
International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 6, Nov- Dec 2025

 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 346

Cloud Deployment Precheck Tool with Infrastructure Suggestions

Prof. S. V. Somvanshi1, Varun Thakare2, Shivam Thorat3, Pranit Dhumal4, Sunny Gavali5

 *1 Prof. Department of Computer Engineering, Pune Vidyarthi Griha's College of Engineering & S. S. Dhamankar

Institute of Management, Nashik

*2,3,4,5 Department of Computer Engineering, Pune Vidyarthi Griha's College of Engineering & S. S. Dhamankar Institute of

Management, Nashik

Email : suvarnakale772@gmail.com, thakarevarun16@gmail.com , shivamthorat2103@gmail.com , pranitdhumal2@gmail.com,

sunnygavli16@gmail.com

--************************----------------------------------

Abstract:
 CrowmanCloud is a secure, localhost-based desktop application tailored for software developers

and DevOps engineers to evaluate the cloud deployment readiness of their application source code. The tool

ensures that sensitive code never leaves the user’s machine by performing all analysis operations locally. It

generates a detailed readiness report that highlights potential issues, recommends suitable cloud services

based on the technology stack, and provides best-practice infrastructure files and cost estimates. Built using

a modern tech stack—Next.js for the frontend, Java with Spring Boot for the backend, and Electron for

desktop packaging—Cloud Inspector offers a cross-platform, interactive, and developer-friendly experience

for secure and informed cloud migration planning.

Keywords — Cloud Readiness Analysis, Localhost Application, Secure Code Analysis, Cloud Cost

Estimation, Source Code Inspection, Java Spring Boot, Next.js.

--************************----------------------------------

I. INTRODUCTION

 In the rapidly evolving software industry, ensuring

that applications are cloud-ready is essential for

seamless deployment and scalability.

CrowmanCloud is a desktop-based tool designed to

help developers and DevOps engineers analyse their

application code locally for cloud compatibility. It

performs static code analysis, suggests infrastructure

improvements, recommends suitable cloud services,

and estimates deployment costs, all without sending

any data over the internet. By combining security

with automation, CrowmanCloud simplifies the pre-

deployment process and supports informed decision-

making for cloud migration. These obstacles can

lead to failed deployments, increased costs, and

delayed project timelines. To address these issues,

CrowmanCloud provides a desktop-based solution

that performs secure, offline code analysis. The tool

checks cloud compatibility, suggests suitable cloud

services, and estimates costs—helping teams prepare

their applications for smooth and efficient cloud

deployment.

II. LITERATURE SURVEY

[1] Shidong Pan et al. proposed a model named

IaCGen that utilizes large language models (LLMs)

to automate the generation of Infrastructure-As-

Code (IaC) templates. The framework functions

iteratively, refining its output based on deployment

feasibility and infrastructure patterns. While the

approach showcases potential for reducing manual

configuration work, the authors acknowledge several

drawbacks, including poor alignment with user-

specific deployment needs, low first-attempt success

rates, and gaps in compliance with security

standards. CrowmanCloud builds on the core idea of

automated infrastructure support but avoids

unpredictability by using pre-tested templates.

Unlike IaCGen, Crowman performs all checks

offline, making it a secure and developer-friendly

solution for deployment preparation.

RESEARCH ARTICLE OPEN ACCESS

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 6, Nov- Dec 2025

 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 347

[2] Rajkumar Kyadasu and colleagues examined the

use of Terraform for multi-cloud Infrastructure-as-

Code implementations. Their study emphasized

Terraform's ability to streamline resource

provisioning across platforms like AWS, Azure, and

GCP. However, they noted limitations including

complexity in managing state files, difficulties in

unifying configurations across different

environments, and a steep learning curve for new

users. The authors concluded that although

Terraform improves automation, it demands

experienced hands to use it effectively. Crowman-

Cloud takes a simpler route by generating

lightweight, best-practice infrastructure templates

tailored to the project stack. This reduces technical

overhead and helps even novice users prepare

deployment-ready configurations without learning

new tools.

[3] Nicolas Harrand et al. introduced a system called

SORALD that repairs Java code by applying fixes to

violations reported by static analysis tools such as

SonarQube. The system focuses on reducing

developer workload by automatically patching

known issues, especially in security and code

structure. Despite its value, SORALD’s utility is

limited by its dependency on predefined rule sets and

its inability to apply nuanced, context-aware fixes.

CrowmanCloud adopts a more advisory role,

flagging structural or security concerns in code

through local static analysis. Rather than automatic

patching, Crowman provides issue summaries and

improvement suggestions, helping developers

maintain control and avoid unwanted code

modifications.

 [4] Mohammed Ali and Chen Zhao developed a

theoretical framework outlining various parameters

for evaluating cloud deployment readiness. Their

metrics include security, performance, scalability,

and infrastructure compatibility. The framework

serves as a checklist for teams looking to migrate

applications to cloud platforms, but lacks a tool-

based implementation. It primarily functions as a

guide rather than a solution. CrowmanCloud

transforms this theoretical framework into practice.

By performing automatic static analysis, inspecting

infrastructure readiness, and issuing clear visual

reports, Crowman enables actionable decision-

making. The tool encapsulates these abstract

readiness principles in a concrete, developer-facing

application that delivers results without requiring in-

depth manual assessment.

[5] Minxian Xu and Radu Calinescu proposed a

mathematical decision model to assist in selecting

cloud providers based on cost-efficiency and

performance. Their model compares services from

AWS, Azure, and GCP, factoring in multiple

constraints such as latency, resource usage, and price

elasticity. Although effective, their approach

demands familiarity with optimization theory and

lacks a user-friendly interface. CrowmanCloud

simplifies this process by embedding cost estimation

directly into the tool. Based on project

characteristics, it calculates approximate monthly

costs for each major cloud provider, giving

developers immediate, readable results. This helps

users choose a deployment plan aligned with both

performance goals and financial constraints.

[6] A. Sharma and S. Iqbal explored how automation

tools like Ansible and Terraform enhance cloud

migration processes. Their study highlighted how

these tools reduce manual configuration errors,

standardize infrastructure management, and improve

deployment speed. However, the authors also

emphasized the steep learning curve and technical

knowledge required to use such tools effectively,

especially for beginners. CrowmanCloud addresses

this gap by automatically generating essential

infrastructure files such as Dockerfiles and

Kubernetes manifests. It eliminates the need for deep

scripting knowledge, enabling developers—

regardless of experience level—to prepare their

applications for cloud environments without

mastering complex tools or writing detailed IaC

scripts.

[7] Rajkumar Buyya and his team discussed the

Aneka platform, a tool designed to assist developers

in selecting cloud services based on availability,

cost, and performance. Their work frames cloud

computing as a service-driven marketplace, where

choosing the right provider depends on dynamic

factors. While Aneka provides helpful guidance, it is

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 6, Nov- Dec 2025

 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 348

platform-dependent and lacks offline functionality.

CrowmanCloud builds on this concept by offering

multi-cloud recommendations—tailored to each

project’s tech stack—within a self-contained

desktop application. It enables developers to make

informed deployment decisions based on code

analysis, cost estimation, and service fit, all without

requiring an active internet connection.

[8] J. Smith and K. Kumar focused their research on

secure, offline tools for analyzing application code

before cloud deployment. They stressed the risks

associated with uploading sensitive code to online

platforms, especially when assessing for

vulnerabilities or configuration flaws. Their work

supports the idea of local tools that preserve data

privacy while offering actionable insights.

CrowmanCloud aligns directly with this vision by

performing all analysis—including static scans,

infrastructure checks, and cost calculations—on the

user’s machine. This approach not only ensures

privacy but also makes the tool suitable for

developers working with confidential or proprietary

codebases in regulated industries.

[9] The Cloud Native Computing Foundation

(CNCF) developed a maturity model that categorizes

organizations based on their progress in adopting

cloud-native practices. The model includes stages

such as containerization, DevOps adoption, service

orchestration, and full automation. While useful for

strategic planning, the framework lacks concrete

tools for implementation. CrowmanCloud

operationalizes key aspects of this model by

checking if projects use containers, whether

infrastructure files are present, and if deployment

processes align with DevOps principles. Its reports

allow users to measure their current stage and

understand what improvements are needed for

achieving a higher level of cloud-native maturity.

[10] Andrew van der Stock and Daniel Cuthbert,

through the OWASP Foundation, developed the

Application Security Verification Standard (ASVS

4.0.3) to help software teams assess application

security at different levels. The standard outlines

requirements for secure development in areas like

data protection, authentication, and input validation.

CrowmanCloud references ASVS principles during

its static code analysis. It flags code patterns that

may indicate weaknesses in compliance with ASVS

levels and classifies findings by severity. This helps

developers prioritize security fixes and improve

application robustness before deploying to a cloud

environment, thereby aligning development

practices with established security benchmarks.

[11] The National Telecommunications and

Information Administration (NTIA) introduced the

concept of a Software Bill of Materials (SBOM) to

improve transparency in software supply chains.

Their guidance outlines the essential components

that should be listed, such as package names,

versions, licenses, and dependencies. This level of

visibility is crucial for preventing risks associated

with vulnerable or outdated libraries. In alignment

with this vision, CrowmanCloud integrates SBOM

generation as part of its analysis process. It creates

SBOMs in standard formats, enabling developers to

identify potential security issues before moving to

the cloud. This helps ensure compliance, reduces

uncertainty, and strengthens overall software

integrity.

[12] The Open Source Security Foundation

(OpenSSF) introduced the Supply-chain Levels for

Software Artifacts (SLSA) framework to evaluate

the trustworthiness of the software build process. It

defines multiple levels of maturity, focusing on

preventing tampering, ensuring traceability, and

securing build pipelines. Many organizations

struggle to align with these standards due to limited

tooling or awareness. Crowman Cloud incorporates

SLSA principles by analyzing project structure and

build configurations to highlight weaknesses in

supply-chain security. It guides developers on how

to meet recommended maturity levels, helping them

prepare applications that not only deploy correctly

but also maintain strong integrity across cloud

environments.

[13] The AWS Well-Architected Framework

outlines essential principles for building secure,

efficient, and cost-effective cloud systems. Its six

pillars—operational excellence, security, reliability,

performance efficiency, cost optimization, and

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 6, Nov- Dec 2025

 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 349

sustainability—provide a structured approach for

evaluating cloud readiness. Many teams struggle to

apply these guidelines due to complex

configurations and unclear deployment

requirements. CrowmanCloud helps bridge this gap

by mapping its analysis results to these pillars. It

evaluates application structure, highlights missing

components, and offers service recommendations

aligned with AWS best practices. This ensures that

developers gain actionable insights for designing

deployments that are both robust and aligned with

industry standards.

[14] The Google Cloud Architecture Framework

provides detailed guidance for building scalable and

reliable applications on GCP. It covers domains like

resource management, networking, service design,

and operational efficiency. Organizations often find

it challenging to align their existing codebases with

these recommendations. CrowmanCloud addresses

this by detecting the project’s technical stack and

suggesting GCP services—such as Cloud Run, App

Engine, and Cloud SQL—that best match the

application’s structure. By analyzing code patterns

and configuration readiness, Crowman helps users

make informed decisions that follow Google Cloud

architecture principles and support smooth migration

with minimal rework.

[15] Microsoft’s Azure Well-Architected

Framework highlights best practices for building

high-performance and resilient cloud applications,

focusing on reliability, security, cost efficiency, and

operational excellence. Many developers lack the

expertise to determine how their applications fit

within these guidelines. CrowmanCloud

incorporates Azure architectural principles by

evaluating readiness aspects like containerization,

dependency management, and scalability

requirements. Based on this assessment, it

recommends Azure services such as App Service,

Functions, or Cosmos DB. This ensures that

developers receive provider-aligned guidance

tailored to their application needs, simplifying cloud

adoption and ensuring adherence to Azure’s

recommended architectural standards.

[16] The CNCF Annual Survey 2025 highlights

industry trends such as widespread Kubernetes

adoption, increased focus on cloud cost governance,

and growing concerns about software supply-chain

security. It reveals that most organizations struggle

with cost optimization and dependency risks during

cloud migration. These trends reinforce the

importance of tools that provide both technical and

financial insights before deployment.

CrowmanCloud directly responds to these industry

needs. By generating SBOMs, identifying readiness

issues, and offering cost comparisons across AWS,

Azure, and GCP, it supports informed decision-

making. This positions Crowman as a relevant and

practical solution in today’s cloud-centric landscape.

III. METHODOLOGY

A. FLOWCHART EXPLANATION

The system workflow begins when the user uploads

a ZIP file containing the project source code through

the Next.js dashboard. The dashboard sends the

project to the Java Spring Boot API layer using a

POST request. The backend extracts the files and

performs static code analysis, applying multiple

security-rule checks to identify vulnerabilities,

hardcoded secrets, outdated dependencies, or

configuration errors. If vulnerabilities are detected,

the backend records them and sends the results

directly back to the dashboard. If no critical issues

are found, the system then checks whether Docker or

Kubernetes configuration files exist. After validating

infrastructure readiness, the backend recommends

cloud providers and computes estimated deployment

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 6, Nov- Dec 2025

 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 350

costs. Finally, the Next.js dashboard displays a

complete readiness report to the user.

B. SYSTEM ARCHITECTURE

The proposed system architecture consists of three

main layers: the User Interface Layer, the

Application Processing Layer, and the Cloud

Recommendation Layer. The User Interface Layer,

built using Next.js, allows users to upload

application ZIP files. The Processing Layer,

implemented in Java Spring Boot, handles

extraction, static analysis, and infrastructure

validation. It integrates rule-based scanners to detect

vulnerabilities and assess code security. If security

issues are identified, the analysis stops and returns

the findings. Otherwise, the system proceeds to

check for Docker and Kubernetes configuration files.

The Cloud Recommendation Layer evaluates the

application stack and provides suitable cloud

providers along with cost estimations. These results

are transmitted back to the UI Layer, which presents

a detailed and structured readiness report. This

modular architecture ensures security, accuracy, and

complete offline execution.

C. STEP-BY-STEP METHODOLOGY

Step 1: ZIP File Upload: The user uploads the

application’s ZIP file through the Next.js

dashboard. The dashboard sends the file to the Java

Spring Boot backend via a secure POST request.

Step 2: Code Extraction and Static Analysis:

The backend extracts the ZIP contents and performs

static code scanning. It checks the project against

predefined security rules, scans for vulnerabilities,

and validates code structure.

Step 3:Vulnerability Evaluation: If any high-risk

vulnerability issues are detected, the system marks

the project as “Not Ready” and immediately sends

the results back to the dashboard for reporting.

Step 4: Infrastructure File Verification: If the

code passes the security analysis, the system

inspects whether essential deployment files, such as

Dockerfiles or Kubernetes YAML files, are present.

Step 5: Cloud Provider Recommendation:

Based on the project’s technology stack, the system

recommends suitable cloud services and platforms.

Step 6: Cost Estimation: Estimated monthly

deployment costs for AWS, Azure, and GCP are

calculated.

Step 7: Report Generation: The system compiles

all results into a detailed cloud readiness report and

displays it to the user.

IV. RESULTS AND DISCUSSION

The proposed CrowmanCloud system was evaluated

using a Java-based production application to assess

its ability to analyse source code, detect

vulnerabilities, and generate cloud-readiness

insights. After uploading the ZIP file, the system

successfully processed 25 project files and produced

a detailed readiness summary. The analysis indicated

that the application is production-ready, although

several improvement areas were identified. The tool

reported a security score of 85%, with 9 security

issues and 3 dependency vulnerabilities. These

findings demonstrate that the system is effective at

identifying risks related to authentication, outdated

libraries, and unsafe controller endpoints.

CrowmanCloud’s suggestions for cloud providers

and readiness scoring further help developers

understand how prepared the application is for

migration. Overall, the results validate

CrowmanCloud as a functional and reliable pre-

deployment assistant. The system gives helpful

advice, speeds up decision-making, and allows

developers to fix problems well before they move to

the cloud, which helps lower risks and failures after

migration.

Figure 1: Result for CrowmanCloud

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 6, Nov- Dec 2025

 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 351

The analysis shows that CrowmanCloud accurately

identifies core issues affecting cloud migration

readiness. The absence of a Dockerfile and the

presence of outdated dependencies were highlighted

immediately, demonstrating the tool’s capability to

identify missing infrastructure components.

Controller endpoints lacking authentication checks

were flagged as security risks, contributing to the

nine identified vulnerabilities. While the project

qualifies as production-ready, the 55% readiness

score suggests that additional improvements are

required before deploying to cloud platforms.

Overall, the structured report, detailed warnings, and

provider recommendations validate CrowmanCloud

as a reliable and efficient offline assessment system.

V. CONCLUSION AND FUTURE SCOPE

The Cloud Deployment Precheck Tool with

Infrastructure Suggestions is an innovative solution

designed to simplify and secure the process of

assessing application readiness for cloud

deployment. It enables developers and DevOps

teams to analyze their codebases locally, ensuring

that sensitive data never leaves the user’s machine.

The system performs static code analysis to identify

configuration gaps, missing infrastructure files like

Dockerfile or Kubernetes manifests, and potential

vulnerabilities. Additionally, it recommends the

most suitable cloud service provider—AWS, Azure,

or Google Cloud—based on the project’s technology

stack and provides cost estimations for informed

decision-making. By automating pre-deployment

checks, the tool saves significant time, reduces

human error, and promotes standardization and

security across cloud migration workflows. In the

future, this system can be enhanced by integrating

artificial intelligence and machine learning

algorithms to improve accuracy in readiness scoring

and cost prediction. Real-time cloud API integration

can allow for dynamic pricing and live infrastructure

validation. Moreover, the tool can expand to support

additional languages and frameworks, integrate

continuous monitoring through CI/CD pipelines, and

provide blockchain-based secure report storage.

Developing a col- elaborative web-based dashboard

would also allow teams to manage multiple projects

seamlessly, making the tool an essential part of

modern cloud migration ecosystems.

REFERENCES

[1] Shidong Pan, Zejun Zhang, Tianyi Zhang,

“Deployability-Centric Infrastructure-as-Code Genera-

tion: An LLM-based Iterative Framework”, New York
University, 2025.

[2] Rajkumar Kyadasu, Arth Dave, Om Goel, “Exploring

Infrastructure as Code Using Terraform in Multi-Cloud

Deployments”, Arizona State University, Arizona,

USA,2024.

[3] Nicolas Harrand, Simon Larsen, Ashutosh Verma,

“Sorald: Automatic Patch Suggestions for SonarQube

Static Analysis Violations”, Berlin Heidelberg, 2023.

[4] Mohammed Ali, Chen Zhao, “Cloud Deployment

Readiness Metrics: A Comprehensive Framework”,

University of California, Berkeley, 2022.

[5] Minxian Xu, Radu Calinescu, “Cost-aware Cloud
Application Deployment: A Decision Support

Framework”, University of York, UK, 2021.

[6] A. Sharma, S. Iqbal, “Optimizing Cloud Migrations Using

Infrastructure Automation Tools like Ansible and

Terraform”, Indian Institute of Technology Delhi, India,

2020.

[7] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal,

“Market-Oriented Cloud Computing and the Aneka

Platform”, University of Melbourne, Australia, 2019.

[8] J. Smith, K. Kumar, “Secure Code Analysis for Cloud

Migration using Local Tools”, Carnegie Mellon
University, USA, 2023

[9] Cloud Native Computing Foundation Research Team,

“Cloud-Native Maturity Model,” CNCF, San Francisco,

USA, 2021.

[10] Andrew van der Stock, Daniel Cuthbert, OWASP Project

Team, “Application Security Verification Standard

(ASVS) 4.0.3,” OWASP Foundation, Washington D.C.,

USA, 2021.

[11] National Telecommunications and Information

Administration (NTIA), “The Minimum Elements for a

Software Bill of Materials (SBOM),” U.S. Department of
Commerce, Washington D.C., USA, 2021.

[12] OpenSSF Technical Advisory Council, “Supply-chain

Levels for Software Artifacts (SLSA) v1.0,” Open Source

Security Foundation, San Francisco, USA, 2023.

[13] Werner Vogels, Amazon Web Services Architecture

Team, “AWS Well-Architected Framework,” AWS,

Seattle, USA, Updated 2024.

[14] Urs H¨olzle, Google Cloud Architecture Team, “Google

Cloud Architecture Framework,” Google LLC, Mountain

View, California, USA, 2024.

[15] Mark Russinovich, Microsoft Azure Architecture Center,

“Azure Well-Architected Framework,” Microsoft
Corporation, Redmond, Washington, USA, 2024.

[16] Priyanka Sharma, Chris Aniszczyk, Cloud Native

Computing Foundation, “CNCF Annual Survey,” CNCF,

San Francisco, USA, 2025

