives via EGFR inhibition. *RSC Medicinal Chemistry*, 2020.
3. Gangavaram, V. M., Ramesh, A., Singh, A., et al. Imidazole derivatives induce apoptosis and cellular senescence. *MedChemComm*, 2014.
4. Imidazoles as potential anticancer agents: An update on recent studies. *Molecules*, 2025.
5. Yadav, S., Vasudevan, M., Mathur, A., & Narasimhan, B. Benzimidazole derivatives with anticancer activity. *BMC Chemistry*, 2018.
6. Design and synthesis of imidazole-chalcone derivatives as tubulin polymerization inhibitors. *Bioorganic Chemistry*, 2021.
7. Malik, M. Z., Singh, R., Yadav, P., & Tandon, V. Benzimidazole derivatives targeting topoisomerase I. *ACS Omega*, 2022.
8. Synthesis and evaluation of imidazole-based oxazole derivatives as anticancer agents. *Results in Chemistry*, 2025.
9. Gangavaram, V. M., Ramesh, A., Singh, A., et al. Imidazole derivatives induce apoptosis and cellular senescence. *MedChemComm*, 2014.
10. Imidazoles as potential anticancer agents: An update on recent studies. *Molecules*, 2025.
11. Yadav, S., Vasudevan, M., Mathur, A., & Narasimhan, B. Benzimidazole derivatives with anticancer activity. *BMC Chemistry*, 2018.
12. Design and synthesis of imidazole-chalcone derivatives as tubulin polymerization inhibitors. *Bioorganic Chemistry*, 2021.
13. Malik, M. Z., Singh, R., Yadav, P., & Tandon, V. Benzimidazole derivatives targeting topoisomerase I. *ACS Omega*, 2022.
14. Synthesis and evaluation of imidazole-based oxazole derivatives as anticancer agents. *Results in Chemistry*, 2025.