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Abstract: 
            Potato crops are majorly affected by fungal and oomycete diseases; the most popular and harmful 

diseases are early blight and late blight caused by Alternaria solani and Phytophthora infestans. In most 

cases, their symptoms are visually similar in the early stages. It is difficult to accurately identify them and 

apply specific treatment or implement other disease management strategies. 

Identification procedures based on Artificial Intelligence, especially the Deep Learning and Machine 

Learning techniques, are always working effectively compared to the manual or traditional procedures. 

This study presents the differences between the performance of a deep learning model, such as a CNN, in 

comparison to a few popular traditional Machine Learning classifiers for identifying Alternaria solani and 

Phytophthora infestans infections in potato plants. We selected, trained, tested, and validated models of a 

Convolutional Neural Network (CNN), Support Vector Machine (SVM), and K-Nearest Neighbours (KNN) 

on an expertly vetted dataset of images of leaves with early blight, late blight, and healthy types. The CNN 

model trained on some raw image data performed better than the other two models, achieving an accuracy 

of 91.7%. 

On the other hand, the traditional models, such as SVM and KNN, which depend on manually selected 

features, achieved accuracy of 68.3% and 14.3%. 

The results powerfully highlight the advantage of CNN-based deep learning models in handling complex 

tasks such as plant disease classification, owing to their exceptional capability for learning meaningful 

features. The significant performance difference has been noticed in this work, which strongly confirms that 

the deep learning model is the best paradigm in fine-grained visual classification in agriculture. 
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I.     INTRODUCTION 

Potato is an agricultural crop that is planted worldwide 

and is a vital source of food. Nonetheless, some 
diseases pose a major threat to the production of plants, 

particularly oomycete and fungal diseases. Early 
blight and late blight, which are cause by Alternaria 

solani, and Phytophthora infestans, are among the 
most devastating of them. These are significantly 

causing losses in crops in many countries across the 

world. The two diseases have similar symptoms at an 

early stage, and hence, they cannot be easily 

differentiated by manual identification strategies. 

Misidentification causes a delay in implementing 

proper treatment, increased and often indiscriminate 

dependency on pesticides, and results in both 

economic and ecological impacts. Thus, the creation 

of sound and automated disease detection strategies 

has been essential in ensuring that the production of 

potatoes has a strong, sustainable foundation. 

Manual observation and classical machine learning 

techniques, including SVM and KNN, among others, 

have been employed as traditional methods for 

detecting plant diseases, but have provided only partial 
solutions. However, these approaches are heavily 

dependent on manual characteristics and are not well 
able to generalise to large and mixed datasets. After 

involving the Convolutional Neural Networks (CNN) 
as a deep learning (DL) in AI, image-based 

classification tasks have greatly improved. CNNs are 
also adept at automatically extracting hierarchical 

features from original image data, thereby eliminating 
the need for manual preprocessing and enabling more 

accurate recognition of complex visual features. 
This work presents a comparative evaluation of a 

CNN against traditional ML methods for detecting A. 
solani and P. infestans infections. A selected collection 

of potato leaf images was considered, consisting of the 
following classes: healthy, early blight, and late blight. 

The findings showed a significant performance 

difference, with CNN performing at 91.7%, while 

SVM and KNN performed at 68.3% and 14.3%, which 

can be considered low performance. In addition to 

other evaluation criteria, CNN also proved to be more 

accurate, with a higher recall and F1-score. It 

demonstrates its strength in addressing the issue of 
class imbalance and its ability to detect the nuances of 

visual similarities between early and late blight 
symptoms. 

These findings go beyond the dataset used for the 
rest of the study. This study demonstrates the practical 

relevance of CNN in the automation of agriculture 
using image classification. The example from this 

study shows that CNN can learn intricate visual 
characteristics with no human assistance. Early and 

precise detection of diseases with the help of CNN can 
assist farmers in following specific interventions, 

reducing unnecessary chemical use, and preserving 
crop yield. Additionally, the framework of 

comparisons established in this research will serve as 
a reference point for reviewing other models in the 

future when classifying plant diseases.  

Ultimately, the use of deep learning in precision 

agriculture holds promise for successful farming and 

enhanced food security worldwide. 

II.     RELATED WORKS 

The importance of plant disease identification has 

led to a broad field of scientific research, as it can 
significantly contribute to agricultural productivity 

and food security. Scholars have utilised both 
conventional machine learning (ML) and more recent 

deep learning (DL), which have demonstrated some 
success. 

Early works in this domain relied heavily on image 
processing and manual feature extraction. Barbedo 

provided a thorough review of digital image 
processing techniques for detecting plant disease and 

highlighted the limitations of manually designed 
features [1]. Camargo and Smith proposed an 

algorithm that combines colour co-occurrence 
matrices with Support Vector Machines (SVM) for 

plant disease classification, achieving moderate 

accuracy [2]. Besides, Phadikar and Sil applied the K-

Nearest Neighbours (KNN) algorithm for rice disease 

prediction but faced difficulties when handling 
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complex and large-scale datasets [3]. Although 
innovative, these approaches were commonly limited 

in their performance in real agricultural situations. 
Transfer learning and data augmentation have been 

used to further enhance it. Lu et al. used transfer 
learning using pre-trained CNNs to address small 

training data, leading to better classification [8]. Zhang 
et al. proposed superior CNN structures along with the 

attention mechanism that enhanced accuracy and 
interpretability of the model in detecting maize disease 

[9]. These papers indicate the flexibility of CNN-based 
methods to various datasets and situations. 

Although CNNs have consistently outperformed 
traditional ML methods in plant disease classification, 

there remains a lack of systematic comparative studies 
focused specifically on potato early blight and late 

blight. Most of the literature compares CNN models 
individually or as a combination of multiple crops, but 

they are not compared to classical algorithms like 

SVM and KNN under equal conditions. To fill this gap, 

it is necessary to measure the benefits of DL compared 

to ML in detection of potato diseases.  

To conclude, the existing literature indicates that 

CNN is better at plant disease detection than 

conventional methods of ML. Nonetheless, little is 

known about direct comparative analyses of CNN, 

SVM and KNN in potato blight classification. This 

work is valuable in that it systematically compared 

these methods using a curated dataset of potato leaf, 

introducing novel knowledge on the strengths of these 

two methods and their potential in practice in 

agricultural automation. 

III. DATA & MEHODOLOGY 

A. Dataset 

The dataset used in this research was acquired in the 

publicly available repository of PlantVillage on 
Kaggle [10]. This overall dataset includes the images 

of 14 species of crops, including 38 classes of different 

diseases and healthy leaf samples. In the context of this 

study, the scope was confined to potato (Solanum 

tuberosum) leaves. 

From the dataset, three categories of potato leaf 
images were selected: 

• Healthy potato leaves (152 images) 
• Potato Early Blight (1,000 images) 

• Potato Late Blight (1,000 images) 
This specific selection brought about 2,152 images 

that were used in model development and validation. 
 

 
Fig. 1 Sample images from each category of the dataset 

Figure 1 presents the typical samples of every type 
of potato leaf that was used in this research: healthy, 

early blight, and late blight. These sample images 
display the diversity of the tracks and the visual 

variations in the texture of the leaves, color, and lesion 
patterns used in the training and testing of the models. 

B. Data Preprocessing 

To train the model, several preprocessing operations 

were performed to ensure data consistency and 
enhance the learning process. First, all images have 

been resized to a standardised resolution of 256 x 256 

pixels, which made all inputs uniform in size, but 

without essential disease-specific attributes such as 

lesions and colour alterations. 

The data was subsequent devided into training, 

validation and test sets in 80:10:10 proportions. 

Stratified splitting method was employed to ensure the 

balance of classes in the subsets, thus ensuring 

biasness in the evaluation process was avoided. The 

resulting distribution is summarized in Table 1. 

TABLE I 

DATASET DISTRIBUTION ACROSS SPLITS 

Class Total 

Images 

Training 

Set 

Validation 

Set 

Test 

Set 

Early Blight 1000 800 100 100 

Healthy 152 121 15 16 

Late Blight 1000 800 100 100 
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The training set was augmented using data 

augmentation methods to overcome the weakness of 
the Healthy class size. Operations that were involved 

in augmentation were random rotations, horizontal and 
vertical flipping, zoom, adjustments in brightness, and 

translations. Such transformations yielded more 
diverse samples whilst maintaining original labels of 

the classes hence minimal overfitting and strong 
performance of the trained models. 

With the use of resizing, normalisation, balanced 
splitting, and augmentation, effective preprocessing of 

the dataset was achieved as an effective basis to the 
comparative analysis of CNN, SVM and KNN models 

in potato disease classification. 

C. Model Selection 

To ensure a comprehensive comparison between a 
deep learning and traditional machine learning 

paradigm, three different classifiers were chosen: 
Convolutional Neural Network (CNN), Support 

Vector Machine (SVM) and K-Nearest Neighbours 

(KNN) algorithm. This selection was motivated by the 

interest to compare automated feature extraction and 

manual feature engineering as conceptualized in 

Figure 2. 

 
Fig. 2 Selected DL and ML Models 

1)  Convolutional Neural Network: The CNN was 
selected for its superior ability to automate feature 

extraction, which is essential when complex image 
data is needed. Its structure, which is based on 

convolutional and pooling layers, enables it to learn 
spatial hierarchies of features by utilizing the original 

pixel values. This allows it to be used as the state-of-
the-art option in manual feature engineering removal, 

and it is thus employed for tasks such as image 

classification, including the detection of plant diseases. 

2)  Support Vector Machine: The SVM was chosen 

as a strong traditional classifier to be used as a 

comparative strength. It works on the principle of 

searching for the best hyperplane that maximizes the 

margin among the various classes. It is performance-

intensive on the quality of the input features, and thus 

a useful benchmark to compare the usefulness of hand-
crafted HOG features to the trained representations of 

the CNN. 

3)  K-Nearest Neighbours: The KNN algorithm was 
included as a simple and instance-based baseline 

model. It also categorizes an image as one that is 

mainly like most of its most similar training examples 

in the feature space. The fact that it was as complex 

and non-linear as it illustrates the constraints of a 

simple distance-based method with engineered 

features to this task. 

D. Model Architechture 

In this part, I describe the framework and 

architecture of the three classification models that I use 

in the current work: a Convolutional Neural Network 

(CNN), a Support Vector Machine (SVM), and a K-

Nearest Neighbours (KNN) model. All the models 
were used and optimized to evaluate their performance 

in the potato leaf disease classification problem. 

1) Convolutional Neural Network: The CNN model 

was developed using TensorFlow Keras, featuring a 

sequential structure consisting of 4 convolutional 

blocks to extract features and completely connected 

layers to learn these features. This model takes in 

224x224x3 input images. Every convolutional block 

consists of:  

• A convolutional layer with ReLU activation 

• A dimensionality reduction layer of 

MaxPooling2D 

• Dropout layer (rate = 0.25) is used to prevent 

overfitting. 
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The filters in the convolutional layers are increased in 

number (32, 64, 128, 256) to find hierarchical features 
of low-level edges to high-level patterns. The output 

of the final Covn block is flattened and passes through 
two dense (512 and 256 units, ReLU activation and 

Dropout=0.5) layers. 
The last layer is based on a softmax activation 

function and has three units, corresponding to the three 
target classes. The model was assembled using the 

Adam optimizer with a learning rate of 0.001 and was 
trained on categorical cross-entropy loss. 

 

 
Fig. 3 Architecture of the proposed CNN model showing convolutional blocks, 

filter sizes, and dense layers. 

2) Support Vector Machine: Scikit-learn was used 

to implement the SVM with linear kernel together 

with a regularization parameter C=1.0. The 

Histogram of Oriented Gradients (HOG) was 

applied to extract input features, and it represents the 

local grayscale image gradient structures. The 
model aims at identifying the best hyperplane that 

maximizes the distance between the various classes 

in the feature space. 

3) K-Nearest Neighbours: The KNN classifier 

was based on the Euclidean distance to determine 

similarity between HOG feature vectors. k was 

parameterized to 3, implying that the classification 

of each test sample was done by the majority of its 

three closest neighbours in the training set. 

 
Fig. 4 Architecture of two traditional ML Classifier (KNN and SVM) 

This concludes the detailed discussion of the 

three model architectures adopted for this 
comparative study. The CNN was built as a 

hierarchical and deep feature learner with the 
capacity to handle raw pixel values, whereas the 

SVM and KNN were set to a strong baseline based 
on HOG features. It is based on this difference in 

architecture that the argument of whether the 
representational power of deep learning offers a 

significant advantage over more traditional 

machine learning paradigms is formed in the 

implementation of the specified task of potato 

disease classification. The second section describes 

the experimentation and training procedure 

performed on these models. 



International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep - Oct 2025 

      Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 865 

E. Model Evaluation 

A rigorous evaluation framework was employed to 

quantify model performance on the held-out test set 
Dtest. Let yi denote the true label and ŷi the predicted 

label for the i-th sample. 
The main measure was the Weighted Accuracy that 

considers the imbalance of classes: 

Accuracy = 
�

�
∑ 1��� 	  ŷ� 
�

�
�  

where N is the total number of samples and 1 is the 

indicator function. 

For a deeper analysis, performance was evaluated 

per-class c using the standard definitions of precision 

(Pc) and recall (Rc), based on true positives (TPc), false 

positives (FPc), and false negatives (FNc): 

    Pc = 
���

�������
 , Rc = 

���

�������
 

The per-class F1-score, the harmonic mean of 
precision and recall, served as the key metric for 

assessing the discrimination between the visually 
similar Early Blight and Late Blight classes: 

         F1c = 
�����

�����
 

The macro-averaged scores were calculated to 
provide equal significance of all classes. Confusion 

matrices C were used to visualize and analyze the 
error patterns of the models C where Cij is the 

number of samples in class i that are predicted to be 
in class j. This multi-dimensional method gave a 

detailed evaluation of the efficacy and strength of 

classification. 

IV. RESULT AND DISCUSSION 

This section presents an in-depth discussion of the 

experimental findings from the assessment of the 

Convolutional Neural Network (CNN), Support 

Vector Machine (SVM), and K-Nearest Neighbours 

(KNN) in the classification of potato leaf disease. The 

evaluation is conducted based on quantitative 

measurements, confusion measurements, and 

dynamics of training to offer a multidimensional 
perspective of the capabilities and limitations of each 

model. 

A. Model Training and Convergence: 

The CNN model is trained using the following 

training progression, as shown in Fig. 5, where the 
accuracy and loss curves are plotted against the 14 

training epochs and the 14 validation epochs, 
respectively. The accuracy curves increase steadily 

and are parallel to the validation accuracy, following 
the training accuracy closely, and reach a high 

accuracy of around 92%. On the same note, both sets 
of loss curves monotonically reduce and converge to a 

minimum value. A considerable disparity between the 
training and validation measures of this synchronised 

behaviour indicates that the model was able to learn 
without overfitting. Effective convergence is an 

indication of the effectiveness of architectural 

decisions, such as batch normalisation and dropout, in 

guaranteeing generalised and stable learning. 

 
Fig. 5 CNN training history showing (a) accuracy and (b) loss curves for training 

and validation sets. 

B. Comparative Perfomance Evaluation: 

The quantitative performance of all three models on 

the held-out test set is summarised in Table II below. 

The CNN model was found to perform exceptionally 

well, with a test accuracy of 91.7%. It also scored 

highly on precision (0.922), recall (0.917), and F1-
score (0.916), demonstrating a balanced and strong 
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classification ability across all three classes. 
Traditional ML models, on the other hand, perform 

much worse. The test accuracy of the SVM was 68.3% 
with moderate precision (0.640) and recall (0.683). 

The KNN model was also a very poor predictor, giving 
only an accuracy of 14.3%. Its precision (0.573) was 

standard, but its recall (0.143) and F1-score (0.166) 
were of a critical order, as it showed its underlying 

deficiency in correctly identifying positive instances in 
the data set. 

TABLE IIIII 

COMPARATIVE PERFORMANCE METRICS 

Model Accuracy Precision Recall F1-Score 

CNN 0.9167 0.9218 0.9167 0.9162 

SVM 0.6833 0.6402 0.6833 0.6592 

KNN 0.1433 0.5727 0.1433 0.1663 

 

The difference in performance is visually illustrated 
in Fig. 6, a bar chart that compares the models in all 

the metrics. There is a definite advantage of the CNN 
compared to other models, as it performs significantly 

better and proves its superiority in this image 
classification problem. 

 

 
Fig. 6 Comparative performance analysis of CNN, SVM, and KNN models 

across accuracy, precision, recall, and F1-score metrics. 

Such a significant difference in performance, 

expressed through a 23.3 percentage point margin in 
favour of CNN over SVM, creates an unquestioned 

pecking order among the models. Its findings clearly 

state that the deep learning model is the most powerful 

one, and the low success of KNN highlights the 

inefficiency of simple distance-based algorithms in 

this complex visual recognition problem. 

C. Analysis of Classification Pattern: 

The confusion matrices in Fig. 7 gives a deeper 

understanding of the model's behaviour. The CNN 
(Fig. 7a) matrix shows high diagonal dominance, with 

98 out of 100 Early Blight leaves and 87 out of 100 
Late Blight leaves being correctly identified. The 

significant confusion lies in the classification of these 
two types of blights, where 2 Early Blight leaves are 

incorrectly classified as Late Blight, and 13 Late 
Blight leaves are incorrectly classified as Early Blight. 

This means that although the CNN is very functional, 
the most difficult issue in the task is the ability to 

differentiate the minor visual differences between the 
two diseases. The Healthy category is recognised with 

a high level of accuracy (13 of 16 correct). 

SVM (Fig. 7b) reveals another error profile. It shows 

that there is a high propensity to mix up the two types 

of blights, with 32 Early Blight cases being classified 

as Late Blight, and 47 Late Blight cases being 

classified as Early Blight. Worryingly, the model did 

not correctly recognise any Healthy leaves, classifying 

all 16 as either Early or Late Blight. This implies that 

the HOG characteristics were insufficient to 

distinguish the visual peculiarities of a healthy leaf 

from those of a diseased leaf. 

KNN (Fig. 7c) exhibits a nearly failed mode, 

resulting in extreme misclassification across all 

categories. The most predicted class was the “Healthy” 

one, which it attributed to 143 of the total 184 images 

in the test, containing the overwhelming majority of 

Early and Late Blight samples. This is an indicator of 
the curse of dimensionality and the failure of 

Euclidean distance in the high-dimensional HOG 
feature space to address the given issue. 
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Fig. 7 Confusion matrices for (a) CNN, (b) SVM, and (c) KNN models. The 

matrices reveal the specific misclassification patterns between Early Blight, 

Healthy, and Late Blight classes. 

D. Discussion of Results: 

The significant performance gap, whereby the CNN 

outperforms the SVM by more than 23 percentage 

points, highlights the transformative benefit of the 

deep learning approach to image recognition with 

complex tasks. This excellence is owed to the fact that 

CNN can learn features hierarchically by default. The 

convolutional layers in the network automatically 

learn relevant features, including edges and textures at 

the low level, and disease-lesion-specific patterns at 

the high level, all of which can be directly produced by 

raw pixels. This end-to-end learning paradigm does 

not rely on manual feature engineering, which was the 

bottleneck in traditional models. The fact that the 
predictions made by CNN are very high as seen in Fig. 

8 is another testament to its strength. In such sample 
predictions, the model is accurate for an Early Blight 

leaf with confidence of 100 per cent and a Late Blight 
leaf with a confidence of 99.75 per cent. This shows 

that the model not only provides accurate predictions 
but also does so with high levels of certainty, a key 

aspect of developing confidence in actual-life 
agricultural decision support systems. 

 
Fig. 8 Sample predictions from the CNN model 

On the other hand, the ineffectiveness of the SVM 

and KNN models can also be directly attributed to the 

constraints of the HOG feature descriptor. HOG is also 

quite helpful in capturing the overall shape and edge, 

but not in capturing the delicacy required to 

distinguish colour, texture, and lesion patterns that 

would distinguish plant diseases, especially the 

difference between Early and Late Blight. The 

findings are consistent with the overall opinion in 

computer vision: in the case of fine-grained image 

classification, learned features vastly outperform 

hand-designed features. Finally, the experiment’s 
findings provide testable evidence that the CNN-based 

method is not only more incrementally effective but 
also more suitable as a tool for automated detection of 

potato leaf diseases. The discriminative characteristics, 
which are directly learnt using data, provide an 
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accuracy and reliability that is impossible to obtain in 

the traditional methods of ML, thus cementing their 

future use in precision agriculture applications. 

V. CONCLUSION 

A comparative study was conducted in this research 
between a deep learning model and traditional 

machine learning algorithms to investigate the basic 
activities of Alternaria solani and Phytophthora 

infestans in potent plants. Through the experiment, the 

Convolutional Neural Network (CNN) architecture 

proved to be highly effective in comparison with the 

SVM and KNN models, achieving a high-test accuracy 

of 91.7% compared to 68.3% and 14.3%, respectively. 

Such a significant performance disparity, greater than 

23 percentage points, highlights the transformative 

nature of automated feature learning compared to 

manual feature engineering in accurately determining 

these pathogenic organismic agents, with this 

disastrous economic impact.  

This is what makes CNN successful because it has 

the capacity to learn discriminative features 

hierarchically, using raw pixel data, and thus captures 

the pleasing visual appearance that differentiates 

between the early blight created by Alternaria solani 

and the late blight created by Phytophthora infestans. 
Conversely, the dependency of SVM and KNN on 

manually disengaged HOG features proved to be a 
crucial drawback of these approaches, as they could 

not adequately reflect the delicate pathological 
characteristics of individual ailments. The confidence 

scores of the CNN are also very high, which further 
proves its strength and capacity for practical use.  

The results of the conducted research contribute to 
the ultimate claim that CNN-based deep learning can 

serve as a far more precise and efficient way of the 
automated detection of Alternaria solani and 

Phytophthora infestans. The article will help advance 
the precision agriculture domain by offering empirical 

support for the superiority of deep learning in 

addressing this high-impact issue. The model will be 

expanded to address a wider variety of potato diseases 

and will be incorporated with a real-time, mobile-

based decision support system in the future to provide 

farmers with convenient and timely crop health 

management tools. 
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