

A Secure Java Communication Framework for Green Hydrogen Networks

¹Suma.S, B.E., M.S., (Ph.D)., ²Kavyaa K, ³Latchiyasri K, ⁴Madhumitha S

¹ Assistant Professor, Department of Computer Science & Engineering

^{2,3,4} UG Students, Department of Computer Science & Engineering, SRM Valliammai Engineering College, Kattankulathur, Chengalpattu, Tamil Nadu, India.

Abstract:

The quest for alternative and greener energy solutions has also become a pressing issue in climate change mitigation and switching to a greener future. Hydrogen is one of these options, and it has great capabilities in decarbonizing industries, transport, and power systems. This paper presents a new strategy of green hydrogen production through the Rising Pressure Reformer (RPR) process engine, which is the most advanced technique of producing hydrogen in an efficient manner and reducing environmental degradation. RPR is the process applying sophisticated thermochemical reactions in pressure conditions. This strategy will bring the production of hydrogen in an energy-saving manner in different working regions, making it versatile to multiple uses in industries. Energy analysis defines the needs of the different areas of operation and allows the generation of hydrogen in large amounts since it is efficient. Environmental assessment of the RPR process is one of the crucial elements of the research. Comparison of CO₂ emanation between hydrogen production by means of RPR and that of fossil fuel reveals a considerable reduction in the carbon footprint, hence indicating that

green hydrogen can replace fossil fuels since it is cleaner. To prove its viability, the green hydrogen is submitted to rigorous environmental impact tests. These environmental impact analyses measure key parameters of greenhouse gas emission, energy efficiency, and ecological sustainability in general. The results confirm that besides reducing emissions, the RPR process supports a clean and sustainable energy infrastructure. The Rising Pressure Reformer process is an important advance within the field of clean hydrogen technology. The method positions green hydrogen as a key driver for the transformation of the world toward a low-carbon future in a sustainable manner by fostering efficiency, scalability, and environmental responsibility.

KEYWORDS:-- *Rising Pressure Reformer (RPR), Green Hydrogen Production, Thermochemical Reactions, Energy Efficiency, CO₂ Emission Reduction, Triple Data Encryption Standard (TripleDES), Sustainable Energy Systems, Industrial Applications, Environmental Impact Assessment, Clean Energy Transition.*

INTRODUCTION

In fact, the world struggle for climate change, reduction of greenhouse gas emissions, and curbing centuries-long dependence on fossil fuels has necessitated sustainable energy. More and more countries are making more promises towards carrier of energy; because of net-zero ambition and urgency of hard- to-abate sector decarbonisation, alternative energy assumes more and more significant roles. Hydrogen is one such that has come up as an attractive and useful option due to its high energy density, absence of

point of use emissions, and its ability to comply with the existing energy infrastructure.

However, hydrogen as a fuel is very dependent on how it is produced to be clean. In this day, over 95 percent of the hydrogen in the world is made by means of steam methane reforming (SMR) and coal gasification, both of which are carbon-intensive processes that negate the greenness of hydrogen. Water electrolysis using renewable energy is a cleaner method but it is currently constrained by high cost, poor efficiency and scalability particularly to locations that have

scarcity of renewable resources. In a bid to overcome these shortcomings, studies have turned to high-tech technologies that have the capacity of generating hydrogen more efficiently and with a less negative environmental effect. The innovations include the Rising Pressure Reformer (RPR) process, which is a new technology that involves the use of advanced thermochemical reactions at dynamically controlled pressure and temperature. The process is able to maximize the reaction kinetics, reduce the energy losses and has a possibility of reducing the overall carbon intensity of hydrogen production. Besides that, its flexibility and modularity make it compatible with integration into various industrial ecosystems. The study will examine the technical feasibility and environmental impact of the RPR process in relation to sustainable hydrogen production. The paper offers a complete assessment of energy, compares CO₂ emissions with those from established fossil fuel-based technologies, and evaluates the broader ecological effects of using RPR. By placing the RPR process at the centre of the interface where the low carbon, hydrogen-led economy develops, this work measures its value based on efficiency, emission reduction, and scalability of operations.

SCOPE

The focus of the project is to evaluate and improve Rising Pressure Reformer (RPR) for green hydrogen production that is essential in the transition journey to sustainable energy systems. The project will explore the technological feasibility of RPR. It performs advanced thermochemical reactions under controlled pressure conditions for hydrogen production with high efficiency. It is for maximum utilization of energy use, minimization of the emission, and being scalable and flexible to a wide range of industries such as power generation, manufacturing, and transportation. In this regard, one of the key elements of the project is the identification of the energy demand of the various active industries. This realistic energy demand is

going to make sure that the process of RPR can be instituted successfully for use in a mass application that will enable the widespread use of clean hydrogen. Secondly, the efficiency of the process with regard to energy consumption of the RPR will be compared to other production technologies of hydrogen, and diversity in cost reduction and optimization will be identified. Another aspect that will be involved in the project is the comparative evaluation of CO₂ emission during the generation of hydrogen using the RPR method with the emission under the conventional use of fossil fuel. The amount of CO₂ saved will be quantified, which will identify the environmental benefit of green hydrogen and demonstrates the potential to power much lower carbon. The study will also discuss the sustainability of the RPR process in the long run in terms of the green-house gas emission, resource use, and contribution towards the global goal of combating climate change. Environmental impact testing will be inducted in the project whereby three key parameters will be heavily tested including the green-house gas emissions, energy efficiency, and environmental sustainability. These evaluations will help us better understand how the RPR strategy can lessen environmental damage while in line with global sustainability efforts. Moreover, the project is going to explore scalability and practicability of the RPR process to be applied to different sectors of an industry. The study will show the practical advantages of green hydrogen over traditional energy sources through a study on technical, economic, and environmental feasibility of integrating RPR into existing infrastructure. The project aims to make the RPR process a radical technology in clean generation of hydrogen that will help shift to low-carbon energy solutions in the global energy system. It will, finally, provide good ground for innovation of hydrogen technology in the future to assist in the drive to a sustainable, energy-efficient future.

EXISTING SYSTEM

Although there is increasing acceptance of hydrogen as a major facilitator of a low-carbon economy, the current production methods also suffer from serious defects concerning sustainability, scalability, and environmental footprint. About 95 percent of the huge bulk of hydrogen in the world is produced using fossil fuel technologies, which contribute a great deal to greenhouse emissions around the world.

1. Steam Methane Reforming (SMR)

Steam Methane Reforming remains as the process of hydrogen production, particularly due to the existence of infrastructure it has and the low cost of production compared to other processes. SMR is brought about by natural gas (primarily methane) and steam in high temperatures to produce hydrogen and carbon monoxide, followed by a water-gas shift reaction to produce further hydrogen and carbon dioxide. Even mature and efficient, SMR, as a matter of fact, is carbon-intensive. Approximately 9-12 kilograms of CO₂ are emitted in every kilogram of the generated hydrogen. Carbon capture and storage have been proposed to help offset such emissions, but at present, it is costly and energy-intensive and is not yet a large-scale method..

Table:1 Hydrogen colour spectrum

Terminology		Technology	Feedstock	GHG Footprint
Production Via Electricity	Green Hydrogen	Electrolysis	Wind/Solar/Hydro/Geothermal/Tidal	Minimal
	Purple/Pink Hydrogen		Nuclear	
	Yellow Hydrogen		Mixed Origin Grid Energy	Medium
Production Via Fossil Fuels	Blue Hydrogen	Natural Gas Reforming + CCUS	Natural Gas	Low
	Turquoise Hydrogen	Pyrolysis	Natural Gas	Solid Carbon (by-product)
	Grey Hydrogen	Natural Gas Reforming		Medium
	Brown Hydrogen	Gasification	Brown Coal	High
	Black Hydrogen		Black Coal	

2. Electrolysis

Electrolysis, especially utilizing renewable electric power, is generally declared the most environmentally friendly method - so-called "green hydrogen." The process has, however, rather poor energy efficiency of 60-70 percent and high operating cost - the cost of renewable electric power and electrolyser technology being the leading ones.

Besides, its applicability depends more so on the existence of inexhaustible and dependable renewable energy, which may not be feasible in most regions. These constraints limit the scale of electrolysis especially in continuous mode of operation in large-scale industrial use.

3. Coal Gasification

An older process for coal gasification has been to use coal in order to convert it to synthesis gas-a combination of hydrogen, carbon monoxide, and carbon dioxide-through partial oxidation. It is able to generate hydrogen in volumes but generates a lot of CO₂ and other emissions like sulphur oxides and particulates. Also, it uses a finite and polluting fossil fuel-coal-and hence does not fit the long-term objective of sustainability.

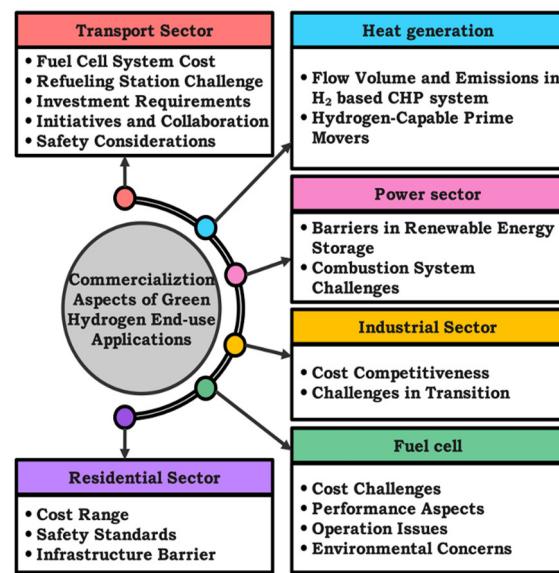
4. Biomass Gasification

One more viable biomass gasification alternative is that biomass gives a more renewable source by being thermochemically converted to hydrogen-rich syngas. Despite the overall attractiveness of the concept, the strategy is marred with serious problems of feedstock accessibility, land competition, lifecycle carbon emissions, and its efficiency in conversion. Its nature is decentralized, and biomass quality is uneven; therefore, it is even more difficult to be implemented on a large scale.

Systemic Challenges

Besides the inherent weaknesses of each process, there are also system-wide problems present in the hydrogen value chain. These are:

- ❖ Scale constraints to meet the large-volume requirements of industries such as steel manufacturing, bulk transportation, and long-term energy storage.
- ❖ Clean processes like electrolysis are energy-intensive especially the clean processes.
- ❖ Absence of well developed infrastructure to mass-produce, purify, store and supply hydrogen.
- ❖ The high cost of capital and complicated processes create hurdles in the economy.


PROPOSED SYSTEM

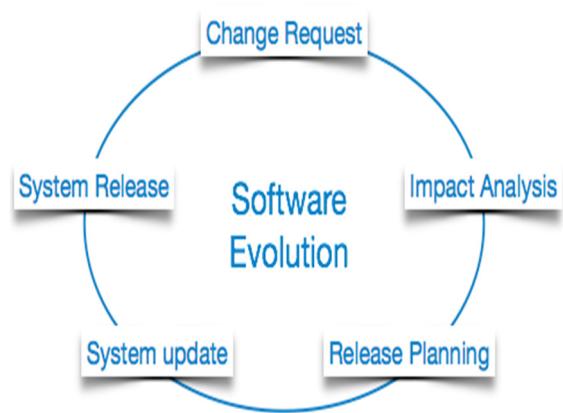
The RPR process is a highly promising technology for green hydrogen production in the sense that it offers high efficiency, a low environmental footprint, and good compatibility with renewable energy sources. In this respect, the thermochemical reforming of hydrocarbons takes place under increasing pressure, with dynamically increasing pressure that enhances reaction kinetics, increases the hydrogen yield, and also reduces the total amount of energy used by a great deal as compared to conventional processes such as Steam Methane Reforming (SMR), or coal-gasification. Thermodynamic performance is transferred to less loss of energy and more heat recovery that results in less operating cost and less carbon intensity. One of the major benefits of the RPR process is that it would be fully compatible with renewable energy sources, such as solar, wind, or hydropower, and thus would allow making hydrogen with practically no carbon footprint. Moreover, the fact that the system can be run in a hybrid fashion, which guarantees that the system can switch between different energy sources depending on their availability, makes it immune to the variability and fluctuation characteristic of renewable energy.

Compared to traditional hydrogen production systems, which are very dependent on fossil fuel and emit huge amounts of CO₂ gas, the RPR process reduces coal and natural gas dependence as much as possible, therefore offering a cleaner

and more environmentally friendly alternative. It also manages the carbon by-products much better due to more efficient separation and possible directions of use, such as CCU or integration into the cyclic carbon systems. Moreover, the modularity and scalability of the RPR system give it the best flexibility in a large spectrum of applications ranging from small and distributed modules of hydrogen generation to large-scale industrial plants.

Fig.1 Commercialization aspects of green hydrogen

This flexibility is especially important for such industries as chemical production, oil refining, ammonia manufacture, heavy haulage, and steel production-industries where decarbonization is technically difficult and to which its strategic importance is great. Furthermore, RPR process may be integrated with smart energy control systems in order to achieve optimization of production plans as a dynamic of grid availability and cost of energy for the encouragement of operating efficiency and economic payoff.


Apart from the environmental benefits, the RPR process is characterized by great economic outcomes; it reduces operation costs due to the increased efficiency of energy consumption, and further, the use of renewable power results in the reduction of the costs, which contributes to the cost-effectiveness of the process. Material improvements in catalysts and heat exchangers

and real time optimization through digital monitoring technology through continuous research and development can further improve the process. Policy support, carbon pricing schemes, and incentives of low-carbon hydrogen production may further increase mass-scale uptake of RPR process in long run. Most importantly, dramatic carbon emissions reduction associated with the RPR process is aligned with the international climate goals and decarbonization paths of industry. The RPR process thus presents an efficient and scalable pathway toward a low-carbon hydrogen future with ever-increasing green demand for hydrogen particularly in industries that possess a high number of abatable emissions.

WORKFLOW

RPR system process flow is a coordinated process flow and not only involves the actual hydrogen production process but also the software development process that supports the entire system. Hardware and software have to collaborate to offer optimum performance, scalability, safety, and sustainability for hydrogen-based systems like the RPR. This is done in a continuous number of interrelated processes that involve creating the changes, testing their effect, planning the release, integration into the system, and publication of the final release. This is an ongoing feedback-based framework that is active and therefore improvement-friendly.

Fig.2 Software Evolution

1. Initiation – Change Request

It initiates the Change Request. Change requests can come from operational data, end-user feedback, technology updates, or external regulatory updates. An example is that in case the real-time monitoring data shows variable pressure affecting hydrogen output, the engineers can propose a modification in the control logic. The change requests may also involve the addition of new renewable energy inputs, enhancing the user interface of the control panel, or the use of high-quality analytics to understand processes better. It is important in RPR system due to the sensitive nature of thermochemical reforming that must be steady at different temperatures and pressure. As the demand for hydrogen increases and policies change, these requests will evolve.

2. Evaluation – Impact Analysis.

Once a change request is recorded, we dive into a thorough Impact Analysis. This helps us to identify the functional and technical impacts the proposed changes may have on the RPR system. In particular, the effect on hydrogen yield, energy efficiency, process stability, and system safety needs to be assessed by the engineers. Indicatively, updating a control algorithm to allow for dynamic pressure control has to be reconsidered in view of possible impacts of such a change on catalytic reactions, heat exchange efficiency, or on safety limits.

The interaction of the change with the existing system components - both hardware and software - needs to be assessed during this phase. It is at this point that simulations and predictive modelling can be done by the engineers who can predict the outcome of the change and whether it would make or break the existing operations. The change is only realized after passing the risk and performance examination.

3. Planning – Release Strategy

The workflow is then passed with the approved change to Release Planning. During this stage, both the Software Development and Engineering

Departments collaborate to identify the manner in which the change is going to be effected. Resource allocation (technical personnel, testing equipment) and timing (not to disrupt the ongoing hydrogen production) are considered along with the strategic planning of rollback initiatives in case errors occur.

Downtime in an industrial setting like in the RPR plant should be avoided or at least kept minimum. Hence, software releases are usually planned during low demand periods or when there is a

The allowed changes are actually effected in the system in the System.Update step. In the case of the RPR system, where real time control is very important, all the software changes are first tried out in simulation before being actually applied. This will be to ensure that process variables like the pressure, temperature and gas composition remain within safe

maintenance plan. In case a number of changes are aligned they could be included in the same release cycle in order to maximize efficiency and not to hinder operation.

4. Execution – System Update

and efficient limits after the update. The renewable energy contributions testing is also incorporated at this stage by the engineers to make sure that the effects of the weather, such as increasing or decreasing of wind or sunlight does not interfere with stability of the hydrogen production

Property	Diesel	Biodiesel	Gasoline	Compressed Natural Gas (CNG)	Liquefied Natural Gas (LNG)	Propane (LPG)	Ethanol	Methanol	Hydrogen
Energy content	35.8 MJ/L	38-42.6 MJ/kg	34.2 MJ/L	53.6 MJ/kg	55.5 MJ/kg	46.4 MJ/kg	26.8 MJ/L	19.9 MJ/L	141.8 MJ/kg
Lower heating value (MJ/kg)	42-45	37-39	43-48	47-53	50-56	46-50	23-29	19-20	120-142
Heat of evaporation (kJ/kg)	290-320	270-290	400-450	750-850	380-450	350-400	840-900	950-1100	440-460
Flammability range (in air)	0.6-4.0%	1.0-6.0%	1.4-7.6%	5-15%	5-15%	1.5-10.1%	3.3-19%	4-75%	6-36%
Ignition energy (J)	0.8-1.6	0.7-0.9	0.25-0.3	0.17-0.25	0.25-0.35	0.2-0.25	0.2-0.3	0.3-0.5	0.017-0.05
Viscosity (cSt)	2-6	3.5-6.0	0.4-0.8	0.02-0.2	0.05-0.2	0.4-1.0	1.0-1.2	0.5-1.0	0.007
Density (kg/m ³)	830-860	860-900	700-800	0.67-0.9	420-470	540-580	789	792	0.089-0.090
Carbon content	264 g/L	0.79 g/MJ	235 g/L	30-90 g/MJ	25 g/MJ	73 g/MJ	35 g/MJ	107 g/MJ	0 g/kg
Sulphur content	<15 ppm	0-20 ppm	0-10 ppm	<1 ppm	<1 ppm	<1 ppm	0-17 ppm	0-5 ppm	0.1 ppm
Nitrogen content	<15 ppm	<10 ppm	0-8 ppm	<1 ppm	<1 ppm	<1 ppm	0-62 ppm	<1 ppm	0.1 ppm

(Source: <https://afdc.energy.gov/fuels/properties>)

Table 2: Comparison of properties of hydrogen with other fossil fuel

5. Deployment – System Release

They are then put into the live environment once they have been tested and validated in the update testing during the System Release stage. For instance, system variables such as the hydrogen output rate, energy input efficiency and CO₂ emission are fine-tuned upon the introduction of a new optimization algorithm. The output of this

phase is also used to create new change requests thus repeating the process of improvement.

Integrated Workflow Benefits

It is an end-to-end process that gives a formal way of operating the RPR system as a living and dynamic platform. It ensures that the fixes are not only reactive but also proactive per the performance information, predictive analytics, and sustainability goals. Through its

incorporation into the lifecycle of operations of the system, companies using the RPR process will be capable of maintaining a steady quality production, downtime reduction, reduced operating expenses, and regulatory compliance. Furthermore, it affords you ample opportunity to integrate the latest technologies like AI-driven predictive control, real-time carbon tracking, and energy forecasting. This indeed boosts the system's overall intelligence and responsiveness.

CONCLUSION

The Rising Pressure Reformer process is one of the major developments in the worldwide push for green hydrogen. It is not only cost-effective, but it is also friendly to the environment. In the light of increasing energy requirements, more restrictive environmental regulations, and an acute need to reduce global greenhouse gas emissions, the RPR process is a highly promising alternative to conventional hydrogen production processes such as SMR and coal gasification. Unlike these traditional systems that are fossil fuel-intensive and have been a significant contributor to carbon emissions, the RPR process uses controlled high-pressure thermochemical reactions that maximize hydrogen production and also reduces the amount of energy input required by a large margin. The whole is much more efficient and the cost of operation minimum, especially when combined with renewable sources of energy such as solar, wind, or water.

Economically, RPR technology has a strong value proposition of representative decarbonization of industries without compromising productivity or cost effectiveness. Also, by offering compatibility with existing infrastructure and modular design, phased deployment is flexible and minimizes capital investment risk, making industries grow in phases, thus within their financial and operational grasp. Aside from that, the RPR process is the most agreeable within international policy matrices, which are turning out to promote low-emission technologies through tax and carbon credit incentives and direct subsidies. With significant CO₂ reduction, RPR not only

complies with today's regulations but puts users well ahead of any future requirements. It plays a key role in the global move towards greener energy, helping slash carbon penalties whilst ensuring energy security and promoting large-scale hydrogen production. In general, it's an all-round solution that solves the economic, environmental and technical challenges found today in hydrogen production, thereby establishing its importance in building a sustainable, robust hydrogen economy.

FUTURE ENHANCEMENT

Even with the recent breakthroughs of the RPR process, there is still room for further development in the future for improved performance, cost, and wider spread into worldwide use. Progress has been made in advanced materials science, specifically in developing catalysts and reactor linings able to operate under high pressure and optimized reaction kinetics and selectivity. Increasing catalyst life and productivity not only reduces maintenance but also enhances overall system stability and long-term throughput.

We can further enhance thermal management by incorporating high-efficiency heat exchangers and regenerative energy systems. These technologies minimize energy losses and enable the process to virtually recycle the heat in an autonomous way. In the future, further integration with smart grid technology and real-time energy management systems can increase the economic viability and sustainability of the RPR process. This may be achieved by the dynamic adjustment of operating parameters according to changes in renewable energy supply and electricity prices. Such flexibility will be key in large-scale operations, since variability in energy supply needs to be matched by consistent production output. Moreover, digital twin technology and AI-driven control systems could deliver predictive maintenance and real-time performance optimization, reducing downtime and operational glitches.

From an energy systems perspective, future returns will also depend on the construction of a hydrogen infrastructure covering storage, transportation, and re-fuelling, which could integrate the RPR process into decentralized energy systems, industrial clusters, and hydrogen hubs. Global cooperation and policy intervention is important to this infrastructure. Furthermore, investigating synergy applications-such as using RPR with CCU technologies-could make circular carbon cycles possible, where captured CO₂ is converted into valuable products, thereby enhancing overall sustainability. With that, although the RPR process may already be an enabling technology in hydrogen production, innovation, strategic investment, and policy support will be very vital to fully unleashing the process to ensure sustainable impacts within the net-zero energy economy.

REFERENCES

- [1] S. Satyapal, "Hydrogen: Clean, Flexible Energy Carrier," US Department of Energy, 21 February 2017.
- [2] J.G. Speight, Properties of water, In Natural water remediation, Butterworth-Heinemann, 2023.
- [3] A. Asiegbu, M. Khan and A. Almaktoof, "Green Hydrogen: A Clean Energy Solution to the Transportation Industry in Germany," SAIEE African Research.
- [4] C. J. Cleveland, History Of Hydrogen, Netherlands :Elsevier Science, 2004.
- [5] S. Lee And W. Cheng, "How Green Are The National Hydrogen Strategies?," Sustainability, 2022.
- [6] R. Cho, "Why We Need Green Hydrogen," Columbia Climate School, 2021. [Online].
- [7] US Department of Energy, "Hydrogen Production: Electrolysis"
- [8] "Manufacturing Indaba," 19 July 2023.
- [9] "Ethewkini Municipality," 10 March 2023. [Online].
- [10] Cummins, Hylyzer Water Electrolyser, Cummin, 2020.
- [11] The World Bank, "Atlas Of Sustainable Development Goals," The World Bank, [Online]. 16 March 2024].
- [12] T. Tadlock, O. Rubio And D. Ristanovic, "The Green Hydrogen Revolution – Integrating Hydrogen Into Industrial Applications," In 2022 IEEE PCIC Conference, Houston, 2022.
- [13] IEEE, IEEE Standard For Harmonic Control In Electric Power Systems, IEEE, 2022.
- [14] Transnet, Port Development Framework Plan 2022.
- [15] SolarGIS, "Solar Resource Maps And GIS Data For 200+ Countries And Regions," Solargis, [Online], March 2024.
- [16] SolarGIS, Solar resource maps & GIS data, SolarGIS.
- [17] Global Wind Atlas, Wind Speeds Along The Coastline of South Africa, Global Wind Atlas, 2023.
- [18] D. Vagiona And N. Karanikolas, " A multicriteria approach to evaluate offshore wind farms siting in Greece" Global NEST Journal, 2021.
- [19] I. Booth, P. Lawlor, Hydrogen Production In South Africa – The Fuel Of A Green Future?, Investec, 2022
- [20] E. L. M. Vasileiou And D. G. Vagiona, "Gis-Based Multi-Criteria Decision Analysis For Site Selection Of Hybrid Offshore Wind And Wave Energy Systems In Greece" Renewable And Sustainable Energy, 2017.
- [21] D. Li, E. J. Park, W. Zhu, Q. Shi, Y. Zhou, H. Tian, Y. Lin, A. Serov, B. Zulevi, E. D. Baca, C. Fujimoto, H. T. Chung, and Y. S. Kim, "Highly quaternized polystyrene ionomers for high performance anion exchange membrane water

electrolysers," *Nature Energy*, vol. 5, no. 5, pp. 378–385, Mar. 2020.

[22] I. Vincent, E.-C. Lee, and H.-M. Kim, "Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large scale hydrogen production," *Sci. Rep.*, vol. 11, no. 1, pp. 1–12, Jan. 2021.

[23] W. H. Lee, Y.-J. Ko, J. H. Kim, C. H. Choi, K. H. Chae, H. Kim, Y. J. Hwang, B. K. Min, P. Strasser, and H.-S. Oh, "High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells," *Nature Commun.*, vol. 12, no. 1, pp. 1–10, Jul. 2021.

[24] H. G. Kuppusamy, P. Dhanasekaran, N. Nagaraju, M. Neeshma, B. M. Dass, V. M. Dhavale, S. M. Unni, and S. D. Bhat, "Anion exchange membranes for alkaline polymer electrolyte fuel cells—A concise review," *Materials*, vol. 15, no. 16, p. 5601, Aug. 2022.

[25] H. Ding, W. Wu, C. Jiang, Y. Ding, W. Bian, B. Hu, P. Singh, C. J. Orme, L. Wang, Y. Zhang, and D. Ding, "Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production," *Nature Commun.*, vol. 11, no. 1, pp. 1–11, Apr. 2020.

[26] B.-W. Zhang, T. Zheng, Y.-X. Wang, Y. Du, S.-Q. Chu, Z. Xia, R. Amal, S.-X. Dou, and L. Dai, "Highly efficient and selective electrocatalytic hydrogen peroxide production on Co-O-C active centers on graphene oxide," *Commun. Chem.*, vol. 5, no. 1, pp. 1–7, Mar. 2022.

[27] J. Tan, B. Kang, K. Kim, D. Kang, H. Lee, S. Ma, G. Jang, H. Lee, and J. Moon, "Hydrogel protection strategy to stabilize water-splitting photoelectrodes," *Nature Energy*, vol. 7, no. 6, pp. 537–547, Jun. 2022.

[28] Y. Qi, Y. Zhang, L. Yang, Y. Zhao, Y. Zhu, H. Jiang, and C. Li, "Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation," *Nature Commun.*, vol. 13, no. 1, pp. 1–11, Aug. 2022.

[29] F. Russo, V. Luongo, M. R. Mattei, and L. Frunzo, "Mathematical modeling of metal recovery from E-waste using a dark-fermentation leaching process," *Sci. Rep.*, vol. 12, no. 1, pp. 1–17, Mar. 2022.

[30] S. S. Kumar and V. Himabindu, "Hydrogen production by PEM water electrolysis—A review," *Mater. Sci. Energy Technol.*, vol. 2, no. 3, pp. 442–454, 2019.