International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 6, Nov- Dec 2025
Available at www.ijsred.com

RESEARCH ARTICLE OPEN ACCESS

Cloud Deployment Precheck Tool with Infrastructure Suggestions

Prof. S. V. Somvanshi!, Varun Thakare?, Shivam Thorat®, Pranit Dhumal*, Sunny Gavali®
*1 Prof. Department of Computer Engineering, Pune Vidyarthi Griha's College of Engineering & S. S. Dhamankar
Institute of Management, Nashik
¥2,3,4,5 Department of Computer Engineering, Pune Vidyarthi Griha's College of Engineering & S. S. Dhamankar Institute of

Management, Nashik
Email : suvarnakale772 @ gmail.com, thakarevarun16@ gmail.com , shivamthorat2103 @gmail.com , pranitdhumal2 @ gmail.com,
sunnygavlil6 @ gmail.com

skt sk sk sk stk sk sk ok ok ok sk

Abstract:

CrowmanCloud is a secure, localhost-based desktop application tailored for software developers
and DevOps engineers to evaluate the cloud deployment readiness of their application source code. The tool
ensures that sensitive code never leaves the user’s machine by performing all analysis operations locally. It
generates a detailed readiness report that highlights potential issues, recommends suitable cloud services
based on the technology stack, and provides best-practice infrastructure files and cost estimates. Built using
a modern tech stack—Next.js for the frontend, Java with Spring Boot for the backend, and Electron for
desktop packaging—Cloud Inspector offers a cross-platform, interactive, and developer-friendly experience
for secure and informed cloud migration planning.

Keywords — Cloud Readiness Analysis, Localhost Application, Secure Code Analysis, Cloud Cost
Estimation, Source Code Inspection, Java Spring Boot, Next.js.
shoskoske sk sesk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk

their applications for smooth and efficient cloud
deployment.

In the rapldly eVOlVing software industry, ensuring IL LITERATURE SURVEY
that applications are cloud-ready is essential for

seamless deployment and scalability.
CrowmanCloud is a desktop-based tool designed to
help developers and DevOps engineers analyse their
application code locally for cloud compatibility. It
performs static code analysis, suggests infrastructure
improvements, recommends suitable cloud services,
and estimates deployment costs, all without sending
any data over the internet. By combining security
with automation, CrowmanCloud simplifies the pre-
deployment process and supports informed decision-
making for cloud migration. These obstacles can
lead to failed deployments, increased costs, and
delayed project timelines. To address these issues,
CrowmanCloud provides a desktop-based solution
that performs secure, offline code analysis. The tool
checks cloud compatibility, suggests suitable cloud
services, and estimates costs—helping teams prepare

I. INTRODUCTION

[1] Shidong Pan et al. proposed a model named
IaCGen that utilizes large language models (LLMs)
to automate the generation of Infrastructure-As-
Code (IaC) templates. The framework functions
iteratively, refining its output based on deployment
feasibility and infrastructure patterns. While the
approach showcases potential for reducing manual
configuration work, the authors acknowledge several
drawbacks, including poor alignment with user-
specific deployment needs, low first-attempt success
rates, and gaps in compliance with security
standards. CrowmanCloud builds on the core idea of
automated infrastructure support but avoids
unpredictability by using pre-tested templates.
Unlike IaCGen, Crowman performs all checks
offline, making it a secure and developer-friendly
solution for deployment preparation.

ISSN: 2581-7175 ©I1JSRED: All Rights are Reserved Page 346

International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 6, Nov- Dec 2025

[2] Rajkumar Kyadasu and colleagues examined the
use of Terraform for multi-cloud Infrastructure-as-
Code implementations. Their study emphasized
Terraform's ability to streamline resource
provisioning across platforms like AWS, Azure, and
GCP. However, they noted limitations including
complexity in managing state files, difficulties in
unifying configurations across different
environments, and a steep learning curve for new
users. The authors concluded that although
Terraform improves automation, it demands
experienced hands to use it effectively. Crowman-
Cloud takes a simpler route by generating
lightweight, best-practice infrastructure templates
tailored to the project stack. This reduces technical
overhead and helps even novice users prepare
deployment-ready configurations without learning
new tools.

[3] Nicolas Harrand et al. introduced a system called
SORALD that repairs Java code by applying fixes to
violations reported by static analysis tools such as
SonarQube. The system focuses on reducing
developer workload by automatically patching
known issues, especially in security and code
structure. Despite its value, SORALD’s utility is
limited by its dependency on predefined rule sets and
its inability to apply nuanced, context-aware fixes.
CrowmanCloud adopts a more advisory role,
flagging structural or security concerns in code
through local static analysis. Rather than automatic
patching, Crowman provides issue summaries and

improvement suggestions, helping developers
maintain control and avoid unwanted code
modifications.

[4] Mohammed Ali and Chen Zhao developed a
theoretical framework outlining various parameters
for evaluating cloud deployment readiness. Their
metrics include security, performance, scalability,
and infrastructure compatibility. The framework
serves as a checklist for teams looking to migrate
applications to cloud platforms, but lacks a tool-
based implementation. It primarily functions as a
guide rather than a solution. CrowmanCloud
transforms this theoretical framework into practice.
By performing automatic static analysis, inspecting
infrastructure readiness, and issuing clear visual

Available at www.ijsred.com

reports, Crowman enables actionable decision-
making. The tool encapsulates these abstract
readiness principles in a concrete, developer-facing
application that delivers results without requiring in-
depth manual assessment.

[5] Minxian Xu and Radu Calinescu proposed a
mathematical decision model to assist in selecting
cloud providers based on cost-efficiency and
performance. Their model compares services from
AWS, Azure, and GCP, factoring in multiple
constraints such as latency, resource usage, and price
elasticity. Although effective, their approach
demands familiarity with optimization theory and
lacks a user-friendly interface. CrowmanCloud
simplifies this process by embedding cost estimation
directly into the tool. Based on project
characteristics, it calculates approximate monthly
costs for each major cloud provider, giving
developers immediate, readable results. This helps
users choose a deployment plan aligned with both
performance goals and financial constraints.

[6] A. Sharma and S. Igbal explored how automation
tools like Ansible and Terraform enhance cloud
migration processes. Their study highlighted how
these tools reduce manual configuration errors,
standardize infrastructure management, and improve
deployment speed. However, the authors also
emphasized the steep learning curve and technical
knowledge required to use such tools effectively,
especially for beginners. CrowmanCloud addresses
this gap by automatically generating essential
infrastructure files such as Dockerfiles and
Kubernetes manifests. It eliminates the need for deep
scripting knowledge, enabling developers—
regardless of experience level—to prepare their
applications for cloud environments without
mastering complex tools or writing detailed IaC
scripts.

[7] Rajkumar Buyya and his team discussed the
Aneka platform, a tool designed to assist developers
in selecting cloud services based on availability,
cost, and performance. Their work frames cloud
computing as a service-driven marketplace, where
choosing the right provider depends on dynamic
factors. While Aneka provides helpful guidance, it is

ISSN: 2581-7175

©IJSRED: All Rights are Reserved

Page 347

International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 6, Nov- Dec 2025

platform-dependent and lacks offline functionality.
CrowmanCloud builds on this concept by offering
multi-cloud recommendations—tailored to each
project’s tech stack—within a self-contained
desktop application. It enables developers to make
informed deployment decisions based on code
analysis, cost estimation, and service fit, all without
requiring an active internet connection.

[8] J. Smith and K. Kumar focused their research on
secure, offline tools for analyzing application code
before cloud deployment. They stressed the risks
associated with uploading sensitive code to online
platforms, especially when assessing for
vulnerabilities or configuration flaws. Their work
supports the idea of local tools that preserve data
privacy while offering actionable insights.
CrowmanCloud aligns directly with this vision by
performing all analysis—including static scans,
infrastructure checks, and cost calculations—on the
user’s machine. This approach not only ensures
privacy but also makes the tool suitable for
developers working with confidential or proprietary
codebases in regulated industries.

[9] The Cloud Native Computing Foundation
(CNCF) developed a maturity model that categorizes
organizations based on their progress in adopting
cloud-native practices. The model includes stages
such as containerization, DevOps adoption, service
orchestration, and full automation. While useful for
strategic planning, the framework lacks concrete
tools for implementation. = CrowmanCloud
operationalizes key aspects of this model by
checking if projects use containers, whether
infrastructure files are present, and if deployment
processes align with DevOps principles. Its reports
allow users to measure their current stage and
understand what improvements are needed for
achieving a higher level of cloud-native maturity.

[10] Andrew van der Stock and Daniel Cuthbert,
through the OWASP Foundation, developed the
Application Security Verification Standard (ASVS
4.0.3) to help software teams assess application
security at different levels. The standard outlines
requirements for secure development in areas like
data protection, authentication, and input validation.

Available at www.ijsred.com

CrowmanCloud references ASVS principles during
its static code analysis. It flags code patterns that
may indicate weaknesses in compliance with ASVS
levels and classifies findings by severity. This helps
developers prioritize security fixes and improve
application robustness before deploying to a cloud
environment, thereby aligning development
practices with established security benchmarks.

[11] The National Telecommunications and
Information Administration (NTIA) introduced the
concept of a Software Bill of Materials (SBOM) to
improve transparency in software supply chains.
Their guidance outlines the essential components
that should be listed, such as package names,
versions, licenses, and dependencies. This level of
visibility is crucial for preventing risks associated
with vulnerable or outdated libraries. In alignment
with this vision, CrowmanCloud integrates SBOM
generation as part of its analysis process. It creates
SBOMs in standard formats, enabling developers to
identify potential security issues before moving to
the cloud. This helps ensure compliance, reduces

uncertainty, and strengthens overall software
integrity.
[12] The Open Source Security Foundation

(OpenSSF) introduced the Supply-chain Levels for
Software Artifacts (SLSA) framework to evaluate
the trustworthiness of the software build process. It
defines multiple levels of maturity, focusing on
preventing tampering, ensuring traceability, and
securing build pipelines. Many organizations
struggle to align with these standards due to limited
tooling or awareness. Crowman Cloud incorporates
SLSA principles by analyzing project structure and
build configurations to highlight weaknesses in
supply-chain security. It guides developers on how
to meet recommended maturity levels, helping them
prepare applications that not only deploy correctly
but also maintain strong integrity across cloud
environments.

[13] The AWS Well-Architected Framework
outlines essential principles for building secure,
efficient, and cost-effective cloud systems. Its six
pillars—operational excellence, security, reliability,
performance efficiency, cost optimization, and

ISSN: 2581-7175

©IJSRED: All Rights are Reserved

Page 348

International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 6, Nov- Dec 2025

sustainability—provide a structured approach for
evaluating cloud readiness. Many teams struggle to
apply these guidelines due to complex
configurations and unclear deployment
requirements. CrowmanCloud helps bridge this gap
by mapping its analysis results to these pillars. It
evaluates application structure, highlights missing
components, and offers service recommendations
aligned with AWS best practices. This ensures that
developers gain actionable insights for designing
deployments that are both robust and aligned with
industry standards.

[14] The Google Cloud Architecture Framework
provides detailed guidance for building scalable and
reliable applications on GCP. It covers domains like
resource management, networking, service design,
and operational efficiency. Organizations often find
it challenging to align their existing codebases with
these recommendations. CrowmanCloud addresses
this by detecting the project’s technical stack and
suggesting GCP services—such as Cloud Run, App
Engine, and Cloud SQL—that best match the
application’s structure. By analyzing code patterns
and configuration readiness, Crowman helps users
make informed decisions that follow Google Cloud
architecture principles and support smooth migration
with minimal rework.

[15] Microsoft’s Azure Well-Architected
Framework highlights best practices for building
high-performance and resilient cloud applications,
focusing on reliability, security, cost efficiency, and
operational excellence. Many developers lack the
expertise to determine how their applications fit
within these guidelines. CrowmanCloud
incorporates Azure architectural principles by
evaluating readiness aspects like containerization,
dependency management, and scalability
requirements. Based on this assessment, it
recommends Azure services such as App Service,
Functions, or Cosmos DB. This ensures that
developers receive provider-aligned guidance
tailored to their application needs, simplifying cloud
adoption and ensuring adherence to Azure’s
recommended architectural standards.

Available at www.ijsred.com

[16] The CNCF Annual Survey 2025 highlights
industry trends such as widespread Kubernetes
adoption, increased focus on cloud cost governance,
and growing concerns about software supply-chain
security. It reveals that most organizations struggle
with cost optimization and dependency risks during
cloud migration. These trends reinforce the
importance of tools that provide both technical and
financial insights before deployment.
CrowmanCloud directly responds to these industry
needs. By generating SBOMs, identifying readiness
issues, and offering cost comparisons across AWS,
Azure, and GCP, it supports informed decision-
making. This positions Crowman as a relevant and
practical solution in today’s cloud-centric landscape.

III. METHODOLOGY

add zip fle code analysis

. e
& ,/'/ N 0 \\QSI apicall - \

User Nen js \“"/ \
_ Datiowg JAVA Spring boot i
/? e api Layer o Busrring
N
Show report |‘/ \ \ check security
t N : Jle:

A. FLOWCHART EXPLANATION

The system workflow begins when the user uploads
a ZIP file containing the project source code through
the Next.js dashboard. The dashboard sends the
project to the Java Spring Boot API layer using a
POST request. The backend extracts the files and
performs static code analysis, applying multiple
security-rule checks to identify vulnerabilities,
hardcoded secrets, outdated dependencies, or
configuration errors. If vulnerabilities are detected,
the backend records them and sends the results
directly back to the dashboard. If no critical issues
are found, the system then checks whether Docker or
Kubernetes configuration files exist. After validating
infrastructure readiness, the backend recommends
cloud providers and computes estimated deployment

ISSN: 2581-7175

©IJSRED: All Rights are Reserved

Page 349

International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 6, Nov- Dec 2025

costs. Finally, the Next.js dashboard displays a
complete readiness report to the user.

B. SYSTEM ARCHITECTURE

The proposed system architecture consists of three
main layers: the User Interface Layer, the
Application Processing Layer, and the Cloud
Recommendation Layer. The User Interface Layer,
built using Next.js, allows users to upload
application ZIP files. The Processing Layer,
implemented in Java Spring Boot, handles
extraction, static analysis, and infrastructure
validation. It integrates rule-based scanners to detect
vulnerabilities and assess code security. If security
issues are identified, the analysis stops and returns
the findings. Otherwise, the system proceeds to
check for Docker and Kubernetes configuration files.
The Cloud Recommendation Layer evaluates the
application stack and provides suitable cloud
providers along with cost estimations. These results
are transmitted back to the UI Layer, which presents
a detailed and structured readiness report. This
modular architecture ensures security, accuracy, and
complete offline execution.

C. STEP-BY-STEP METHODOLOGY

Step 1: ZIP File Upload: The user uploads the
application’s ZIP file through the Next.js
dashboard. The dashboard sends the file to the Java
Spring Boot backend via a secure POST request.

Step 2: Code Extraction and Static Analysis:

The backend extracts the ZIP contents and performs
static code scanning. It checks the project against
predefined security rules, scans for vulnerabilities,
and validates code structure.

Step 3:Vulnerability Evaluation: If any high-risk
vulnerability issues are detected, the system marks
the project as “Not Ready” and immediately sends
the results back to the dashboard for reporting.

Step 4: Infrastructure File Verification: If the
code passes the security analysis, the system
inspects whether essential deployment files, such as
Dockerfiles or Kubernetes YAML files, are present.

Available at www.ijsred.com

Step 5: Cloud Provider Recommendation:
Based on the project’s technology stack, the system
recommends suitable cloud services and platforms.

Step 6: Cost Estimation: Estimated monthly
deployment costs for AWS, Azure, and GCP are
calculated.

Step 7: Report Generation: The system compiles
all results into a detailed cloud readiness report and
displays it to the user.

IV. RESULTS AND DISCUSSION

The proposed CrowmanCloud system was evaluated
using a Java-based production application to assess
its ability to analyse source code, detect
vulnerabilities, and generate cloud-readiness
insights. After uploading the ZIP file, the system
successfully processed 25 project files and produced
a detailed readiness summary. The analysis indicated
that the application is production-ready, although
several improvement areas were identified. The tool
reported a security score of 85%, with 9 security
issues and 3 dependency vulnerabilities. These
findings demonstrate that the system is effective at
identifying risks related to authentication, outdated
libraries, and unsafe controller endpoints.

CrowmanCloud’s suggestions for cloud providers
and readiness scoring further help developers
understand how prepared the application is for
migration. Overall, the results validate
CrowmanCloud as a functional and reliable pre-
deployment assistant. The system gives helpful
advice, speeds up decision-making, and allows
developers to fix problems well before they move to
the cloud, which helps lower risks and failures after
migration.

iur 1: Result for CrowmanCloud

ISSN: 2581-7175

©IJSRED: All Rights are Reserved

Page 350

International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 6, Nov- Dec 2025

The analysis shows that CrowmanCloud accurately
identifies core issues affecting cloud migration
readiness. The absence of a Dockerfile and the
presence of outdated dependencies were highlighted
immediately, demonstrating the tool’s capability to
identify =~ missing infrastructure =~ components.
Controller endpoints lacking authentication checks
were flagged as security risks, contributing to the
nine identified vulnerabilities. While the project
qualifies as production-ready, the 55% readiness
score suggests that additional improvements are
required before deploying to cloud platforms.
Overall, the structured report, detailed warnings, and
provider recommendations validate CrowmanCloud
as a reliable and efficient offline assessment system.

V. CONCLUSION AND FUTURE SCOPE

The Cloud Deployment Precheck Tool with
Infrastructure Suggestions is an innovative solution
designed to simplify and secure the process of
assessing application readiness for cloud
deployment. It enables developers and DevOps
teams to analyze their codebases locally, ensuring
that sensitive data never leaves the user’s machine.
The system performs static code analysis to identify
configuration gaps, missing infrastructure files like
Dockerfile or Kubernetes manifests, and potential
vulnerabilities. Additionally, it recommends the
most suitable cloud service provider—AWS, Azure,
or Google Cloud—based on the project’s technology
stack and provides cost estimations for informed
decision-making. By automating pre-deployment
checks, the tool saves significant time, reduces
human error, and promotes standardization and
security across cloud migration workflows. In the
future, this system can be enhanced by integrating
artificial intelligence and machine learning
algorithms to improve accuracy in readiness scoring
and cost prediction. Real-time cloud API integration
can allow for dynamic pricing and live infrastructure
validation. Moreover, the tool can expand to support
additional languages and frameworks, integrate
continuous monitoring through CI/CD pipelines, and
provide blockchain-based secure report storage.
Developing a col- elaborative web-based dashboard
would also allow teams to manage multiple projects
seamlessly, making the tool an essential part of
modern cloud migration ecosystems.

Available at www.ijsred.com

REFERENCES

[1] Shidong Pan, Zejun Zhang, Tianyi Zhang,
“Deployability-Centric Infrastructure-as-Code Genera-
tion: An LLM-based Iterative Framework”, New York
University, 2025.

[2] Rajkumar Kyadasu, Arth Dave, Om Goel, “Exploring
Infrastructure as Code Using Terraform in Multi-Cloud
Deployments”, Arizona State University, Arizona,
USA,2024.

[3] Nicolas Harrand, Simon Larsen, Ashutosh Verma,
“Sorald: Automatic Patch Suggestions for SonarQube
Static Analysis Violations”, Berlin Heidelberg, 2023.

[4] Mohammed Ali, Chen Zhao, “Cloud Deployment
Readiness Metrics: A Comprehensive Framework”,
University of California, Berkeley, 2022.

[5] Minxian Xu, Radu Calinescu, “Cost-aware Cloud
Application Deployment: A Decision Support
Framework”, University of York, UK, 2021.

[6] A.Sharma, S. Igbal, “Optimizing Cloud Migrations Using
Infrastructure Automation Tools like Ansible and
Terraform”, Indian Institute of Technology Delhi, India,
2020.

[7]1 Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal,
“Market-Oriented Cloud Computing and the Aneka
Platform”, University of Melbourne, Australia, 2019.

[8] J. Smith, K. Kumar, “Secure Code Analysis for Cloud
Migration using Local Tools”, Carnegie Mellon
University, USA, 2023

[9] Cloud Native Computing Foundation Research Team,

“Cloud-Native Maturity Model,” CNCF, San Francisco,

USA, 2021.

Andrew van der Stock, Daniel Cuthbert, OWASP Project

Team, “Application Security Verification Standard

(ASVS) 4.0.3,” OWASP Foundation, Washington D.C.,

USA, 2021.

National = Telecommunications and Information

Administration (NTIA), “The Minimum Elements for a

Software Bill of Materials (SBOM),” U.S. Department of

Commerce, Washington D.C., USA, 2021.

OpenSSF Technical Advisory Council, “Supply-chain

Levels for Software Artifacts (SLSA) v1.0,” Open Source

Security Foundation, San Francisco, USA, 2023.

[13] Werner Vogels, Amazon Web Services Architecture
Team, “AWS Well-Architected Framework,” AWS,
Seattle, USA, Updated 2024.

[14] Urs H olzle, Google Cloud Architecture Team, “Google
Cloud Architecture Framework,” Google LLC, Mountain
View, California, USA, 2024.

[15] Mark Russinovich, Microsoft Azure Architecture Center,
“Azure Well-Architected Framework,” Microsoft
Corporation, Redmond, Washington, USA, 2024.

[16] Priyanka Sharma, Chris Aniszczyk, Cloud Native
Computing Foundation, “CNCF Annual Survey,” CNCF,
San Francisco, USA, 2025

ISSN: 2581-7175

©IJSRED: All Rights are Reserved

Page 351

