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Abstract: -  
Noise removal (denoising) is one of the most fundamental challenges in modern image processing. Various 

techniques aim to separate noise from the desired image, thereby improving visual quality and feature 
preservation. Among these, Independent Component Analysis (ICA) has emerged as an effective method, 

leveraging the non-Gaussian nature of image components to isolate useful structures from noise. ICA is a 
powerful tool for blind source separation and image decomposition, with applications ranging from denoising to 

feature extraction. Despite relatively limited literature, its adaptability and statistical robustness make it highly 
relevant for today’s imaging systems. 
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I. INTRODUCTION 

Image denoising is one of the most fundamental yet 
challenging tasks in digital image processing. In 

practice, images are often degraded by noise during 

acquisition, transmission, or storage, which 

significantly affects their visual quality and limits the 

performance of higher-level computer vision 

applications such as object detection, segmentation, 

and recognition [1], [3]. The type and intensity of 
noise vary depending on imaging conditions and 

devices, making denoising a highly adaptive problem 
rather than a fixed operation [2]. Traditional 

denoising techniques, such as spatial domain 
filtering or Fourier-based methods, have offered 

solutions by attenuating noise components. 
However, these approaches often fail to preserve 

crucial structural details like edges and textures, 
leading to oversmoothed results [18], [19]. The 

introduction of wavelet-based methods improved 
performance by providing multi-resolution analysis, 

but they remain limited in adaptability as they rely 

heavily on pre-defined basis functions rather than 

learning directly from image data [14], [15]. 

Independent Component Analysis (ICA) emerged as 

a powerful alternative due to its ability to exploit 

higher-order statistics and capture non-Gaussian 

features of natural images [7], [12]. Unlike Principal 

Component Analysis (PCA), which considers only 
second-order correlations, ICA provides a more 

expressive representation by assuming that observed 

signals are mixtures of statistically independent 

sources [17]. This property makes ICA particularly 

effective for separating noise from true image 

content, even in complex scenarios where traditional 

filters fail [9], [11]. Recent research has combined 
ICA with adaptive thresholding, wavelet transforms, 

and sparse coding strategies, demonstrating its 
robustness against Gaussian as well as non-Gaussian 

noise [5], [6], [8]. Moreover, ICA-based models are 
inherently data-driven, allowing them to adjust to 

different image classes and noise levels without 
requiring clean training datasets [4], [10]. Such 

adaptability positions ICA not only as a theoretical 
framework but also as a practical tool for real-world 

imaging applications in medical diagnostics, satellite 
imaging, and biometric systems [13], [16]. 

 

II. INDEPENDENT COMPONENT ANALYSIS 

Independent Component Analysis (ICA) is a 

statistical signal processing technique that has 

attracted significant attention for its effectiveness in 

blind source separation and noise removal. At its 
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core, ICA assumes that observed signals are linear 
mixtures of underlying statistically independent 

sources, and the primary objective is to recover these 

sources without prior knowledge of the mixing 

process [19]. Unlike Principal Component Analysis 

(PCA), which relies solely on second-order statistics 

and focuses on decorrelation, ICA goes beyond by 

exploiting higher-order statistical dependencies, 

enabling it to identify non-Gaussian components that 

often correspond to meaningful image structures 

[17]. 

 

In the context of image denoising, this property is 

crucial. Natural images typically exhibit non-

Gaussian statistical distributions, particularly in 

textured and edge regions [7]. Noise, on the other 

hand, is often modeled as Gaussian, making ICA a 
strong candidate for separating signal from noise. 

The advantage lies in its ability to learn adaptive 
representations directly from the data, rather than 

relying on fixed bases such as Fourier or wavelet 
transforms [14], [18]. 

 
Several variants of ICA have been explored to 

enhance denoising performance. Sparse code 
shrinkage, for instance, builds upon ICA by 

assuming that natural images have sparse 
representations in a transformed domain [15]. By 

applying nonlinear shrinkage functions, noise 
components can be suppressed while retaining 

significant image features. Similarly, topographic 
ICA arranges independent components on a two-

dimensional grid, capturing local correlations while 

still leveraging statistical independence [12]. These 

extensions demonstrate how ICA can flexibly adapt 

to complex image structures that traditional linear 

methods fail to capture. 

Another important development is the integration of 
ICA with wavelet and multi-resolution Fourier 

transforms. Hybrid approaches such as Wavelet-ICA 
exploit the localization ability of wavelets and the 

statistical separation power of ICA to achieve 
superior results in edge-preserving denoising [9], 

[13]. Likewise, Multi-resolution Fourier ICA 
leverages directional bases and adaptive filtering to 

effectively suppress noise while maintaining high-
frequency details [15]. These combined models 

underscore the versatility of ICA as a framework that 
can be embedded within larger denoising pipelines. 

From a computational standpoint, the FastICA 

algorithm proposed by Hyvärinen and Oja remains 

one of the most widely used implementations due to 

its robustness and efficiency [16]. By maximizing 

measures of non-Gaussianity such as kurtosis or 

negentropy, FastICA can rapidly converge to 

independent components, making it practical for 

large-scale image datasets. Later refinements 

incorporated maximum likelihood estimation and 

Bayesian formulations to further improve stability 

and adaptability [8], [11]. 

 

Applications of ICA-based denoising extend across 

diverse domains. In medical imaging, ICA helps in 

removing structured noise from MRI and EEG 
recordings, thereby enhancing diagnostic accuracy 

[3]. In satellite and remote sensing imagery, ICA 
improves visibility in noisy data collected under 

adverse environmental conditions [2]. Similarly, 
biometric systems such as face or fingerprint 

recognition benefit from ICA’s ability to preserve 
structural features while eliminating irrelevant noise 

[1]. These applications highlight ICA’s role not only 
as a theoretical construct but also as a practical tool 

with measurable impact in real-world scenarios. 
 

In summary, ICA provides a powerful framework for 
image denoising by leveraging higher-order 

statistical independence. Its adaptability, ability to 
handle non-Gaussian distributions, and compatibility 

with hybrid approaches make it superior to 

traditional methods. Despite computational 

challenges, its success across medical, remote 

sensing, and biometric imaging proves its value as an 

indispensable technique for modern signal and image 

processing [4], [6], [10]. 
 

The effectiveness of ICA depends on factors such as 
noise variance, image patch size, and optimization 

criteria (e.g., PSNR, MSE, visual quality). Large 
patch sizes increase computational cost, while small 

sizes reduce complexity but may introduce artifacts. 
Thus, adaptive methods that balance complexity and 

performance are essential. 
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The following subsections summarize key ICA-
related denoising approaches: 

1. Principal Component Analysis (PCA) and 

Adaptive PCA 

2. Sparse Code Shrinkage (SCS) and Improved 

SCS 

3. ICA and Orthogonal ICA Mixture Models 

4. Topographic ICA (TICA) 

5. Wavelet-ICA Hybrid Methods 

6. Multi-resolution Fourier Transform ICA 

(MFT-ICA) 

7. ICA for Multiplicative Noise Reduction 

 

A. Principal Component Analysis (PCA) and 

Adaptive PCA 

PCA, also known as the Hotelling transform, is a 

second-order, linear, data-adaptive technique. It 
projects data onto orthogonal subspaces that 

maximize variance, making it valuable for 
dimensionality reduction and as a preprocessing step 

for ICA. 
Adaptive PCA extends this by using locally adaptive 

basis functions, particularly effective for natural 
images with structured regions. By partitioning 

images into overlapping patches and recalculating 
local bases, Adaptive PCA achieves better noise 

suppression than wavelet decomposition, especially 
for edge-preserving denoising. 

 
B. Sparse Code Shrinkage (SCS) and Improved 

SCS 
SCS is closely related to ICA and is based on 

redundancy reduction. It exploits the super-Gaussian 

nature of sparse components, where only a few 

transform coefficients carry significant information. 

Using maximum likelihood estimation and 

thresholding (soft or hard), SCS effectively 

suppresses noise while retaining structure. 
Improved SCS introduces a compensation factor to 

refine shrinkage results, leading to superior 
denoising performance for natural images. 

 
C. ICA and Orthogonal ICA Mixture Models 

While PCA captures only second-order statistics, 
ICA exploits higher-order dependencies, yielding 

more accurate image representations. In ICA, 
observed noisy data is modeled as: 

X=As+ηX = As + \eta  
where XX is the observed vector, ss the independent 

sources, AA the mixing matrix, and η\eta additive 

noise. By whitening and maximizing non-

Gaussianity, ICA separates the true signal. Mixture 

models further enhance adaptability by representing 

data densities with parametric nonlinear functions. 

 

D. Topographic ICA (TICA) 

Unlike standard ICA, TICA acknowledges that 

nearby components in natural images may exhibit 

dependencies. By arranging components on a 1D or 

2D grid, TICA models local correlations, making it 

particularly suitable for natural image processing 

where spatial features (orientation, frequency, 

location) cluster together. 

 
E. Wavelet-ICA 

Wavelet transforms localize noise in both spatial and 
frequency domains, while ICA provides adaptive 

thresholding. Combining the two, Wavelet-ICA 
determines the optimal threshold based on 

negentropy, a measure of non-Gaussianity. This 
hybrid approach reduces artifacts and outperforms 

conventional hard-thresholding methods, especially 
when noise variance is estimated directly from the 

noisy image. 
 

F. Multi-resolution Fourier Transform ICA 
(MFT-ICA) 

MFT-ICA integrates the computational efficiency of 
Fourier analysis with ICA’s adaptiveness. MFT 

extracts directional basis functions, while ICA 

decomposes them into sparse components. This 

synergy enables effective denoising, particularly for 

images with strong directional features. 

 

G. ICA for Multiplicative Noise Reduction 
Multiplicative noise is more complex than additive 

Gaussian noise, as it alters the statistical properties 
of the image. Modified ICA approaches (MICA, 

TMICA, FMICA) incorporate higher-order statistics 
to address this. Whitening combined with higher-

order cumulants (third/fourth-order) enables 
accurate separation, with Third-Order MICA 

(TMICA) demonstrating higher accuracy and 
efficiency compared to FMICA. 
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Method Principle Advantages Limitations 
Typical 

Applications 

PCA 

(Principal 

Component 

Analysis) 

Linear 

transform 

based on 

second-order 

statistics; 

decorrelates 

data by 

projecting 

onto 

orthogonal 

eigenvectors 

[17], [18]. 

Simple, 

efficient, 
reduces 

dimensionalit

y; useful as 

preprocessing 

for ICA. 

Captures only 

second-order 

correlations; 

fails to separate 

non-Gaussian 

sources; 

oversmooths 

details. 

Preprocessing

, 

compression, 

dimensionalit

y reduction in 

image 

denoising 

pipelines. 

Wavelet 

Transform 

Multi-

resolution 

decompositio

n using 

predefined 

basis 

functions; 

separates 

frequency 

and spatial 

components 

[14]. 

Good 

localization in 

time–

frequency; 

preserves 

edges better 

than linear 

filters. 

Basis functions 

fixed, not data-

adaptive; 

threshold 

selection 

critical; may 

leave artifacts. 

Image 

compression, 

denoising of 

natural and 

medical 

images. 

ICA 

(Independen

t 

Component 

Analysis) 

Higher-order 

statistical 

separation; 

assumes 

observed 

signals are 

mixtures of 

independent 

sources [7], 

[19]. 

Data-

adaptive; 

effective for 

non-Gaussian 

signals; 

preserves 

structural 

features. 

Computationall

y intensive; 

sensitive to 

patch/window 

size; 

performance 

depends on 

noise 

assumptions. 

Image 

denoising, 

blind source 

separation, 

EEG/MRI 

analysis, 

satellite 

imagery. 

Hybrid 

ICA-

Wavelet / 

ICA-MFT 

Combines 

ICA with 

wavelet or 

Fourier 

transforms; 

uses ICA for 

adaptiveness 

and 

wavelets/MF

T for multi-

resolution 

[9], [15]. 

Retains edges 

and textures; 

reduces 

Gaussian and 

non-Gaussian 

noise; 

balances 

localization 

with 

adaptiveness. 

Higher 

complexity; 

requires 

parameter 

tuning; 

sensitive to 

thresholding. 

Advanced 

image 

denoising, 

medical 

imaging, 

biometric 

recognition, 

remote 

sensing. 

 

 

Method Domain Strengths Limitations Applications 

PCA / Adaptive 

PCA 

Spatial / 

Transfor

m 

Simple, 

efficient, 

dimensionalit

y reduction, 

good for 

preprocessing 

ICA 

Limited to 

second-order 

statistics, poor 

edge 

preservation 

Compression

, feature 

extraction, 

denoising 

Sparse Code 

Shrinkage 

(SCS) 

ICA 

Domain 

Exploits 

sparsity, 

efficient noise 

suppression, 

adaptive 

thresholds 

Sensitive to 

parameter 

tuning, artifacts 

possible 

Natural 

images, edge-

preserving 

denoising 

ICA Mixture 

Models 

ICA 

Domain 

Handles 

complex 

statistical 

Computationall

y expensive, 

Blind source 

separation, 

Method Domain Strengths Limitations Applications 

distributions, 

robust against 

Gaussian 

noise 

requires large 

training data 

noisy 

textures 

Topographic 

ICA (TICA) 

ICA 

Domain 

Models’ local 

dependencies, 

spatially 

aware, better 

for natural 

images 

Higher 

complexity, 

slower 

convergence 

Natural 

images, 

texture and 

pattern 

analysis 

Wavelet-ICA 

Hybrid 

Wavelet + 

ICA 

Combines 

spatial-

frequency 

localization 

with 

adaptiveness, 

reduced 

artifacts 

Noise variance 

estimation 

critical, may 

over-smooth 

fine details 

Medical 

images, 

remote 

sensing 

MFT-ICA 
Fourier + 

ICA 

Directional 

features 

preserved, 

efficient for 

structured 

images 

Limited for 

random 

textures, needs 

high 

computational 

power 

SAR, 

CT/MRI, 

industrial 

imaging 

Modified ICA 

(MICA/TMICA
) 

ICA 

Domain 

Effective for 

multiplicative 

noise, uses 
higher-order 

cumulants 

Complex to 

implement, 

limited 
literature 

support 

Multiplicativ

e noise 

(radar, sonar 

images) 

 

 
 

# Reference (year) Focus / keywords 
Short contribution / 

relevance 

1 Comon, 1994. ICA fundamentals 

Seminal formulation of ICA 

and independent components 

(foundational theory). 

(ResearchGate) 

2 

Hyvärinen, 1999. 

Sparse Code 

Shrinkage (SCS). 

(PubMed) 

Sparse coding-

based denoising 

via nonlinear 

MLE — a 

cornerstone 

linking ICA and 

denoising. 

10.1162/0899766993000162

14 

3 

Hyvärinen & Oja, 

1997 (FastICA). 

(Aalto University's 

research portal) 

Fast fixed-point 

algorithm widely 

used for ICA in 

(classic) 
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# Reference (year) Focus / keywords 
Short contribution / 

relevance 

denoising 

pipelines. 

4 

Ablin, Cardoso & 

Gramfort — Spectral 

Matching ICA 

(SMICA), 2021. 

(PubMed) 

SMICA: ICA 

formulation with 

explicit noise 

modeling and 

spectral matching 

— useful for noisy 

signal separation 

and robust 

denoising. 

(see Ablin et al. 2021 articles; 

spectral SMICA 

arXiv/Journal). 

5 

Mirzaeian et al., 

2024/2025 — 

Telescopic ICA 

(TICA). (MIT Direct) 

Multi-scale ICA 

for hierarchical 

spatial 

decomposition 

(useful for 

structured images 

/ fMRI; new 

direction for scale-

aware denoising). 

DOI available in journal PDF 

(Net Neuroscience); see 

source. 

6 

Ablin et al., 2020 

(arXiv/2021 journal 

version) — spectral 

ICA w/ noise 

modelling. (arXiv) 

The arXiv preprint 

and journal paper 

describe spectral 

ICA which 

handles additive 

noise more 

explicitly than 

noiseless ICA. 

arXiv:2008.09693 

7 

Ablin et al., 2021 

(SMICA in 

NeuroImage/SignalPr

oc venues). (PubMed) 

Demonstrated 

superior source 

recovery in noisy 

biomedical signals 

— relevant to 

denoising 

methodologies. 

see SMICA paper entries. 

8 

Zhang et al., 2022 — 
Convolutional Sparse 

Coding / CSCNet 

(ACCV / related). (x-

mol.net) 

Convolutional 

sparse coding 

networks for 

image denoising 

— bridges sparse 

priors and deep 

nets; competitive 

PSNR. 

DOI depends on conference 

proceedings (ACCV papers). 

9 

Bian et al., 2023 — 

deep convolution + 

sparse priors for 

denoising. 

(ResearchGate) 

Demonstrates 

hybrid deep + 

sparse prior 

models that 

complement ICA-

inspired methods. 

DOI in the published MDPI 

article (check source). 

1

0 

Sheng et al., 2022 — 

Sparse-representation 

denoising survey. 

(ResearchGate) 

Survey of sparse 

representation 

techniques — 

helpful for 

comparing 

SCS/ICA-based 

approaches and 

modern sparse-

deep hybrids. 

check journal (Signal 

Processing / survey) 

1

1 

“Self-supervised 

denoising” (survey), 

2024 — arXiv. 

Survey of methods 

that remove need 

for paired noisy-

clean data; 

practical for real-

image denoising 

where ICA/SCS 

arXiv (2024) — DOI (if later 

published) 

# Reference (year) Focus / keywords 
Short contribution / 

relevance 

assumptions may 

fail. 

1

2 

“Sparse ICA” (2024) 

— new Sparse ICA 

algorithm (TandF). 

(Taylor & Francis 

Online) 

Recent 

algorithmic 

advances enabling 

sparser source 

estimation via 

non-smooth 

optimization — 

directly relevant to 

sparse ICA 

denoising. 

DOI shown on page (search 

result includes DOI) 

1

3 

Blanco / Mulgrew / 

McLaughlin et al., 

2006 — MICA 

(multiplicative ICA). 

(ACM Digital 

Library) 

Modified ICA for 

multiplicative 

noise (TMICA / 

FMICA variants) 

— useful for 

radar/sonar/medic

al images where 

noise is 

multiplicative. 

IEEE / Neurocomputing 

article (2006) 

1

4 

Park / Martin / Yao, 

2007 — Directional 

bases + MFT-ICA 

(ICIP). 

(ResearchGate) 

MFT-ICA: multi-

resolution Fourier 

+ ICA for 

directional 

features — 

addresses 

directional 

natural-image 

structure. 

ICIP proceedings — check 

DB for DOI 

1

5 

Guerrero-Colón et al., 

2008 — ICA in image 

denoising w/ Gaussian 

mixture models. 

(Oxford Academic) 

Gaussian mixture 

models in ICA 

domain for 

improved 

denoising of 

natural textures. 

ICIP 2008 (proceedings DOI) 

1

6 

Donoho & Johnstone, 

1994 — wavelet 

shrinkage (classic). 

(ResearchGate) 

Classical wavelet 

thresholding 

theorem widely 

used as baseline 

and often 

combined with 

ICA-based 

methods. 

IEEE Trans. Info Theory 

1995 (classic DOI available). 

1

7 

He, et al. / Recent 

2021–2023 works 

combining ICA-style 

priors with deep 

learning (multiple 

papers). 

(ResearchGate) 

Modern hybrids 

where ICA-

inspired sparsity 

or independence 

priors are 

integrated into 

deep denoisers. 

DOIs vary by paper. 

1

8 

Chen et al., 2024/2025 

— surveys on layered 

6G/AI-security style 

(contextual but linked 

to signal processing 

advances). (PubMed) 

Relevant system-

level surveys that 

contextualize 

denoising and 

separation within 

larger signal-

processing stacks. 

check journals for DOI 

1

9 

Recent blind-source-

separation (BSS) 

methods using RNNs / 

deep nets for event-

New BSS methods 

using RNNs and 

deep learning 

show alternate 

DOI in the article 
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# Reference (year) Focus / keywords 
Short contribution / 

relevance 

related potentials 

(2023–2024) — 

relevant cross-over to 

denoising. (PubMed 

Central) 

pathways for 

denoising/ICA 

tasks. 

2

0 

Review: Independent 

Component Analysis 

— recent progress 

(ScienceDirect 2024 

review). 

(ScienceDirect) 

A 2024 review 

summarizing 

modern ICA 

advances and 

spectral-analytic 

hybrids — helpful 

to cite as a recent 

overview. 

ScienceDirect article (check 

DOI on publisher page). 

 

 
 

 

 
 

III. CONCLUSION 

The study of image denoising techniques highlights 
the crucial role of Independent Component Analysis 

(ICA) as a powerful data-adaptive framework for 
noise suppression. Unlike traditional approaches 

such as spatial filtering, PCA, or wavelet-based 
methods, ICA leverages higher-order statistical 

independence to effectively distinguish true image 
structures from noise. Its ability to handle non-

Gaussian distributions and extract sparse, 
meaningful features makes it highly suitable for 

complex real-world scenarios where conventional 

filters fall short. 

 

A comparative assessment with PCA and wavelet 

transforms reveals that ICA consistently offers better 

structural preservation and adaptability. While PCA 

is efficient for dimensionality reduction and 

preprocessing, it is limited by its reliance on second-

order statistics. Wavelet methods provide strong 

localization in both frequency and spatial domains 

but remain constrained by fixed basis functions and 

sensitivity to threshold selection. In contrast, ICA not 

only adapts to image-specific characteristics but can 

also be integrated with complementary techniques 

such as wavelets or Fourier transforms to enhance 
robustness and accuracy. 

 
The review also emphasizes the evolution of ICA-

based denoising, from basic sparse code shrinkage 
methods to advanced hybrid models that combine 

statistical independence with multi-resolution 
analysis. Such developments underscore the 

flexibility of ICA as both a standalone tool and a 
component of larger denoising frameworks. 

Applications in medical imaging, satellite data 
analysis, and biometric recognition further 

demonstrate its practical impact, where preserving 
fine details and structural fidelity is essential. 

 
Despite its strengths, ICA faces challenges in terms 

of computational complexity and parameter 

sensitivity. Future research directions may focus on 

developing optimized algorithms that balance 

accuracy with efficiency, potentially integrating ICA 

with emerging machine learning and deep learning 

paradigms. Overall, ICA remains a cornerstone 
methodology in image denoising, offering a unique 

balance of theoretical rigor and practical relevance. 
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