
International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 2301

Comparative Study of Application Development - Low Code/No

Code Method V/S Traditional Method

Nihal M Jagirdar*, Afreen Mujawar**

*(Department of Computer Science and Engineering, SIET, Vijayapura
Email: anihajagirdar.2000@gmail.com)

** (Department of Computer Science and Engineering, SIET, Vijayapura
Email: mujawarafreen19@gmail.com)

--************************----------------------------------

Abstract:

This paper presents a systematic comparative study between traditional application development and Low-
Code/No- Code (LCNC) development approaches. Using a Fitness Tracker application as a case study,
two implementations were created: a traditional web application using Django (Python, HTML, CSS,
SQLite) and a low-code Canvas app using Microsoft PowerApps connected to Dataverse. We evaluate
both approaches across development time, code volume, technical complexity, perfor- mance, scalability,
security, cost, and maintainability. Experi- mental measurements and qualitative analysis show that LCNC
platforms dramatically reduce development effort and accelerate deployment at the cost of flexibility and
vendor-dependence; conversely, traditional methods provide greater control and long- term extensibility.
We conclude with practical recommendations and propose a hybrid strategy that leverages both
approaches.

Keywords— Low-Code, No-Code, PowerApps, Django, Data- verse, Software Development,
Comparative Study

--************************----------------------------------

I. INTRODUCTION

The demand for faster software delivery and

democratized application development has

driven the emergence of Low- Code/No-Code

(LCNC) platforms in industry. Traditional de-

velopment frameworks (e.g., Django, Spring

Boot) provide comprehensive control over

architecture, performance, and customization but

often require significant developer expertise and

longer delivery cycles. LCNC platforms, such as

Microsoft PowerApps, Mendix, and OutSystems,

offer drag-and-drop UI composition, visual

logic, and managed backend services that allow

citizen developers to create production-capable

applications with minimal hand-written code.

This research performs an empirical

comparative study by building a Fitness Tracker

application using both methodologies. The

Fitness Tracker was selected because it covers a

representative set of functionalities

(authentication, CRUD for activities, dietary logs,

and weight tracking) that allow a fair evaluation

of typical application development concerns.

II. BACKGROUND AND MOTIVATION

Organizations, especially small and medium

enterprises, face pressure to deliver digital

solutions rapidly while keeping costs under

control. LCNC platforms promise to reduce

time- to-market by enabling rapid prototyping

and lower development effort. However,

concerns remain around customization, vendor

lock-in, scalability limitations, and long-term

maintenance. Prior studies highlight the trade-

offs between LCNC and traditional development:

LCNC is often preferred for internal tooling and

prototypes, while traditional frameworks remain

the default for complex, high-performance

systems [1]– [3].

RESEARCH ARTICLE OPEN ACCESS

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 2302

III. PROBLEM STATEMENT AND

OBJECTIVES

A. Problem Statement

The choice between LCNC and

traditional development methods is non-

trivial. Organizations need empirical

evidence and practical guidelines to decide

which approach fits a particular project.

There exists limited direct comparative

work where the same application is

implemented using both paradigms and

evaluated across multiple dimensions.

B. Objectives

1) Implement a Fitness Tracker

application using Django (traditional)

and PowerApps + Dataverse (LCNC).

2) Create a comparison framework to

evaluate development time, code

volume, performance, scalability,

security, cost, and maintainability.

3) Produce recommendations and

explore a hybrid approach.

IV. RELATED WORK

Research into LCNC adoption shows consistent
benefits in development speed and accessibility, but
frequent concerns about integration with legacy
systems and vendor lock-in [1], [7]. Usability
studies indicate higher productivity for non- expert
users on LCNC platforms, while experienced devel-
opers prefer traditional coding for fine-grained
control [5]. Market analyses (Forrester, Gartner)
recognize the maturity of platforms like Microsoft
Power Platform for enterprise scenarios [8]. Studies
comparing specific projects implemented both ways
(e.g., NexusBRaNT) found reduced complexity
with LCNC but decreased flexibility for specialized
needs [6].

V. METHODOLOGIES

A. Design Choices

To ensure an equitable comparison, both

implementations were designed to provide

equivalent features:

• User authentication and profile management.

• Fitness activity logging (type, duration,
calories).

• Dietary entry logging (food items, calories,

macro nutrients).

• Weight entry history with date tracking.

B. Technologies Selection

TABLE I: Technology choices for both approaches

Aspect Choice

Traditional Framework Django (Python)
Database (Traditional) SQLite (local development)
Frontend (Traditional) Django templates, HTML/CSS
LCNC Platform Microsoft PowerApps (Canvas
app)
LCNC Database Microsoft Dataverse
Authentication (Traditional) Django auth (session-based)
Authentication (LCNC) Microsoft Entra ID (M365
SSO)

C. Implementation Steps

1) Django (Traditional): A Django project was
created with a ‘fitness‘ app. Core models
included UserProfile, FitnessActivity,

DietaryLog, and WeightEntry. Views,

forms, and templates were written to provide
CRUD operations (limited to Create and Read
for scope control). Static CSS created a
consistent UI.

2) PowerApps + Dataverse (LCNC):

Dataverse tables mir- roring the Django models
were created. A Canvas app was built with
screens for registration, login (via M365),
activity addition, diet logging, and weight
tracking. Power Fx expressions handled filtering,
basic validation, and data submission. The app
was published to be available on web and mobile.

D. Testing and Validation

Both applications underwent a functional test

suite verifying:

• Account creation and login
• Adding fitness activities, dietary logs, and

weight entries

• Viewing and filtering records

• UI responsiveness on desktop and mobile
view ports

VI. SYSTEM ARCHITECTURE

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 2303

Figure 1 presents a conceptual architecture

comparison. Replace the placeholder image with

your actual diagrams.

VII. DATA SCHEMA

The data schema for both implementations
shares the same logical entities:

▪ UserProfile: user id, name, DOB, height,
baseline weight, fitness level.

▪ FitnessActivity: user id (FK), date, activity
type, duration, calories burned.

▪ DietaryLog: user id (FK), date, food item,
calories, carbs, proteins, fats.

▪ WeightEntry: user id (FK), date, weight.

Using an identical logical schema ensures

fairness of comparison.

VIII. RESULTS

We summarize both quantitative and

qualitative differences observed during

development and testing.

A. Development Effort and Code Volume

TABLE II: Development metrics

Metri Django PowerApps

Development Time 2.5 weeks 4–5 days
Lines of Code / Expressions ∼1500 LOC ∼50Power Fx expr.
Deployment Complexity Manual server setup Automated cloud hosting

B. Performance Benchmarking

Benchmarking was performed in

controlled conditions (local dev host for

Django; cloud-hosted Dataverse for

PowerApps). Results are indicative and

depend on network and hosting

environment.

 TABLE III: Performance benchmarking
(approximate)

Operation Django (local) PowerApps + Dataverse

Average page load (home) 0.9 s 1.4 s
DB insert (single record) 0.05 s 0.12 s
Retrieve 50 records 0.08 s 0.15 s

Deployment time 1–2 hours <15 minutes

C. Feature Integration Comparison

TABLE IV: Feature comparison summary

Feature Django

(Traditional)

Authentication Django auth, custom M365 / Entra
roles ID / SSO

UI Customization Full control (HTML/CSS) Drag and drop components
Data Storage SQLite Dataverse
Integration Any API (flexible) Easy MS integration
Scalability High Managed but platform

 Limits
Maintenance Requires dev expertise Platform -managed
 Updates

Cost Model Open Source Subscription

Fig. 1: Comparative architecture: Django (above) versus Low
Code No Code (below)

IX. DISCUSSION

A. Advantages of LCNC

LCNC significantly lowers the barrier to entry

and accelerates the development lifecycle. Key

advantages observed include:

• Rapid prototyping and deployment.

• Reduced hand-coded logic and fewer
syntactic errors.

• Built-in connectivity to enterprise services

(Office365, Azure).
• Managed hosting and security compliance

features.

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 2304

B. Limitations of LCNC

Despite benefits, LCNC comes with trade-offs:

• Vendor lock-in: apps and data tied to
vendor ecosystem.

• Limited ability to implement

specialized algorithms or custom logic.

• Platform-specific limits (API call

limits, delegation is- sues).

• Long-term cost can grow with scale

(licensing, storage).

C. Advantages of Traditional Development

Traditional frameworks like Django provide:

• Full control over architecture,

optimization, and deployments.

• Portability across hosting providers

and no vendor lock- in.

• Easier integration of custom

algorithm and complex business logic.

D. Limitations of Traditional Development

These include longer development cycles,

greater reliance on skilled developers, and more

effort for deployment and maintenance.

X. SECURITY CONSIDERATIONS

Security is central in applications that handle

personal health and fitness data. Observations:

• Django: developers must explicitly

implement secure practices (CSRF

protection, proper session handling,

encryption at rest, TLS). This yields

flexibility but requires expertise.

• PowerApps/Dataverse: platform provides

built-in encryption, role-based access control,

and compliance certifications (GDPR, ISO),

but visibility into low-level security controls

is limited.

For regulated scenarios (medical data),

organizations must evaluate data sovereignty and

compliance implications before choosing LCNC.

XI. COST ANALYSIS

A high-level cost comparison:

• Traditional: minimal software licensing costs

(open- source), but hosting, DevOps, and

developer salaries are primary expenses.

• LCNC: lower initial setup and faster delivery,

but recur- ring licensing and per-user / per-

capacity costs grow with scale.

A total cost of ownership (TCO) model should

be constructed for each organization based on

expected scale, required SLAs, and compliance

needs.

XII. RECOMMENDATIONS AND HYBRID

STRATEGY

For many organizations, a hybrid approach
offers best value:

• Use LCNC for internal tools, rapid UI

prototyping, and citizen-developer driven

features.

• Implement core systems, heavy computation,

and sensitive processing with traditional

frameworks.

• Ensure exportable data models and well-

defined API contracts to avoid lock-in.

XIII. LIMITATIONS

This study deliberately limited scope to

CRUD-driven features and did not integrate

wearable device streams, large-scale load testing,

or advanced analytics modules. Benchmarks are

measured in a controlled environment and serve

as relative indicators rather than exhaustive

performance claims.

XIV. CONCLUSION AND FUTURE WORK

This paper compared two development

paradigms through a Fitness Tracker

application. LCNC (PowerApps +

Dataverse) drastically lowered

development time and code volume while

offering rapid deployment and integration

in the Microsoft ecosystem. Traditional

development (Django) afforded greater

performance, scalability, and flexibility at

the expense of longer development cycles

and greater developer effort. We

recommend a hybrid development strategy

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 2305

combining LCNC’s agility with traditional

backends where appropriate.

Future work should:

• Extend experiments to additional

LCNC platforms (Mendix, OutSystems)

and traditional frameworks (Flask,

Spring Boot).
• Perform large-scale load and stress testing.

• Integrate device telemetry (wearables)

and ML-driven analytics.

• Conduct economic TCO studies across

multi-year horizons.

REFERENCES

[1] J. Berkemeier, A. Mu¨ller, and T. Schneider, “Adoption of
Low-Code Platforms in SMEs,” Journal of Information

Systems and Technology Management, vol. 17, no. 3, pp.
45–60, 2020.

[2] A. Zimmermann, “Low-Code Platforms in Digital
Transformation: Opportunities and Risks,” in Proc. 15th
Int. Conf. Digital Enterprise Transformation, 2020, pp.
112–120.

[3] OutSystems, “The State of Application Development
Report: Low-Code 2021,” OutSystems Industry Report,
2021.

[4] P. Mohagheghi, S. Sæther, and T. Sta˚lhane, “Software
Quality in Low- Code Development: Opportunities and
Challenges,” Empirical Software Engineering, vol. 26, no.
5, 2021.

[5] J. Nachtigall, F. Langer, and H. Vogelsang, “Usability
Evaluation of Low-Code vs. Traditional Platforms: An
Empirical Study,” in Proc. 45th Int. Conf. Software
Engineering (ICSE), 2023, pp. 188–198.

[6] D. Aveiro, L. Guerreiro, and J. Tribolet, “Traditional vs.
Low-Code Development in the NexusBRaNT Experiment,”
Enterprise Modelling and Information Systems

Architectures, vol. 18, 2023.

[7] Deployd Research, “Cost Analysis of Low-Code vs.
Traditional Development,” Deployd Industry Report, 2025.

[8] Gartner, “Magic Quadrant for Enterprise Low-Code
Application Plat- forms,” Gartner Research Report, 2025.

