International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 5, Sep-Oct 2025
Available at www.ijsred.com

RESEARCH ARTICLE OPEN ACCESS

Comparative Study of Application Development - Low Code/No
Code Method V/S Traditional Method

Nihal M Jagirdar®, Afreen Mujawar**

*(Department of Computer Science and Engineering, SIET, Vijayapura
Email: anihajagirdar.2000@ gmail.com)
** (Department of Computer Science and Engineering, SIET, Vijayapura
Email: mujawarafreen19@ gmail.com)

skt sk stk sk stk ok ok ok ok sk sk

Abstract:

This paper presents a systematic comparative study between traditional application development and Low-
Code/No- Code (LCNC) development approaches. Using a Fitness Tracker application as a case study,
two implementations were created: a traditional web application using Django (Python, HTML, CSS,
SQLite) and a low-code Canvas app using Microsoft PowerApps connected to Dataverse. We evaluate
both approaches across development time, code volume, technical complexity, perfor- mance, scalability,
security, cost, and maintainability. Experi- mental measurements and qualitative analysis show that LCNC
platforms dramatically reduce development effort and accelerate deployment at the cost of flexibility and
vendor-dependence; conversely, traditional methods provide greater control and long- term extensibility.
We conclude with practical recommendations and propose a hybrid strategy that leverages both
approaches.

Keywords— Low-Code, No-Code, PowerApps, Django, Data- verse, Software Development,
Comparative Study
shoskoske sk skesk sk sk sk sk sheske sk sk sk sk sk sk sk sk sk sk

representative set of functionalities
(authentication, CRUD for activities, dietary logs,
and weight tracking) that allow a fair evaluation
of typical application development concerns.

I. INTRODUCTION

The demand for faster software delivery and
democratized application development has
driven the emergence of Low- Code/No-Code

(LCNC) platforms in industry. Traditional de- II. BACKGROUND AND MOTIVATION

velopment frameworks (e.g., Django, Spring
Boot) provide comprehensive control over
architecture, performance, and customization but
often require significant developer expertise and
longer delivery cycles. LCNC platforms, such as
Microsoft PowerApps, Mendix, and OutSystems,
offer drag-and-drop UI composition, visual
logic, and managed backend services that allow
citizen developers to create production-capable
applications with minimal hand-written code.
This research performs an empirical
comparative study by building a Fitness Tracker
application wusing both methodologies. The
Fitness Tracker was selected because it covers a

Organizations, especially small and medium
enterprises, face pressure to deliver digital
solutions rapidly while keeping costs under
control. LCNC platforms promise to reduce
time- to-market by enabling rapid prototyping
and lower development effort. However,
concerns remain around customization, vendor
lock-in, scalability limitations, and long-term
maintenance. Prior studies highlight the trade-
offs between LCNC and traditional development:
LCNC is often preferred for internal tooling and
prototypes, while traditional frameworks remain
the default for complex, high-performance
systems [1]- [3].

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 2301

International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 5, Sep-Oct 2025

III. PROBLEM STATEMENT AND
OBJECTIVES

A. Problem Statement

The choice between LCNC and
traditional development methods is non-
trivial. Organizations need empirical
evidence and practical guidelines to decide
which approach fits a particular project.
There exists limited direct comparative
work where the same application is
implemented using both paradigms and
evaluated across multiple dimensions.

B. Objectives

1) Implement a Fitness Tracker
application using Django (traditional)
and PowerApps + Dataverse (LCNC).

2) Create a comparison framework to

evaluate development time, code
volume, performance, scalability,
security, cost, and maintainability.

3) Produce recommendations and

explore a hybrid approach.

IV. RELATED WORK

Research into LCNC adoption shows consistent
benefits in development speed and accessibility, but
frequent concerns about integration with legacy
systems and vendor lock-in [1], [7]. Usability
studies indicate higher productivity for non- expert
users on LCNC platforms, while experienced devel-
opers prefer traditional coding for fine-grained
control [5]. Market analyses (Forrester, Gartner)
recognize the maturity of platforms like Microsoft
Power Platform for enterprise scenarios [8]. Studies
comparing specific projects implemented both ways
(e.g., NexusBRaNT) found reduced complexity
with LCNC but decreased flexibility for specialized
needs [6].

V. METHODOLOGIES

A. Design Choices

To ensure an equitable comparison, both
implementations were designed to provide
equivalent features:

- User authentication and profile management.

Available at www.ijsred.com

- Fitness duration,
calories).

- Dietary entry logging (food items, calories,
macro nutrients).

- Weight entry history with date tracking.

activity logging (type,

B. Technologies Selection
TABLE I: Technology choices for both approaches

Aspect Choice

Django (Python)

SQLite (local development)
Django templates, HTML/CSS
Microsoft PowerApps (Canvas

Traditional Framework
Database (Traditional)
Frontend (Traditional)
LCNC Platform

app)

LCNC Database
Authentication (Traditional)
Authentication (LCNC)
SSO)

Microsoft Dataverse
Django auth (session-based)
Microsoft Entra ID (M365

C. Implementation Steps

1) Django (Traditional): A Django project was
created with a ‘fitness’ app. Core models
included UserProfile, FitnessActivity,
DietaryLog, and WeightEntry. Views,
forms, and templates were written to provide
CRUD operations (limited to Create and Read
for scope control). Static CSS created a
consistent UL

2) PowerApps + Dataverse (LCNC):
Dataverse tables mir- roring the Django models
were created. A Canvas app was built with
screens for registration, login (via M365),
activity addition, diet logging, and weight
tracking. Power Fx expressions handled filtering,
basic validation, and data submission. The app
was published to be available on web and mobile.

D. Testing and Validation

Both applications underwent a functional test
suite verifying:
- Account creation and login

- Adding fitness activities, dietary logs, and
weight entries

- Viewing and filtering records
- UI responsiveness on desktop and mobile
view ports

VI. SYSTEM ARCHITECTURE

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 2302

International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 5, Sep-Oct 2025

Figure 1 presents a conceptual architecture
comparison. Replace the placeholder image with
your actual diagrams.

VII. DATA SCHEMA

The data schema for both implementations

shares the same logical entities:

= UserProfile: user id, name, DOB, height,
baseline weight, fitness level.

= FitnessActivity: user id (FK), date, activity
type, duration, calories burned.

= DietaryLog: user id (FK), date, food item,
calories, carbs, proteins, fats.

= WeightEntry: user id (FK), date, weight.

Using an identical logical schema ensures
fairness of comparison.

VIII. RESULTS

We summarize both quantitative and
qualitative differences observed during
development and testing.

A. Development Effort and Code Volume

TABLE II: Development metrics

Metri Django PowerApps

Available at www.ijsred.com

C. Feature Integration Comparison

TABLE IV: Feature comparison summary

Feature Django
(Traditional)

Authentication ~ Django auth, custom M365 / Entra

roles ID/SSO
UI Customization Full control (HTML/CSS) Drag and drop components
Data Storage SQLite Dataverse
Integration Any API (flexible) Easy MS integration
Scalability High Managed but platform

Limits

Maintenance Requires dev expertise Platform -managed

Updates

Cost Model Open Source Subscription
Browse HTTP » URL View OR Databas
Router
——4 Templat HTML Response
Canvas App Screens # Dataverse Tables

\—-l Power Ex logic for Ul & |

4-5 days
~50Power Fx expr.

Development Time 2.5 weeks
Lines of Code / Expressions ~1500 LOC

Deployment Complexity Manual server setup Automated cloud hosting

Fig. 1: Comparative architecture: Django (above) versus Low

Code No Code (below)

B. Performance Benchmarking

Benchmarking was performed in
controlled conditions (local dev host for
Django; cloud-hosted Dataverse for
PowerApps). Results are indicative and
depend on network and hosting
environment.

TABLE III: Performance benchmarking

(approximate)
Operation Django (local) PowerApps + Dataverse
Average page load (home) 09s 14s
DB insert (single record) 0.05 s 0.12 s
Retrieve 50 records 0.08 s 0.15 s

Deployment time 1-2 hours <15 minutes

IX. DISCUSSION

A. Advantages of LCNC

LCNC significantly lowers the barrier to entry
and accelerates the development lifecycle. Key
advantages observed include:

- Rapid prototyping and deployment.

- Reduced hand-coded logic and fewer

syntactic errors.

- Built-in connectivity to enterprise services

(Office365, Azure).

- Managed hosting and security compliance

features.

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 2303

International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 5, Sep-Oct 2025

B. Limitations of LCNC

Despite benefits, LCNC comes with trade-offs:

- Vendor lock-in:
vendor ecosystem.

- Limited ability to implement
specialized algorithms or custom logic.

- Platform-specific limits (APl call
limits, delegation is- sues).

apps and data tied to

- Long-term cost can grow with scale
(licensing, storage).

C. Advantages of Traditional Development
Traditional frameworks like Django provide:

- Full control over architecture,
optimization, and deployments.
- Portability across hosting providers
and no vendor lock- in.
- Easier integration = of custom
algorithm and complex business logic.
D. Limitations of Traditional Development

These include longer development cycles,
greater reliance on skilled developers, and more
effort for deployment and maintenance.

X. SECURITY CONSIDERATIONS

Security is central in applications that handle
personal health and fitness data. Observations:

- Django: developers must explicitly
implement secure practices (CSRF
protection, proper session handling,
encryption at rest, TLS). This yields

flexibility but requires expertise.

- PowerApps/Dataverse: platform provides
built-in encryption, role-based access control,
and compliance certifications (GDPR, ISO),
but visibility into low-level security controls
is limited.

For regulated scenarios (medical data),
organizations must evaluate data sovereignty and
compliance implications before choosing LCNC.

XL COST ANALYSIS

A high-level cost comparison:

Available at www.ijsred.com

- Traditional: minimal software licensing costs
(open- source), but hosting, DevOps, and
developer salaries are primary expenses.

- LCNC: lower initial setup and faster delivery,
but recur- ring licensing and per-user / per-
capacity costs grow with scale.

A total cost of ownership (TCO) model should

be constructed for each organization based on

expected scale, required SLAs, and compliance
needs.

XII. RECOMMENDATIONS AND HYBRID
STRATEGY

For many organizations, a hybrid approach

offers best value:

- Use LCNC for internal tools, rapid UI
prototyping, and citizen-developer driven
features.

- Implement core systems, heavy computation,
and sensitive processing with traditional
frameworks.

- Ensure exportable data models and well-
defined API contracts to avoid lock-in.

XIII. LIMITATIONS

This study deliberately limited scope to
CRUD-driven features and did not integrate
wearable device streams, large-scale load testing,
or advanced analytics modules. Benchmarks are
measured in a controlled environment and serve
as relative indicators rather than exhaustive
performance claims.

XIV. CONCLUSION AND FUTURE WORK

This paper compared two development

paradigms through a Fitness Tracker
application. =~ LCNC (PowerApps +
Dataverse) drastically lowered

development time and code volume while
offering rapid deployment and integration
in the Microsoft ecosystem. Traditional
development (Django) afforded greater
performance, scalability, and flexibility at
the expense of longer development cycles
and greater developer effort. We
recommend a hybrid development strategy

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 2304

International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 5, Sep-Oct 2025
Available at www.ijsred.com

combining LCNC’s agility with traditional Systems and Technology Management, vo. 17, no. 3, pp.
backends where appropriate. [2] A. Zimmermann, “Low-Code Platforms in Digital

Transformation: Opportunities and Risks,” in Proc. 15th
Int. Conf. Digital Enterprise Transformation, 2020, pp.
112-120.

Future work should:

- Extend experlments to additional [3] OutSystems, “The State of Application Development
LCNC platforms (MCI’IdiX, OutSystems) Report: Low-Code 2021,” OutSystems Industry Report,
.- 2021.

and traditional frameworks (Flask, [4] P. Mohagheghi, S. Swther, and T. Sta’lhane, “Software
: Quality in Low- Code Development: Opportunities and
Sprlng BOOt)' . Challenges,” Empirical Software Engineering, vol. 26, no.

- Perform large-scale load and stress testing. 5. 2021,
- Integrate dev1ce telemetry (Wearables) [5] J. Nachtigall, F. Langer, and H. Vogelsang, “Usability
. . Evaluation of Low-Code vs. Traditional Platforms: An
and ML-driven analytlcs. Empirical Study,” in Proc. 45th Int. Conf. Software

Engineering (ICSE), 2023, pp. 188-198.
[6] D. Aveiro, L. Guerreiro, and J. Tribolet, “Traditional vs.

- Conduct economic TCO studies across

multi—year horizons. Low-Code Development in the NexusBRaNT Experiment,”
Enterprise Modelling and Information Systems
Architectures, vol. 18, 2023.
REFERENCES

[7] Deployd Research, “Cost Analysis of Low-Code vs.

Traditional Development,” Deployd Industry Report, 2025.

[1] J. Berkemeier, A. Mu'ller, and T. Schneider, “Adoption of [8] Gartner, “Magic Quadrant for Enterprise Low-Code
Low-Code Platforms in SMEs,” Journal of Information Application Plat- forms,” Gartner Research Report, 2025.

ISSN : 2581-7175 ©I1JSRED: All Rights are Reserved Page 2305

