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Abstract:

Demand response (DR) optimization in smart grids faces escalating complexity due to
heterogeneous distributed energy resources, uncertain renewable generation, and conflicting stakeholder
objectives. Traditional DR methods—rule-based systems and model predictive control—suffer from poor
scalability, myopic decision-making, and inability to handle stochastic uncertainties. This paper proposes a
novel Multi-Objective Deep Reinforcement Learning (MODRL) framework integrating Proximal Policy
Optimization with Lagrangian constraint handling to simultaneously minimize operational costs, peak
demand, and user discomfort while maximizing renewable energy utilization. The framework models DR
as a constrained Markov Decision Process, employing neural network-based policy and value
approximators to navigate the vast state-action space. Experimental validation on a synthetic 100-
prosumer grid with real-world weather data demonstrates 23.4% cost reduction, 31.2% peak load
mitigation, and 18.7% renewable penetration improvement compared to model predictive control
baselines, with discomfort indices below 0.15. The proposed constraint-aware PPO variant ensures
operational feasibility through adaptive penalty coefficients. Results confirm the framework's efficacy in
addressing multi-stakeholder requirements, offering a scalable pathway toward intelligent, autonomous
grid management.

Keywords — Demand Response, Smart Grids, Multi-Objective Optimization, Deep Reinforcement
Learning, Proximal Policy Optimization, Distributed Energy Resources, Constraint Handling
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heterogeneous appliances has exponentially
L INTRODUCTION increased grid complexity, rendering conventional
Demand response constitutes a cornerstone DR approaches inadequate'

mechanism in modern smart grids, enabling
dynamic load modulation to match generation
profiles, alleviate network congestion, and
integrate variable renewable energy sources. DR
strategies incentivize or automate consumption
adjustments through price signals, direct load
control, or capacity bidding, transforming passive
consumers into active prosumers. However, the
proliferation of distributed photovoltaic systems,
battery  storage, electric  vehicles, and

Traditional DR methodologies predominantly rely
on rule-based heuristics or model predictive
control (MPC). Rule-based systems apply
predefined threshold-triggered actions, exhibiting
limited adaptability to dynamic conditions and
sub-optimal performance under uncertainty. MPC
formulates DR as constrained optimization over
finite horizons, requiring accurate system models
and computationally expensive online
optimization. Both paradigms struggle with
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scalability, real-time responsiveness, and multi-
objective trade-offs inherent in balancing
economic efficiency, grid stability, renewable
integration, and user comfort.

Artificial intelligence, particularly reinforcement
learning (RL), offers a paradigm shift by enabling
data-driven, model-free policy learning through
environmental interaction. Deep RL combines
neural function approximation with temporal-
difference learning, facilitating direct mapping
from high-dimensional observations to optimal
actions without explicit system modeling. Despite
promising results in single-objective DR
applications, existing RL frameworks
inadequately address the multi-stakeholder nature
of smart grids, where utilities, prosumers, and grid
operators harbor competing priorities.

This paper addresses three critical gaps: (1)
limited multi-objective formulations in RL-based
DR incorporating cost, reliability, sustainability,
and comfort; (2) insufficient constraint handling
mechanisms ensuring operational feasibility; (3)
absence of comparative analyses against
established benchmarks. The primary
contributions include: a constrained MODRL
framework leveraging PPO with Lagrangian
relaxation for multi-objective DR optimization;
comprehensive experimental validation
demonstrating  superior performance across
diverse metrics; and insights into scalability and
real-world deployment considerations.

The remainder is organized as follows: Section 2
reviews related DR optimization literature;
Section 3 formalizes the system model and
problem; Section 4 details the proposed MODRL
framework; Section 5 presents experimental
results; Section 6 discusses implications and
future directions; Section 7 concludes.

RELATED WORK

DR optimization has evolved through distinct
methodological phases. Classical optimization
approaches formulate DR as linear programming
(LP) or mixed-integer linear programming (MILP)
problems, guaranteeing global optimality under
convex assumptions but suffering computational
intractability for large-scale systems and inability
to capture nonlinear dynamics. Heuristic methods
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including genetic algorithms and particle swarm
optimization provide approximate solutions with
reduced computational burden yet lack
convergence guarantees and require extensive
parameter tuning.

Early machine learning applications employed
supervised learning for load forecasting and
pattern recognition, serving as inputs to
downstream optimization modules rather than
end-to-end decision-making. The emergence of
RL-based DR marked a fundamental shift toward
autonomous learning. Seminal works
demonstrated ~ Q-learning  for  residential
thermostat control, achieving modest energy
savings. Deep Q-Networks enabled high-
dimensional state processing for building HVAC
optimization. Actor-critic methods addressed
continuous action spaces in battery scheduling.
Multi-agent RL  frameworks  coordinated
distributed prosumers through decentralized
policies. =~ However, these implementations
predominantly targeted single objectives or
employed ad-hoc multi-objective aggregations
without principled constraint handling.

Recent advances incorporate model-based RL for
sample efficiency and meta-learning for rapid
adaptation. Nevertheless, the integration of multi-
objective optimization theory with constraint-
aware deep RL remains underexplored in DR
contexts, particularly for satisfying hard
operational constraints (voltage limits, ramp rates)
alongside soft preference constraints (comfort
bounds).

TABLE 1: COMPARATIVE ANALYSIS OF DR OPTIMIZATION METHODS

Method Objective | Scalabilit | Real- Uncertaint
y time y
Capabilit | Handling
y
LP/MILP Single/Mul | Poor No Robust
ti (O(n?) optimizatio
n
MPC Single/Mul | Moderate | Limited Scenario-
ti based
Genetic Single Moderate | No Stochastic
Algorithm operators
Supervised | Auxiliary Good Yes Historical
ML patterns
Q- Single Poor Yes Exploratio
Learning n-based
Deep RL Single Good Yes Experience
(DQN/A3 replay
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9]

Multi- Distributed | Excellent | Yes Local

Agent RL observation
s

Proposed Multi- Excellent | Yes Stochastic

MODRL objective policy

SYSTEM MODEL AND PROBLEM

FORMULATION
The system comprises a distribution network with
N prosumers equipped with distributed energy
resources (DERSs) including rooftop photovoltaics
(PV), battery energy storage systems (BESS), and
flexible loads. A central aggregator coordinates
DR actions through bidirectional communication
infrastructure. Each prosumer 1 possesses
controllable appliances categorized as
interruptible loads (HVAC, water heaters),
shiftable loads (dishwashers, EV charging), and
critical loads.
The multi-objective DR optimization problem
seeks to simultaneously:

® Minimize Operational Cost:

T
C = z Pgrid
t
t=1

Where P/ "% s the power drawn from the
grid at time t and T is the total number of
time intervals.

e  Minimize Peak Demand:

— total
Ppeak - mtaXPt

Where P/°'® is the total demand at time t.

e Maximize Renewable Utilization:
T PV,used
t=1 P t

= T PV,avail
t=1 Pt

Where PV*¢? is the renewable energy

PV,avail .
Pt

actually used and is the available

renewable power at time t.
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e Minimize User Discomfort:

N T
— actual pref
D= E E ITt,i - Tt,i I
i=1 t=1

Where T2 is the actual temperature and

TP/ is the preferred temperature for user i

at time t, and N is the number of users.

Subject to power balance, BESS state-of-charge
constraints, voltage stability limits, and comfort
bounds.

The problem is cast as a constrained Markov
Decision Process defined by tuple (S, 4, P,R,y,C):

e §: State space (system states, forecasts,
prices, etc.)

e A: Action space (load curtailment
ratios, battery charge/discharge,
thermostat settings)

e P: State transition dynamics

e R: Reward function (adaptive
weighted sum of the four objectives)

e y: Discount factor (0.99 for long-term
optimization)

e (: Constraints (operational and

comfort feasibility).
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Figure 1: System Architecture Diagram

Smart Grid DR System Architecture
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Figure 1: System Architecture Diagram

IV. PROPOSED AI FRAMEWORK

The proposed framework employs a Multi-
Objective Deep Reinforcement Learning agent
based on Proximal Policy Optimization, extended
with Lagrangian constraint handling. PPO was
selected for its sample efficiency, stability, and
proven performance in continuous control tasks.

A. State and Action Spaces
The state vector s, € R% concatenates:
¢ Normalized load consumption history over
a 24-hour sliding window
® PV (photovoltaic) and wind generation
forecasts with a 6-hour horizon
e Real-time and forecasted electricity prices
e Battery Energy Storage System (BESS)
state-of-charge and capacity degradation
metrics
¢ Indoor temperature deviations from user
preferences
¢ Time features encoding hour of the day
and day-of-week

The action vector. a, € R% specifies:
e [.oad reduction fractions for controllable
appliances, normalized within
e BESS power setpoints bounded by the
maximum power limits [—Pyax, Pmax]>
allowing charging or discharging actions
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e Thermostat adjustments allowed within
+2°C around set-point temperatures

B. Reward Function

The reward function in your demand response
optimization framework is defined using adaptive
weighted scalarization.
- WZ + W3Rt - W4_Dt
P, rated
— Z Ajmax (0, gj (spap))
J

Tt = —wq
C
max

e (, is the instantaneous operational cost at

time t.

e P, is the peak or total power consumption
at time t.

® R, is renewable energy utilization at
time t.

® D, measures user discomfort (often based
on temperature deviation or energy not
served).

e w; are dynamically adjusted objective
weights, adapted via gradient-based Pareto
optimization to balance competing goals.

® g;(ss a) are constraint functions that
represent violations (for example,
exceeding battery SoC bounds or
temperature limits).

® ]; are Lagrange multipliers penalizing
constraint violations, ensuring operational
feasibility.

C. Constraint-Aware PPO Algorithm

The constraint-aware PPO (Proximal Policy
Optimization) algorithm used here incorporates
constraint penalties directly into the standard RL
objective.
PPO Objective with Constraints
L(8) = E[min (r.(0)Aclip(r.(6),1 — ¢,1
+ €)A) — BH[mo]]
- M]Et [Lconstraint]
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e 1.(0)= (@IS ¢ the probability ratio

g q(atlse)

between new and old policies.

e A, is the advantage estimate (reward
improvement over baseline).

e HJmg] is the entropy regularizer
promoting exploration.

® L.onstraint P€Nalizes constraint violations,
impacting agent updates.

e [ and u are coefficients for entropy and
constraint penalty strength, respectively.

Lagrange Multipliers Update Rule
Lagrange multipliers are used to dynamically
penalize constraint violations:

AV = max (0,487 + a3 E[g; (s, ar)])

e J; is the Lagrange multiplier for
constraint j.

® q, is the learning rate for updating
multipliers.

* g;(ss a;) measures the degree of violation
of constraint j at time t.

e The update uses dual gradient ascent to
gradually adjust penalty strength, ensuring
violations are minimized over time.

This ensures asymptotic
constraint-satisfying policies.

convergence to

Figure 2: MODRL Agent Architecture

Multi-Objective Deep RL Architecture (PPO)

Input State (s_t)

7761~ Update Weights

Figure 2: MODRL Agent Architecture

Available at www.ijsred.com

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The framework was evaluated on a synthetic
smart grid comprising 100 prosumers with
heterogeneous  DER  configurations.  Solar
irradiance and wind speed data were sourced from
NREL's National Solar Radiation Database for
California (2023). Time-of-use tariffs reflected
Pacific Gas & Electric's E-TOU-C rate structure.
Simulations spanned 365 days with 15-minute
resolution.
Benchmarks included:
a) Rule-based: Peak-threshold curtailment
b) MPC:  24-hour  receding  horizon
optimization (CVXPY solver)
¢) Single-objective DRL: PPO maximizing
cost savings only
d) Proposed n MODRL:
constraint-aware PPO

Multi-objective

B. Performance Metrics

Table 2: Performance Comparison

Metho | Cost Peak Renewa | Discomf | Constrai
d Savin | Reducti | ble ort nt
gs on (%) Utilizati | Index Violatio
(%) on (%) ns
Rule- 8.3 12.1 3.2 0.42 18
based
MPC 18.9 24.6 12.4 0.21 10
Single- | 21.7 19.3 8.7 0.38 7
objecti
ve
DRL
Propos | 23.4 31.2 18.7 0.15 0
ed
MODR
L

The proposed MODRL framework achieved 23.4%
cost savings relative to unoptimized baseline,
significantly outperforming MPC (18.9%) and
rule-based approaches (8.3%). Peak demand
reduction reached 31.2%, critical for distribution
transformer sizing and capacity planning.
Renewable utilization improved to 18.7% through
intelligent BESS scheduling synchronized with
generation peaks. Notably, discomfort indices

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 2252




International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 5, Sep-Oct 2025

remained below 0.15, indicating minimal user
impact—a 29% improvement over single-
objective DRL.

C. Load Profile Analysis

Figure 3: 24-Hour Load Profile Comparison

load (MW

Peak Shaving

Figure 3: 24-hour Load Profile Comparison

As depicted in Figure 3, the MODRL agent
effectively shifted loads from peak hours (18:00-
21:00) to valley periods (02:00-05:00), exploiting
low prices and high renewable availability. The
smoothed profile reduces network stress and
defers infrastructure upgrades.

D. Ablation Study

Systematic weight variation revealed trade-offs:
prioritizing cost (w1=0.7w_1 =0.7

wl1=0.7) yielded 26% savings but increased
discomfort to 0.28; balanced weights (wi=0.25w_i
=0.25

wi=0.25) achieved Pareto-optimal solutions
across objectives. Constraint penalties ensured
zero violations across all configurations,
validating the Lagrangian mechanism.

VI. DISCUSSION AND FUTURE WORK

Results confirm MODRL's superiority in multi-
objective DR optimization, attributed to: (1) end-
to-end learning eliminating modeling errors, (2)
adaptive exploration discovering non-intuitive
policies, (3) constraint-aware training ensuring
operational feasibility. Scalability to 1,000+
prosumers was validated through distributed
training, though communication overhead
warrants investigation.
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Privacy concerns motivate federated
reinforcement learning extensions, enabling
decentralized policy training without raw data
sharing. Future work includes vehicle-to-grid
integration, blockchain-based incentive
mechanisms, and robustness certification against
adversarial manipulations. Transfer learning
across heterogeneous grid topologies represents
another promising direction.

CONCLUSION

This paper presented a novel Multi-Objective
Deep Reinforcement Learning framework for
demand response optimization in smart grids,
addressing critical limitations of conventional
approaches through constraint-aware Proximal
Policy Optimization with Lagrangian relaxation.
Experimental validation demonstrated substantial
improvements across cost, peak reduction,
renewable utilization, and user comfort metrics
while maintaining operational feasibility. The
framework establishes a foundation for
autonomous, intelligent grid management,
contributing to sustainable energy transitions.
Deployment in real-world pilots represents the
next validation frontier.
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