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Abstract:

The intensification of poultry production necessitates advanced welfare monitoring systems that
minimize animal stress while providing accurate behavioral assessments. This study investigates the
application of artificial intelligence-based non-invasive techniques for continuous poultry behavior
analysis in commercial farming environments. We implemented a multimodal monitoring system
combining computer vision, acoustic analysis, and thermal imaging to classify behaviors and detect
welfare indicators in a cohort of 500 broiler chickens over eight weeks. Deep learning models achieved
94.3% accuracy in behavior classification, with particularly high sensitivity (96.7%) for stress-related
behaviors. Results demonstrate that Al-based non-invasive monitoring significantly outperforms manual
observation in detecting early welfare concerns, offering scalable solutions for improving animal welfare
standards and optimizing farm management practices in the poultry industry.

Keywords — Poultry Behavior Analysis, Animal Welfare Monitoring, Artificial Intelligence (Al),
Computer Vision and Acoustic Analysis, Non-Invasive Monitoring Systems
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intensive, subjective, and potentially stressful for
animals. Physical tagging and handling can
induce behavioral changes, compromise immune
function, and fail to provide continuous

I. INTRODUCTION

Global poultry production has expanded monitoring capabilities essential for early
dramatically to meet rising protein demand, with intervention. These limitations become
over 74 billion chickens raised annually particularly pronounced in large-scale commercial
worldwide. This intensification brings heightened operations housing tens of thousands of birds,
scrutiny regarding animal welfare, driven by where individual animal assessment is practically
ethical considerations, consumer preferences, infeasible.

regulatory  requirements, and  economic Artificial intelligence has emerged as a
imperatives. Poor welfare conditions not only transformative  tool for addressing these
compromise animal wellbeing but also reduce challenges through non-invasive monitoring
productivity, increase disease susceptibility, and technologies. Computer vision systems enable
result in economic losses estimated at billions of automated behavior recognition without physical
dollars annually across the industry. contact, while acoustic analysis detects
Traditional welfare monitoring relies vocalizations indicative of distress or disease.
predominantly on manual observation and Machine learning algorithms can process vast

physical assessments, methods that are labor-
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datasets  continuously,  identifying  subtle
behavioral patterns imperceptible to human
observers and providing objective, quantifiable
welfare metrics.

Recent advances in deep learning, particularly
convolutional neural networks and recurrent
architectures, have demonstrated remarkable
capabilities in pattern recognition tasks applicable
to animal behavior analysis. These technologies
offer potential for real-time welfare assessment,
early disease detection, and data-driven farm
management  optimization.  This  research
investigates the efficacy of integrated Al-based
non-invasive techniques for poultry behavior
monitoring, aiming to validate their accuracy,
reliability, and practical applicability in
commercial production settings while establishing
frameworks for widespread adoption.

II. MATERIALS AND METHODS

A. Experimental Setup and Population

The study was conducted at a commercial broiler
facility in Iowa, United States, over an eight-week
production cycle from January to March 2024.
The experimental cohort consisted of 500 Cobb
500 broiler chickens, randomly selected from a
population of 15,000 birds housed in climate-
controlled barns with standardized lighting,
ventilation, and feeding systems. Birds were
maintained under conditions compliant with
National Chicken Council Animal Welfare
Guidelines, with continuous access to feed and
water.

B. Data Collection Infrastructure

A multimodal non-invasive monitoring system
was deployed, comprising three complementary
technologies. First, twelve high-resolution RGB
cameras (1920x1080 pixels, 30 fps) were
installed at strategic positions providing
comprehensive pen coverage while maintaining a
minimum height of 3 meters to minimize
disturbance. Second, four directional microphones
captured acoustic data at 44.1 kHz sampling rate
for vocalization analysis. Third, two thermal
imaging cameras (FLIR A655sc, 640x480 pixels,
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0.04°C  sensitivity) monitored temperature
distribution patterns indicative of health status
and environmental comfort.

Data collection operated continuously with
automated 24-hour recording cycles, generating
approximately 2.5 terabytes of raw data over the
study period. Video footage captured ambient
conditions under normal lighting regimes, while
infrared capabilities enabled nocturnal behavior
monitoring without artificial illumination.

C. AI Model Architecture and Training

Behavior classification utilized a hybrid deep
learning architecture combining ResNet-50 for
spatial feature extraction with Long Short-Term
Memory networks for temporal pattern
recognition. The model was trained to identify
nine distinct behavioral categories including
feeding, drinking, walking, standing, resting,
preening, dustbathing, aggressive interactions,
and stress-related behaviors such as pacing and
feather pecking.

Training datasets comprised 50,000 manually
annotated video segments, with each behavior
category represented by minimum 5,000
examples to ensure balanced learning. Data
augmentation techniques including rotation,
scaling, and brightness adjustment enhanced
model robustness. The architecture employed
transfer learning from ImageNet pretrained
weights, followed by fine-tuning on poultry-
specific datasets over 100 epochs using Adam
optimizer with learning rate 0.0001.

Acoustic analysis utilized Mel-frequency cepstral
coefficients  extracted  from  vocalization
recordings, processed through a one-dimensional
convolutional neural network to classify distress
calls, contentment vocalizations, and alarm
signals. Thermal imaging data underwent
preprocessing to normalize temperature ranges,
with anomaly detection algorithms identifying
birds exhibiting abnormal thermal signatures
potentially indicating illness or stress.
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D. Validation and Ethical Considerations

Model performance was evaluated using five-fold
cross-validation, with 20% of data reserved for
independent testing. Ground truth annotations
were established through consensus evaluation by
three experienced poultry welfare specialists
reviewing video footage. Inter-rater reliability
exceeded Cohen's kappa of 0.89, indicating strong
agreement.

The research protocol received approval from
Iowa State University Institutional Animal Care
and Use Committee (Protocol #20-143). All
monitoring equipment was installed and operated
to minimize environmental disruption, with no
physical contact or handling beyond routine
husbandry practices. Data privacy protocols
ensured secure storage and restricted access to
sensitive farm operational information.

I11. RESULTS

A. Behavior Classification Performance

The integrated Al system demonstrated high
accuracy across all behavioral categories,
achieving overall classification accuracy of 94.3%
(95% CI: 93.7-94.9%) on the independent test
dataset. Table 1 presents detailed performance
metrics for individual behavior categories,
revealing consistent performance across diverse
behavioral patterns.

TABLE 1: Al MODEL PERFORMANCE METRICS FOR POULTRY BEHAVIOR
CLASSIFICATION

Behavior Accuracy | Precision | Recall | F1-Score
Category (%) (%) (%)

Feeding 96.2 95.8 96.5 0.961
Drinking 93.4 92.1 94.3 0.932
Walking 92.8 91.6 93.2 0.924
Standing 91.5 89.7 92.8 0.912
Resting 95.7 96.1 95.2 0.956
Preening 93.9 94.2 93.1 0.937
Dustbathing | 94.6 93.8 95.1 0.944
Aggressive 95.1 96.3 93.9 0.951
Interactions

Stress 96.7 97.2 96.1 0.967
Behaviors

Overall 94.3 94.1 94.5 0.943

Stress-related behaviors exhibited the highest
detection sensitivity at 96.7%, demonstrating the
system's capability for early welfare concern
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identification. This category included feather
pecking, excessive pacing, and withdrawal
behaviors critical for proactive intervention.

B. Temporal Behavior Patterns and Welfare
Indicators

Continuous monitoring revealed distinct diurnal
activity patterns correlating with lighting cycles
and feeding schedules. Figure 1 illustrates
temporal distribution of primary behaviors across
a representative 24-hour period, showing peak
feeding activity during early morning and late
afternoon hours, with extended resting periods
during nocturnal phases.

Figure 1: of Poultry Over 24-Hour Period
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The system successfully identified welfare
concerns in 23 individual birds exhibiting
sustained abnormal behavior patterns, including
prolonged inactivity, reduced feeding frequency,
and increased stress indicators. Early detection
enabled targeted intervention averaging 2.3 days
before visible clinical symptoms emerged,
potentially preventing disease spread and
mortality.

C. Comparative Analysis with Traditional Methods

Performance comparison with manual observation
conducted by trained personnel revealed
significant advantages of Al-based monitoring.
The automated system provided continuous
surveillance versus intermittent ~ human
observation limited to 3-4 daily inspections
totaling approximately 2 hours. Al detection of
subtle behavioral changes demonstrated 87%
higher sensitivity for early stress indicators
compared to manual assessment, which often
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missed gradual behavioral shifts occurring
between observation periods.

IVv. DISCUSSION
This study demonstrates that Al-based non-

invasive techniques offer robust, scalable
solutions for continuous poultry welfare
monitoring in commercial production

environments. The achieved accuracy of 94.3%
across diverse behavioral categories validates the
feasibility of automated systems for replacing or
augmenting traditional labor-intensive monitoring
approaches.

Particularly  noteworthy is the system's
exceptional performance in detecting stress-
related behaviors with 96.7% sensitivity,
addressing a critical gap in conventional
monitoring where subtle welfare deterioration
often progresses unnoticed until manifesting as
clinical disease or mortality. Early detection
capabilities, averaging 2.3 days before symptom
onset, provide crucial intervention windows for
preventing  disease  transmission, reducing
antibiotic dependency, and improving overall
flock welfare outcomes.

The multimodal approach combining visual,
acoustic, and thermal data proved essential for
comprehensive welfare assessment. Computer
vision excelled at identifying overt behavioral
patterns and spatial distribution, while acoustic
analysis detected distress vocalizations potentially
masked in visual observations. Thermal imaging
contributed valuable physiological indicators,
revealing fever or inflammatory responses
preceding  behavioral manifestations.  This
integration addresses inherent limitations of
single-modality systems and enhances diagnostic
confidence through cross-validation across data
streams.

Despite promising results, several challenges
warrant consideration for commercial
implementation. Computational requirements for
real-time processing of high-resolution video
streams necessitate substantial infrastructure
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investment, potentially limiting adoption among
smaller operations. Environmental variability
including dust accumulation on sensors, lighting
fluctuations, and background noise introduces
potential confounding factors requiring robust
preprocessing  and  adaptive  algorithms.
Additionally, behavioral diversity across different
production systems, housing designs, and genetic
strains demands model retraining or transfer
learning approaches to maintain accuracy across
contexts.

Scalability represents both opportunity and
challenge. While the system architecture supports
expansion to larger populations through
additional sensor deployment, data storage and
processing demands increase proportionally.
Cloud-based solutions offer potential mitigation
through distributed computing, though network
reliability and data security considerations emerge
as critical factors.

Future research directions should prioritize
developing lightweight models optimized for
edge computing deployment, reducing latency
and infrastructure requirements. Integrating
additional data streams such as feed consumption
metrics, growth rates, and environmental sensor
data could enhance predictive capabilities through
holistic welfare modeling. Extending
methodologies to layer hens, turkeys, and other
poultry species would broaden applicability and
validate Cross-species transferability.
Longitudinal studies examining long-term welfare
outcomes and economic returns on investment
would strengthen evidence supporting widespread
adoption.

The integration of explainable AI techniques
deserves emphasis to enhance farmer trust and
facilitate decision-making. Black-box algorithms,
despite high accuracy, may face adoption
resistance without transparent reasoning processes.
Developing interpretable models that highlight
specific behavioral indicators triggering alerts
would empower producers to understand and act
upon system recommendations effectively.
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V. CONCLUSION

This research establishes that Al-based non-
invasive monitoring techniques provide accurate,
continuous, and scalable solutions for poultry
welfare assessment in commercial production
settings. Achieving 94.3% overall accuracy with
particularly high sensitivity for stress detection
demonstrates technological readiness for practical
implementation. The system's capacity for early
intervention, objective assessment, and
continuous surveillance addresses fundamental
limitations of traditional monitoring approaches
while  supporting ethical and economic
imperatives for improved animal welfare.

The transformative potential extends beyond
welfare monitoring to encompass comprehensive
farm management optimization through data-
driven decision support. Integration of Al
technologies represents not merely incremental
improvement but a paradigm shift enabling
precision livestock farming aligned with evolving
consumer expectations, regulatory standards, and
sustainability goals.

Widespread adoption requires collaborative
efforts among technology developers, poultry
producers, and regulatory bodies to address
implementation challenges, standardize protocols,
and demonstrate economic viability. The poultry
industry must embrace these innovations
proactively to remain competitive, sustainable,
and socially responsible in meeting global protein
demands while upholding high animal welfare
standards.
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