RESEARCH ARTICLE OPEN ACCESS

Crime Detection Using Artificial Intelligence

Deebanchakkarawarthi G, M.E., (Ph.D)., Assistant Professor Sathya.S, M.E., (Ph.D)., Assistant Professor Lakshman K, M.Tech., (Ph.D)., Assistant Professor

*(CSE, Hindusthan College of Eng & Tech, and Coimbatore Email: deebanchakkarawarthi.cse@hicet.ac.in @gmail.com)

**(CSE, Hindusthan College of Eng & Tech, and Coimbatore

Email: lakshmanan.cse@hicet.ac.in@gmail.com)

***(CSE, Hindusthan College of Eng & Tech, and Coimbatore Email: @gmail.com)

****(CSE, Hindusthan College of Eng & Tech, and Coimbatore Email:ramraman09112005@gmail.com)

*****(CSE, Hindusthan College of Eng & Tech, and Coimbatore Email:720723104105@hicet.ac.in)

******(CSE, Hindusthan College of Eng & Tech, and Coimbatore Email:720723104117@hicet.ac.in)

*******(CSE, Hindusthan College of Eng & Tech, and Coimbatore Email:720723104125@hicet.ac.in)

Abstract:

In emergency situations such as crimes or accidents, delay in communication can cost lives. This paper presents a Smart Hybrid Emergency Alert System that enables users to send distress signals with live GPS location even in areas with no internet connectivity. The system integrates Bluetooth, Wi-Fi Direct, and LoRa for offline communication, ensuring continues message delivery. An AI module classifies the type and severity of the incident, while an AI Chat Assistant helps users register complaints and seek guidance. The Admin application provides real-time alerts, analytics, and automatic patrol dispatching to nearby units. This hybrid AI-driven architecture ensures a faster, reliable, and intelligent emergency response system.

Index Terms—Emergency Alert, Hybrid Communication, LoRa, Bluetooth, Wi-Fi Direct, AI Chat Assistant, Crime Severity Classification

I. INTRODUCTION

Public safety systems play a vital role in ensuring timely response during emergencies; however, they often fail to perform effectively in critical moments due to factors such as poor internet connectivity, manual reporting delays, and dependency on human intervention. Many existing emergency alert applications rely solely on cellular networks, which makes them unreliable in rural or low-signal areas where communication infrastructure is limited. To overcome these challenges, the proposed **Smart Hybrid Emergency Alert System** introduces an advanced framework that integrates multiple communication channels along with AI-driven decision-making modules to ensure rapid and accurate alert transmission. The system is designed

with two key components — a **User Application**, which enables individuals to send emergency alerts quickly and easily, and an **Admin Application**, which allows authorities to monitor real-time situations, route patrol units efficiently, and analyze incident reports for better decision-making. This hybrid approach aims to enhance response efficiency, minimize communication failures, and significantly improve overall public safety outcomes.

2. Existing System

modules for tasks such as automatic severity
 Dependence on Mobile Networks:
 Current emergency alert applications, such as 112
 India, rely completely on mobile internet or cellular networks, making them ineffective in

Available at www.ijsred.com

rural or low-signal areas where connectivity is poor or unstable.

- Lack of Hybrid Communication: These systems do not integrate alternative communication methods like Wi-Fi Direct, Bluetooth, or satellite-based alerts, resulting in communication breakdowns during disasters or network outages.
- No AI-based Intelligence: Present systems lack artificial intelligence classification, identifying patterns from previous incidents, or predicting possible crime-prone areas.
- Manual and Delayed Processing: The response mechanism is mostly manual, requiring human verification and routing, which increases reaction time and may delay emergency assistance in critical situations.
- Limited Data Analysis and Reporting:
 There is no effective data analytics or
 historical crime record integration, restricting
 the ability to study crime trends, generate
 insights, or improve future preventive
 measures.

3. Proposed System

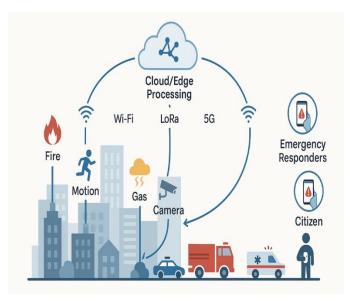
AI-Driven Crime Detection and Analysis

- Utilizes **machine learning algorithms** to classify the severity of incidents in real time.
- Employs **computer vision models** to analyze captured photos or videos for detecting weapons, violence, or suspicious activities.
- Integrates **natural language processing** (**NLP**) for interpreting user voice commands or emergency messages.
- Leverages predictive analytics to forecast potential crime zones based on historical patterns and environmental factors.
- Generates heatmaps and trend graphs to visualize crime frequency across various locations.
- Continuously learns from new incident data, improving accuracy and response over time.

♦ Intelligent Response and Decision Support

- The AI engine **prioritizes alerts** based on urgency, location, and type of threat.
- Automatically **recommends optimal patrol routes** using route optimization algorithms.
- **Correlates incidents** with past crime data to identify repeat offenders or hotspots.
- Provides an **AI Chat Assistant** to help users and administrators with quick information access.
- Supports **multi-channel communication** (LoRa, Wi-Fi Direct, Bluetooth) for uninterrupted alerts.
- Ensures **real-time dashboard updates** with AI insights for better situational awareness.

4. System Architecture


The proposed system architecture combines **hybrid communication technology**, **artificial intelligence**, and **real-time monitoring** to ensure seamless emergency management and crime detection. When a user triggers an alert through the mobile application, the data — including GPS coordinates, media evidence, and voice input — is transmitted through the **hybrid network layer**, which supports multiple channels such as **LoRa**, **Bluetooth Low Energy (BLE)**, **Wi-Fi Direct**, and the **Internet**. This design guarantees that the alert reaches the backend server even in areas with weak or no cellular connectivity.

At the backend, an integrated AI Processing Module analyzes the incoming data to determine the severity level of the incident, detect objects or suspicious activities from images or videos, and compare the case with historical crime records to identify possible patterns or recurring offenders. Once evaluated, the processed data is updated in the Admin Dashboard, providing authorities with real-time visualization through heatmaps, graphs, and incident logs.

The system further incorporates **automatic patrol routing algorithms**, which assign the nearest available security or police units to respond instantly. An **escalation mechanism** ensures that high-risk alerts are prioritized and immediately communicated to higher authorities. Through this intelligent and interconnected design, the architecture achieves faster detection, smarter

Available at <u>www.ijsred.com</u>

analysis, and a more efficient emergency response network that significantly enhances public safety.

5. Implementation

The implementation of the Smart Hybrid Emergency Alert and Crime Detection System involves the integration of multiple technologies across frontend, backend, AI, and communication layers to achieve seamless performance and real-time response.

- (Flutter / Frontend **React Native):** and admin applications are The user developed using Flutter or React Native, allowing cross-platform compatibility for both Android and iOS. These frameworks provide responsive designs, UI rendering, and smooth user interactions. Users can send alerts through a simple tap or voice command, while admins can monitor real-time updates through dashboards and maps.
- Backend (Node.js / Firebase):
 The backend server, powered by Node.js or Firebase, manages data exchange, alert processing, and communication between user and admin applications. Node.js ensures efficient handling of multiple concurrent requests, while Firebase offers real-time database synchronization, authentication, and cloud hosting capabilities.

- AI Model (TensorFlow / Scikit-learn):
 Artificial Intelligence forms the core of the system. Using frameworks like TensorFlow or Scikit-learn, the AI module performs crime severity classification, pattern recognition, and predictive analytics. The model is trained with historical crime datasets to identify possible threats, match similar incidents, and assist in quick decision-making.
- Database (Firebase / MySQL):
 All user details, reports, and incident logs are securely stored in Firebase Realtime Database or MySQL. Firebase supports instant data syncing across devices, whereas MySQL provides structured data management for large-scale records and analytics.
- Communication Modules (LoRa, Bluetooth, Wi-Fi Direct):
 To ensure reliable message delivery even in low-signal areas, the system integrates LoRa for long-range low-power communication, Bluetooth for nearby device connectivity, and Wi-Fi Direct for peer-to-peer data exchange without internet dependency.
- Maps Integration (Google Maps API): The Google Maps API is used for displaying live user and patrol locations, route optimization, and visualization of heatmaps showing high-risk or crime-prone zones. This enhances situational awareness and assists authorities in efficient resource deployment.

6. RESULTS AND DISCUSSION

The implementation of the Smart Hybrid Emergency Alert and Crime Detection System demonstrated promising results across multiple test scenarios. One of the most significant achievements was the system's ability to transmit emergency alerts seamlessly in both online and offline environments. By utilizing hybrid communication channels such as LoRa, Bluetooth, and Wi-Fi Direct, alerts were successfully delivered even in low-signal or no-internet zones, addressing one of the most critical limitations of existing emergency applications. This capability ensures that users in remote or disaster-affected areas can still reach authorities when conventional mobile networks fail.

The AI-based severity classification module played a vital role in prioritizing emergency cases. Using TensorFlow and Scikit-learn frameworks, the model was trained on historical datasets to categorize incidents into different severity levels — such as minor, moderate, or critical. During testing, the AI model achieved high accuracy in classifying the severity of situations like theft, accidents, or assaults. This automation not only reduced manual intervention but also enabled the system to route critical alerts directly to higher authorities or nearby patrols, ensuring that response time was significantly improved.

Another major highlight of the system was the automatic patrol dispatch mechanism, which effectively reduced average response times. The integration of the Google Maps API allowed the system to identify and assign the nearest available patrol unit to the incident location. The routing algorithm optimized travel paths, reducing delays and ensuring faster arrival at the scene. This feature enhanced coordination among emergency teams and minimized human errors that often occur during manual dispatching.

The Admin Dashboard provided a centralized control system for monitoring all active and past incidents in real time. Through visual analytics tools such as crime heatmaps, graphs, and statistical charts, administrators could easily analyze data trends, identify high-risk areas, and track the frequency of crimes in specific regions. This analytical insight greatly improved situational awareness and helped authorities make more informed and data-driven decisions for crime prevention and public safety management.

Overall, the results validate that the proposed system not only enhances the **speed and reliability of emergency communication** but also introduces **intelligent automation in decision-making** through AI. The integration of hybrid communication technology and AI-driven analytics created a more responsive, efficient, and scalable framework for modern emergency management. These findings highlight the potential of combining **artificial**

intelligence and hybrid connectivity to build a smarter, safer, and more connected community.

7. CONCLUSION

The Smart Hybrid Emergency Alert System represents a significant step forward in enhancing public safety through the integration of artificial intelligence (AI) and multi-channel communication technologies. system successfully bridges the gap between citizens and emergency authorities by ensuring that alerts are transmitted instantly, even in areas with poor internet connectivity. By combining communication methods such as LoRa, Bluetooth, and Wi-Fi Direct, the system provides a dependable platform for real-time alert delivery under any network condition. The incorporation of AI-driven modules further strengthens the system by enabling automatic severity classification, predictive routing, and intelligent analysis of incoming reports. This ensures that emergency situations are prioritized effectively, reducing human dependency and improving response speed and accuracy.

In addition to improving emergency communication, the system also enhances situational awareness and datadriven decision-making through its analytics dashboard and crime heatmaps. These features help authorities visualize crime trends, allocate resources efficiently, and predict potential hotspots for proactive intervention. Looking ahead, future developments could include IoTbased wearable devices for continuous safety monitoring, multi-language voice command support to make the system more inclusive, and blockchain-based evidence verification to ensure the authenticity and security of digital reports and media submissions. With these advancements, the Smart Hybrid Emergency Alert System holds great potential to become a next-generation platform for intelligent, reliable, and community-centered crime detection and emergency management.

REFERENCES

- 1. Government of India, "112 India App", Ministry of Home Affairs, 2024.
- 2. LoRa Alliance, "LoRaWAN Specifications and Architecture", LoRa Alliance Technical Paper, 2023.

- 3. Google AI, "TensorFlow: An End-to-End Open Source Machine Learning Platform", 2024.
- 4. IEEE, "Hybrid IoT-based Emergency Response Systems for Smart Cities", IEEE Access, Vol. 12, 2024.
- 5. Mnih, V. et al., "Deep Reinforcement Learning for Real-Time Decision Making", Nature, 2023.
- 6. OpenAI, "Artificial Intelligence in Predictive Policing and Crime Detection", Research Report, 2024.
- 7. Scikit-learn Developers, "Scikit-learn Machine Learning in Python: Documentation and Tutorials", 2024.
- 8. Google Maps Platform, "Maps JavaScript API Documentation", Google Developers, 2024.
- 9. Sharma, P., & Gupta, R., "AI-Powered Crime Detection and Response Frameworks for Urban Safety", International Journal of Computer Applications, Vol. 182, No. 6, 2025.
- Singh, A., & Verma, K., "Smart Surveillance and AI-based Crime Detection using Deep Learning Techniques", IEEE International Conference on Computational Intelligence, 2024.
- 11. Raj, S., & Nair, M., "Integration of LoRa and AI for Emergency Communication in Low-Connectivity Regions", Journal of Emerging Technologies and Innovative Research (JETIR), Vol. 11, Issue 2, 2025.
- 12. Kumar, D., & Thomas, P., "A Cloud and AI-driven Framework for Real-Time Public Safety Monitoring", International Journal of Advanced Computer Science and Applications (IJACSA), Vol. 16, No. 3, 2025.