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Abstract: 
            The intensification of poultry production necessitates advanced welfare monitoring systems that 

minimize animal stress while providing accurate behavioral assessments. This study investigates the 

application of artificial intelligence-based non-invasive techniques for continuous poultry behavior 

analysis in commercial farming environments. We implemented a multimodal monitoring system 

combining computer vision, acoustic analysis, and thermal imaging to classify behaviors and detect 

welfare indicators in a cohort of 500 broiler chickens over eight weeks. Deep learning models achieved 

94.3% accuracy in behavior classification, with particularly high sensitivity (96.7%) for stress-related 

behaviors. Results demonstrate that AI-based non-invasive monitoring significantly outperforms manual 

observation in detecting early welfare concerns, offering scalable solutions for improving animal welfare 

standards and optimizing farm management practices in the poultry industry. 
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I. INTRODUCTION 

 

Global poultry production has expanded 

dramatically to meet rising protein demand, with 

over 74 billion chickens raised annually 

worldwide. This intensification brings heightened 

scrutiny regarding animal welfare, driven by 

ethical considerations, consumer preferences, 

regulatory requirements, and economic 

imperatives. Poor welfare conditions not only 

compromise animal wellbeing but also reduce 

productivity, increase disease susceptibility, and 

result in economic losses estimated at billions of 

dollars annually across the industry. 

Traditional welfare monitoring relies 

predominantly on manual observation and 

physical assessments, methods that are labor-

intensive, subjective, and potentially stressful for 

animals. Physical tagging and handling can 

induce behavioral changes, compromise immune 

function, and fail to provide continuous 

monitoring capabilities essential for early 

intervention. These limitations become 

particularly pronounced in large-scale commercial 

operations housing tens of thousands of birds, 

where individual animal assessment is practically 

infeasible. 

Artificial intelligence has emerged as a 

transformative tool for addressing these 

challenges through non-invasive monitoring 

technologies. Computer vision systems enable 

automated behavior recognition without physical 

contact, while acoustic analysis detects 

vocalizations indicative of distress or disease. 

Machine learning algorithms can process vast 
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datasets continuously, identifying subtle 

behavioral patterns imperceptible to human 

observers and providing objective, quantifiable 

welfare metrics. 

Recent advances in deep learning, particularly 

convolutional neural networks and recurrent 

architectures, have demonstrated remarkable 

capabilities in pattern recognition tasks applicable 

to animal behavior analysis. These technologies 

offer potential for real-time welfare assessment, 

early disease detection, and data-driven farm 

management optimization. This research 

investigates the efficacy of integrated AI-based 

non-invasive techniques for poultry behavior 

monitoring, aiming to validate their accuracy, 

reliability, and practical applicability in 

commercial production settings while establishing 

frameworks for widespread adoption. 

 

II. MATERIALS AND METHODS 

A. Experimental Setup and Population 

The study was conducted at a commercial broiler 

facility in Iowa, United States, over an eight-week 

production cycle from January to March 2024. 

The experimental cohort consisted of 500 Cobb 

500 broiler chickens, randomly selected from a 

population of 15,000 birds housed in climate-

controlled barns with standardized lighting, 

ventilation, and feeding systems. Birds were 

maintained under conditions compliant with 

National Chicken Council Animal Welfare 

Guidelines, with continuous access to feed and 

water. 

 

B. Data Collection Infrastructure 

A multimodal non-invasive monitoring system 

was deployed, comprising three complementary 

technologies. First, twelve high-resolution RGB 

cameras (1920×1080 pixels, 30 fps) were 

installed at strategic positions providing 

comprehensive pen coverage while maintaining a 

minimum height of 3 meters to minimize 

disturbance. Second, four directional microphones 

captured acoustic data at 44.1 kHz sampling rate 

for vocalization analysis. Third, two thermal 

imaging cameras (FLIR A655sc, 640×480 pixels, 

0.04°C sensitivity) monitored temperature 

distribution patterns indicative of health status 

and environmental comfort. 

 

Data collection operated continuously with 

automated 24-hour recording cycles, generating 

approximately 2.5 terabytes of raw data over the 

study period. Video footage captured ambient 

conditions under normal lighting regimes, while 

infrared capabilities enabled nocturnal behavior 

monitoring without artificial illumination. 

 

C. AI Model Architecture and Training 

Behavior classification utilized a hybrid deep 

learning architecture combining ResNet-50 for 

spatial feature extraction with Long Short-Term 

Memory networks for temporal pattern 

recognition. The model was trained to identify 

nine distinct behavioral categories including 

feeding, drinking, walking, standing, resting, 

preening, dustbathing, aggressive interactions, 

and stress-related behaviors such as pacing and 

feather pecking. 

 

Training datasets comprised 50,000 manually 

annotated video segments, with each behavior 

category represented by minimum 5,000 

examples to ensure balanced learning. Data 

augmentation techniques including rotation, 

scaling, and brightness adjustment enhanced 

model robustness. The architecture employed 

transfer learning from ImageNet pretrained 

weights, followed by fine-tuning on poultry-

specific datasets over 100 epochs using Adam 

optimizer with learning rate 0.0001. 

 

Acoustic analysis utilized Mel-frequency cepstral 

coefficients extracted from vocalization 

recordings, processed through a one-dimensional 

convolutional neural network to classify distress 

calls, contentment vocalizations, and alarm 

signals. Thermal imaging data underwent 

preprocessing to normalize temperature ranges, 

with anomaly detection algorithms identifying 

birds exhibiting abnormal thermal signatures 

potentially indicating illness or stress. 
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D. Validation and Ethical Considerations 

Model performance was evaluated using five-fold 

cross-validation, with 20% of data reserved for 

independent testing. Ground truth annotations 

were established through consensus evaluation by 

three experienced poultry welfare specialists 

reviewing video footage. Inter-rater reliability 

exceeded Cohen's kappa of 0.89, indicating strong 

agreement. 

 

The research protocol received approval from 

Iowa State University Institutional Animal Care 

and Use Committee (Protocol #20-143). All 

monitoring equipment was installed and operated 

to minimize environmental disruption, with no 

physical contact or handling beyond routine 

husbandry practices. Data privacy protocols 

ensured secure storage and restricted access to 

sensitive farm operational information. 

III. RESULTS 

A. Behavior Classification Performance 

The integrated AI system demonstrated high 

accuracy across all behavioral categories, 

achieving overall classification accuracy of 94.3% 

(95% CI: 93.7-94.9%) on the independent test 

dataset. Table 1 presents detailed performance 

metrics for individual behavior categories, 

revealing consistent performance across diverse 

behavioral patterns. 

 

TABLE 1: AI MODEL PERFORMANCE METRICS FOR POULTRY BEHAVIOR 

CLASSIFICATION 

Behavior 

Category 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

Feeding 96.2 95.8 96.5 0.961 

Drinking 93.4 92.1 94.3 0.932 

Walking 92.8 91.6 93.2 0.924 

Standing 91.5 89.7 92.8 0.912 

Resting 95.7 96.1 95.2 0.956 

Preening 93.9 94.2 93.1 0.937 

Dustbathing 94.6 93.8 95.1 0.944 

Aggressive 
Interactions 

95.1 96.3 93.9 0.951 

Stress 
Behaviors 

96.7 97.2 96.1 0.967 

Overall 94.3 94.1 94.5 0.943 

Stress-related behaviors exhibited the highest 

detection sensitivity at 96.7%, demonstrating the 

system's capability for early welfare concern 

identification. This category included feather 

pecking, excessive pacing, and withdrawal 

behaviors critical for proactive intervention. 

 

B. Temporal Behavior Patterns and Welfare 

Indicators 

Continuous monitoring revealed distinct diurnal 

activity patterns correlating with lighting cycles 

and feeding schedules. Figure 1 illustrates 

temporal distribution of primary behaviors across 

a representative 24-hour period, showing peak 

feeding activity during early morning and late 

afternoon hours, with extended resting periods 

during nocturnal phases. 

 

 
The system successfully identified welfare 

concerns in 23 individual birds exhibiting 

sustained abnormal behavior patterns, including 

prolonged inactivity, reduced feeding frequency, 

and increased stress indicators. Early detection 

enabled targeted intervention averaging 2.3 days 

before visible clinical symptoms emerged, 

potentially preventing disease spread and 

mortality. 

 

C. Comparative Analysis with Traditional Methods 

Performance comparison with manual observation 

conducted by trained personnel revealed 

significant advantages of AI-based monitoring. 

The automated system provided continuous 

surveillance versus intermittent human 

observation limited to 3-4 daily inspections 

totaling approximately 2 hours. AI detection of 

subtle behavioral changes demonstrated 87% 

higher sensitivity for early stress indicators 

compared to manual assessment, which often 
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missed gradual behavioral shifts occurring 

between observation periods. 

 

IV. DISCUSSION 

This study demonstrates that AI-based non-

invasive techniques offer robust, scalable 

solutions for continuous poultry welfare 

monitoring in commercial production 

environments. The achieved accuracy of 94.3% 

across diverse behavioral categories validates the 

feasibility of automated systems for replacing or 

augmenting traditional labor-intensive monitoring 

approaches. 

 

Particularly noteworthy is the system's 

exceptional performance in detecting stress-

related behaviors with 96.7% sensitivity, 

addressing a critical gap in conventional 

monitoring where subtle welfare deterioration 

often progresses unnoticed until manifesting as 

clinical disease or mortality. Early detection 

capabilities, averaging 2.3 days before symptom 

onset, provide crucial intervention windows for 

preventing disease transmission, reducing 

antibiotic dependency, and improving overall 

flock welfare outcomes. 

 

The multimodal approach combining visual, 

acoustic, and thermal data proved essential for 

comprehensive welfare assessment. Computer 

vision excelled at identifying overt behavioral 

patterns and spatial distribution, while acoustic 

analysis detected distress vocalizations potentially 

masked in visual observations. Thermal imaging 

contributed valuable physiological indicators, 

revealing fever or inflammatory responses 

preceding behavioral manifestations. This 

integration addresses inherent limitations of 

single-modality systems and enhances diagnostic 

confidence through cross-validation across data 

streams. 

 

Despite promising results, several challenges 

warrant consideration for commercial 

implementation. Computational requirements for 

real-time processing of high-resolution video 

streams necessitate substantial infrastructure 

investment, potentially limiting adoption among 

smaller operations. Environmental variability 

including dust accumulation on sensors, lighting 

fluctuations, and background noise introduces 

potential confounding factors requiring robust 

preprocessing and adaptive algorithms. 

Additionally, behavioral diversity across different 

production systems, housing designs, and genetic 

strains demands model retraining or transfer 

learning approaches to maintain accuracy across 

contexts. 

 

Scalability represents both opportunity and 

challenge. While the system architecture supports 

expansion to larger populations through 

additional sensor deployment, data storage and 

processing demands increase proportionally. 

Cloud-based solutions offer potential mitigation 

through distributed computing, though network 

reliability and data security considerations emerge 

as critical factors. 

 

Future research directions should prioritize 

developing lightweight models optimized for 

edge computing deployment, reducing latency 

and infrastructure requirements. Integrating 

additional data streams such as feed consumption 

metrics, growth rates, and environmental sensor 

data could enhance predictive capabilities through 

holistic welfare modeling. Extending 

methodologies to layer hens, turkeys, and other 

poultry species would broaden applicability and 

validate cross-species transferability. 

Longitudinal studies examining long-term welfare 

outcomes and economic returns on investment 

would strengthen evidence supporting widespread 

adoption. 

 

The integration of explainable AI techniques 

deserves emphasis to enhance farmer trust and 

facilitate decision-making. Black-box algorithms, 

despite high accuracy, may face adoption 

resistance without transparent reasoning processes. 

Developing interpretable models that highlight 

specific behavioral indicators triggering alerts 

would empower producers to understand and act 

upon system recommendations effectively. 
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V. CONCLUSION 

This research establishes that AI-based non-

invasive monitoring techniques provide accurate, 

continuous, and scalable solutions for poultry 

welfare assessment in commercial production 

settings. Achieving 94.3% overall accuracy with 

particularly high sensitivity for stress detection 

demonstrates technological readiness for practical 

implementation. The system's capacity for early 

intervention, objective assessment, and 

continuous surveillance addresses fundamental 

limitations of traditional monitoring approaches 

while supporting ethical and economic 

imperatives for improved animal welfare. 

 

The transformative potential extends beyond 

welfare monitoring to encompass comprehensive 

farm management optimization through data-

driven decision support. Integration of AI 

technologies represents not merely incremental 

improvement but a paradigm shift enabling 

precision livestock farming aligned with evolving 

consumer expectations, regulatory standards, and 

sustainability goals. 

 

Widespread adoption requires collaborative 

efforts among technology developers, poultry 

producers, and regulatory bodies to address 

implementation challenges, standardize protocols, 

and demonstrate economic viability. The poultry 

industry must embrace these innovations 

proactively to remain competitive, sustainable, 

and socially responsible in meeting global protein 

demands while upholding high animal welfare 

standards. 
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