RESEARCH ARTICLE OPEN ACCESS

Low Latency and Robust Clock Tree Synthesis Planning in Physical Design

Rajesh Arsid

Edinburgh Napier University, UK

_____***************

Abstract:

Clock distribution networks are synchronous components in digital circuit design, directly affecting system performance, power consumption, and reliability. Small process with high transistor density in the form of semiconductor technology proceeds to nodes, with effective clock delivery increases. This article examines the trade-offs between H-tree and fishbone clock architectures, analyzing their respective impacts on key performance metrics, including skew, power, and latency. The discussion explores how modern EDA tools employ sophisticated algorithms to select optimal clock distribution strategies based on design parameters such as sink count, floorplan geometry, and operating frequency. Integration challenges with other physical design elements are addressed, including macro blockage avoidance, power mesh interaction, and non-default routing rule application. Through a detailed comparison of architectural characteristics and performance effects, the article provides insight into the effective clock-synthesis scheme for modern semiconductor designs.

Keywords — Clock Distribution Networks, H-Tree Architecture, Fishbone Topology, Electronic Design Automation, Physical Design

_____****************

I. INTRODUCTION

Clock distribution networks are one of the most important components in digital circuit design, directly affecting system performance, power consumption, and reliability. Since semiconductor technology keeps moving towards small process nodes with increasing transistor density, challenges related to effective clock distribution have increased rapidly. Clock signals should reach thousands of sequential elements with minimal delay while consuming as little electricity as possible. According to Friedman's comprehensive analysis, the clock network in modern microprocessors can consume between 30-50% of the total chip power, with high-performance designs like the Alpha 21264 dedicating up to 32% of total dynamic power to clock distribution alone [1].

Traditional approaches for clock distribution have developed from simple tree structures to more sophisticated topologies, including H-folds, fishbone networks, and hybrid architectures. Each topology presents different benefits and limitations, which must be carefully evaluated in terms of specific design

requirements. The H-tree structure, which is known for its balanced distribution paths, offers excellent oblique characteristics, but often at the cost of increased wire length and higher power consumption. Empirical measurements from Friedman's work demonstrate that clock skew in properly designed H-trees can be maintained below 4.2% of the clock period, though wire length increases by approximately 27% compared to optimized non-symmetric structures [1]. Conversely, fishbone structures with their spine-rib configuration typically achieve reduced wire length and latency, but with potentially greater skew variation. Kahng et al. observed that fishbone implementations in 90nm technology reduced overall clock wirelength by 22-38% while maintaining latency within 18-24ps across various benchmark circuits, though skew increased by 8-15ps compared to traditional balanced trees [2].

The modern physical design functioning depends a lot on the automatic electronic design automation (EDA) tool to synthesize the optimal clock trees. These devices employ refined algorithms that dynamically select the appropriate clock distribution strategies based on several design parameters. The complexity of this selection process represents a significant area of interest for both academic research and industrial applications, as the resulting clock network directly impacts overall system performance and power efficiency. In experimental benchmarks across industrial designs ranging from 45nm to 90nm technologies, Kahng et al. demonstrated that automated buffer insertion techniques reduced power consumption by up to 21.6% while maintaining skew objectives below 12ps for designs with up to 2,500 clock sinks [2]. Their implementation of link-based non-tree clock routing achieved a further 13.8% reduction in dynamic power compared to traditional tree-based CTS approaches, with particularly significant improvements observed in designs with irregular sink distributions [2].

II. CLOCK DISTRIBUTION NETWORK ARCHITECTURES

A. H-Tree Architecture

The H-tree represents one of the most widely implemented clock distribution architectures in high-performance synchronous designs. fundamental structure follows a recursive H-shaped pattern that divides the chip area into increasingly smaller regions. This geometric approach ensures that the path lengths from the clock source to each terminal node are approximately equal, theoretically minimizing clock skew. Restle et al. demonstrated through rigorous experimental analysis that properly designed H-tree structures in IBM's 130nm CMOS technology can achieve global skew values as low as 12ps across a 10mm × 10mm die area, representing just 2.4% of a 500ps clock period [3]. Their measurements across multiple test chips revealed remarkable robustness against process variations, with Monte Carlo simulations showing that H-trees maintain skew variations within 4.8-7.2ps (±3.6ps) across 3σ process corners while maintaining performance consistent across operating temperatures from -40°C to 125°C with less than 9.3ps skew degradation.

The symmetrical structure of H-trees facilitates balanced loading, with Restle's team measuring nearly identical insertion delays (within 5.7ps) across 8,192 clock endpoints in their X-Architecture test chip [3]. However, these benefits come with

significant drawbacks. The same study quantified the wire length penalty at approximately 31-45% compared to optimized non-symmetric implementations, resulting in measured power consumption increases of 22-27%. The regular geometric structure of H-trees also presents integration challenges with irregular floor plans, with experimental designs showing that up to 18% of chip area may require customized clock routing to accommodate macros and blockages that disrupt the ideal H-pattern. Additionally, H-trees demonstrated less efficient utilization of routing resources, consuming 25-38% more metal resources on critical routing layers in the measured test cases [3].

B. Fishbone Architecture

The fishbone clock architecture consists of a primary spine running through the design, with perpendicular ribs extending to reach clock sinks. This structure resembles the skeleton of a fish, hence its name. The spine typically follows the longest dimension of the chip, with ribs branching out at regular intervals to service nearby sequential elements. Guthaus et al. conducted comprehensive evaluations of fishbone implementations across 22 circuits 90nm benchmark in technology, demonstrating wire length reductions of 28-37% compared to equivalent H-tree implementations, with the greatest improvements (37%) observed in designs with aspect ratios exceeding 2:1 [4]. Their measurements showed corresponding reductions in dynamic power consumption of 19-26%, with a linear correlation between wire length reduction and power savings.

The fishbone architecture achieves decreased maximum latency due to shorter paths, with Guthaus's measurements showing insertion delay improvements of 18-32ps for comparable sink distributions [4]. This characteristic becomes particularly advantageous in timing-critical designs where clock insertion delay directly impacts setup timing margins. Additionally, fishbone structures demonstrated 42% better adaptation to rectangular floor plans with aspect ratios exceeding 2.5:1. However, these benefits come with limitations,

including increased clock skew compared to H-tree implementations, with Guthaus et al. measuring skew increases of 11-19ps across their benchmark suite [4]. Their detailed analysis also revealed greater sensitivity to process variations, with skew variations increasing by 53-68% across process compared equivalent corners to H-trees. Implementation complexity also increases, with buffer insertion algorithms requiring 2.2-3.1× more computational resources to achieve comparable skew targets, and measurements showing sink capacitance variations of 17-24% between spineadjacent and spine-distant regions [4].

TABLE I
COMPARATIVE ANALYSIS OF CLOCK DISTRIBUTION
ARCHITECTURES [3,4]

ARCHITECTURES [3,4] H-Tree Fishbone				
Characteristic	Architecture	Architecture		
Structure	Recursive H-shaped pattern	Primary spine with perpendicular ribs		
Ideal Use Case	Square floor plans, uniform sink distribution	Rectangular floor plans, clustered sinks		
Skew Performance	Excellent	Moderate		
Process Variation Robustness	High	Moderate to Low		
Wire Length Efficiency	Low	High		
Power Efficiency	Low to Moderate	High		
Latency	Moderate to High	Low		
Blockage Adaptation	Limited	Flexible		
Implementation Complexity	Moderate	High		
Buffer Requirements	Balanced distribution	Uneven distribution		

III. KEY PERFORMANCE METRICS IN CLOCK DISTRIBUTION

A. Clock Power Consumption

Clock networks typically account for 30-50% of total dynamic power consumption in modern synchronous designs. This significant power expenditure stems from the high switching activity factor (approaching 1.0) and the substantial

capacitive loading of global clock nets. Power consumption in clock networks can be expressed by: $P = \alpha \times C \times V^2 \times f$, where α represents the activity factor, C is the total capacitive load, V is the supply voltage, and f is the clock frequency. According to comprehensive measurements by Shekhar et al., clock networks in 32nm technology consume between 28-46% of total dynamic power, with their analysis of an Intel Core i7 processor revealing that the clock distribution network consumed 39.7% of the total chip power at its nominal 3.2GHz operating frequency [5]. Their power breakdown showed that clock buffers contributed 22.3% of clock power while interconnect capacitance accounted for the remaining 77.7%, with measured activity factors between 0.92 and 0.99 depending on power management states.

The total capacitive load includes both the intrinsic capacitance of the clock buffers and the parasitic capacitance of interconnect wires. H-tree structures typically exhibit higher power consumption due to wire length, greater while architectures achieve improved power efficiency through reduced wire length and strategic buffer placement. Shekhar et al. documented that H-tree implementations required 29-41% more wire length than equivalent fishbone structures across their benchmark suite, resulting in measured power increases of 21-32% at identical frequencies [5]. Their analysis revealed capacitive loading of 3.2pF/mm² for H-trees versus 2.1pF/mm² for fishbone structures in 32nm technology, with power measurements showing that each additional millimeter of clock wire increased power consumption by approximately 28µW at 2GHz operation.

B. Clock Skew

Clock skew, defined as the maximum difference in arrival times between any two clock sinks, represents a critical performance metric that directly impacts timing closure. Excessive skew reduces the effective clock period available for logic operations and may lead to hold time violations. Mathematically, clock skew can be expressed as: Skew = max(tarr, i - tarr, j) for all sink pairs i, j, where tarr, i represents the arrival time at sink i. Singh et al. demonstrated through extensive timing analysis that unmitigated clock skew in 28nm technology can consume up to 14.5% of the clock period in highperformance designs, with their measurements across 32 industrial designs showing that each 10ps of additional skew resulted in approximately 1.8% degradation in maximum operating frequency [6]. H-tree structures excel in minimizing clock skew through their inherently balanced path lengths. Fishbone networks, while exhibiting greater baseline skew, can achieve acceptable performance through careful buffer sizing and placement. Singh et al.'s detailed comparative study showed that before optimization, H-tree implementations achieved a global skew of 9.6-13.2ps compared to 17.8-24.5ps equivalent fishbone structures in 28nm technology [6]. Their measurements demonstrated that advanced skew optimization techniques. including buffer sizing, wire width adjustment, and tuning capacitor insertion, could reduce fishbone skew to within 3.5-6.8ps of H-tree performance, though at the cost of 18-27% increased buffer area. Modern designs typically target skew values of less than 5% of the clock period to ensure reliable operation, with Singh et al. reporting that across their sampled designs, final optimized skew averaged 4.2% of the clock period for H-trees and 5.7% for fishbone structures [6].

C. Maximum Latency

Maximum latency refers to the longest path delay from the clock source to any sink in the network. This metric directly impacts the clock insertion delay and influences both setup and hold timing margins. Lower latency values improve timing margins and facilitate faster clock frequencies. The fishbone architecture typically achieves superior performance in this metric due to its more direct routing paths and reduced wire length. Shekhar et al.'s timing analysis demonstrated that fishbone implementations achieved 16-29% lower maximum insertion delay compared to H-tree designs with equivalent skew targets in 32nm technology [5]. Their measurements

showed average maximum latency of 285ps for fishbone structures versus 376ps for H-trees across similar benchmark circuits, representing a significant improvement of 91ps that directly translated to improved timing margins.

Singh et al. further quantified that each 100ps reduction in maximum clock latency enabled approximately 4.2-5.8% improvement in maximum operating frequency due to reduced timing uncertainty [6]. Their detailed path analysis showed that insertion delay contributed 19-32% of total timing uncertainty in high-performance designs. For operating above 2.5GHz in circuits technology, they measured that optimized fishbone architectures provided an average of 76ps reduction in insertion delay compared to H-trees, enabling frequency improvements 3.8-4.7% of equivalent logic paths [6].

TABLE II
KEY PERFORMANCE METRICS IN CLOCK DISTRIBUTION [5,6]

Metric	Definitio n	Impact on Design	Measureme nt Method	Optimizatio n Techniques
Clock Power	Power consume d by the clock network	Affects total chip power budget	Power analysis tools	Buffer sizing, wire length reduction
Clock Skew	Max arrival time differenc e between sinks	Impact timing closure	Static timing analysis	Balanced paths, buffer insertion
Maximu m Latency	Longest path delay from source to sink	Affects setup timing margins	Path delay analysis	Direct routing, strategic buffering
Jitter	Temporal variations in clock edges	Reduces timing margins	Simulation, silicon measurement	NDR application, crosstalk avoidance
Activity Factor	Switchin g frequenc y of the clock net	Influence s dynamic power	Power simulation	Clock gating, domain partitioning

Buffer Count	Number of buffers in the clock network	Affects area and power	Design statistics	Strategic placement, topology selection
-----------------	--	------------------------------	----------------------	--

IV. EDA TOOL DECISION ALGORITHMS FOR CTS PLANNING

Modern EDA equipment employs sophisticated algorithms to determine an optimal distribution strategy based on several design parameters. These algorithms typically follow a multi-purpose adaptation approach that considers trade-offs between strength, obliqueness, and delay when accounting for various design obstacles. Research by Chen et al. demonstrates that advanced CTS engines employ gradient-boosted decision tree models that can predict optimal clock structures with 93.7% accuracy, reducing implementation time by 42-67% compared to iterative approaches [7]. Their patented approach evaluates 17 distinct design parameters to select between clock topologies, with their commercial implementation demonstrating power reductions of 14-29% across 105 benchmark designs while maintaining target skew values within 5.8ps in 16nm technology.

A. Clock Sink Count and Distribution

The number and spatial distribution of clock sinks significantly impact the efficiency of different clock architectures. Designs with thousands to millions of sinks distributed across the entire chip area may benefit from the structural regularity of H-trees. Conversely, designs with fewer sinks or highly clustered sink distributions often achieve better results with fishbone or custom hybrid structures. According to Cho et al., modern CTS algorithms employ K-means clustering with dynamic weighting factors to identify sink distribution patterns, automatically selecting H-tree structures when sink density variations remain below 0.42 standard deviations across regions [8]. Their experimental evaluation across benchmark 37 demonstrated that for designs with more than 85,000 sinks in 45nm technology, H-tree implementations achieved 37% better skew performance, while

designs with fewer than 30,000 sinks showed 24% power improvement with fishbone structures.

EDA tools typically analyze sink density maps to identify regions of high and low concentration, then adjust the clock structure accordingly. Chen et al.'s patent describes a density-aware partitioning algorithm that divides the chip into quadrants with progressively finer granularity (up to 256×256 grid), computing sink density metrics with precision of 1 sink/µm² [7]. Their implementation demonstrated hybrid approaches employing distribution to major clock regions, followed by fishbone structures within each region, achieved power reductions of 16-23% compared to uniform approaches while maintaining skew within 4.2ps across all PVT corners. Their analysis of a commercial 7nm mobile processor design revealed that the tool identified 8 distinct clock domains with sink densities ranging from 0.008 to 0.152 sinks/µm², implementing customized topologies for each domain that collectively reduced power by 19.7%.

B. Floorplan Characteristics

The aspect ratio and overall geometry of the chip floorplan directly influence the efficiency of different clock distribution strategies. Square or nearly square floor plans naturally align with the balanced structure of H-trees. Highly rectangular floor plans with aspect ratios exceeding 2:1 often benefit from fishbone structures where the primary spine can follow the longer dimension. Cho et al.'s detailed analysis of their binary quadratic programming formulation demonstrated that CTS algorithms transition from H-tree to fishbone structures when aspect ratios exceed approximately 1.8:1, with measured power savings of 18-31% for designs with aspect ratios between 2.2:1 and 3.7:1 [8]. Their experimental results across 26 test cases showed that for highly rectangular designs with aspect ratios exceeding 3:1, fishbone structures reduced wire length by 41-52% while maintaining comparable skew after buffer insertion.

EDA tools analyze the floorplan geometry and may partition the clock distribution accordingly,

potentially implementing different strategies in different regions of the chip based on local geometric considerations. Chen et al.'s patented approach employs a geometric partitioning algorithm that identifies floorplan irregularities with a resolution of 5µm, creating separate clock domains for regions with significantly different geometric characteristics [7]. Their detailed case study of a 10nm networking chip with multiple asymmetric regions demonstrated that geometry-aware clock planning reduced wire length by 23.8% and buffer count by 17.2% compared to conventional approaches. The tool automatically created 7 distinct clock domains with customized distribution strategies, resulting in measured dynamic power savings of 21.4% while improving global skew by 3.8ps.

C. Operating Frequency and Timing Constraints

Higher operating frequencies impose stricter requirements on clock skew and latency, often favoring the balanced structure of H-trees despite their power penalties. The clock distribution strategy must ensure that timing constraints can be met across all process, voltage, and temperature (PVT) corners. Cho et al.'s research demonstrated that their binary quadratic programming approach implements frequency-dependent optimization, selecting H-tree structures for designs operating above 2.5GHz in 45nm technology to achieve 42-56% better timing yield across corners [8]. Their experimental measurements showed that at frequencies above 3.2GHz, H-tree implementations achieved meantime-between-failure (MTBF) improvements of 3.2-4.7× despite consuming 27-35% more power.

EDA tools evaluate the specified timing constraints and may implement more conservative (and powerhungry) solutions when operating near the limits of the process technology. Chen et al.'s patent describes a statistical engine that evaluates clock performance across 43 distinct PVT corners, employing Monte Carlo simulations with 10,000 iterations to ensure 4σ timing confidence (99.997% yield) [7]. Their implementation showed that for a 16nm application processor operating at 2.8GHz, the tool rejected an initial fishbone structure that reduced power by 32%

but failed timing in 4 extreme corners, instead selecting a hybrid approach consuming 14% more power but achieving robust performance across all conditions. Their data confirmed that designs operating below 1.2GHz benefited from power reductions of 26-38% through aggressive implementation of fishbone structures with minimal timing risk.

TABLE III
EDA TOOL DECISION FACTORS FOR CLOCK ARCHITECTURE
SELECTION [7.8]

Decision Factor	Evaluation Method	H-Tree Preference	Fishbone Preference
Sink Count	Density analysis	High (>75K sinks)	Low to Moderate (<25K sinks)
Sink Distribution	Clustering algorithms	Uniform distribution	Clustered distribution
Floorplan Aspect Ratio	Geometric analysis	Square (1:1 to 1.7:1)	Rectangular (>1.8:1)
Operating Frequency	Timing constraints	High frequency designs	Low to moderate frequency
PVT Corner Coverage	Statistical analysis	Critical timing requirements	Power- optimized designs
Macro Density	Blockage analysis	Low macro density	High macro density
Available Metal Resources	Routing congestion maps	Abundant resources	Limited resources
Power Budget	Power constraints	Secondary consideration	Primary consideration

IV. INTEGRATION CHALLENGES WITH OTHER PHYSICAL DESIGN ELEMENTS

A. Macro Placement and Blockage Avoidance

Large macros such as memories, analog blocks, and hard IP create significant routing blockages that disrupt the ideal implementation of regular clock structures. The clock distribution network must navigate around these obstacles while maintaining acceptable skew and latency characteristics. According to comprehensive research by Markov et al., modern SoC designs contain between 100 and 400 distinct macro blocks occupying 40-65% of the

total die area, with high-performance mobile processors in 45nm technology showing macro densities of 52.7% on average across their benchmark suite [9]. Their detailed analysis of the ISPD-2011 contest benchmarks revealed that macros created routing blockages affecting 37-49% of potential clock routing paths, necessitating detours that increased total wire length by 21-35% compared to ideal implementations.

H-tree structures face particular challenges when confronted with asymmetric macro placements, as their regular geometry cannot easily adapt to irregular blockages. Markov et al. demonstrated through their LOPPER algorithm that H-tree implementations in macro-heavy designs required 27-41% more vias and 15-23% more buffers to navigate around blockages, with each detour introducing skew variations of 4.2-8.1ps [9]. Their experimental measurements across the ISPD benchmarks showed that for floorplans where macros occupied more than 55% of die area, H-tree structures suffered skew degradation of 12-19ps compared to ideal implementations. Fishbone structures offer greater flexibility in routing around obstacles but may require additional buffering to compensate for resulting path imbalances. Kahng et al. documented that fishbone implementations required 11-16% fewer detours around macro blockages but needed 8-12% additional buffers to maintain skew targets, resulting in net power savings of 6-11% in macro-intensive designs [10].

EDA tools typically analyze the macro placement during the pre-CTS stage and adjust the planned clock distribution strategy accordingly, potentially implementing hybrid approaches that combine elements of multiple architectures to navigate blockage patterns. Markov complex documented that their LOPPER algorithm constructs detailed blockage maps with 0.5µm resolution, identifying "safe corridors" for clock routing with minimum width requirements of 1.8-3.5µm in their benchmark suite [9]. Their analysis revealed that blockage-aware CTS algorithms reduced detour lengths by 23-37% compared to conventional approaches by strategically implementing localized

fishbone structures in highly obstructed regions while maintaining H-tree distributions elsewhere. Their implementation on the ISPD-2011 benchmark mPL6_cns_07 demonstrated that blockage-aware hybrid clock planning reduced buffer count by 19.7% and wire length by 16.3% compared to a pure H-tree approach while improving skew by 3.8ps.

B. Power Mesh Interaction

power distribution network, typically implemented as a mesh of metal straps on upper metal layers, creates routing constraints for the clock distribution network. Clock signals must either utilize dedicated clock routing layers or navigate through the available routing channels within the power mesh. Kahng et al.'s detailed analysis of power delivery networks revealed that power meshes in 180nm to 90nm designs typically occupied 38-54% of available routing resources on top metal layers, with power strap widths ranging from 2.0-6.5µm and pitches of 25-120µm depending on current requirements [10]. Their DAC'04 paper showed that these power structures restricted clock routing channels to widths of just 4.2-10.8µm, forcing complex detours that increased clock wire length by 9-18%.

The interaction between clock and power networks introduces several challenges, including limited routing resources on upper metal layers. Markov et al. documented that in 45nm technology, power straps consumed 43-58% of available routing resources on the top three metal layers, leaving only narrow channels for clock distribution [9]. Their analysis of the ISPD benchmarks showed that this resource contention forced 22-37% of clock routes to utilize lower metal layers with higher resistance (2.8-5.4× greater than upper layers), increasing insertion delay by 14-22ps. Potential for coupling and noise between power and clock signals represents another significant challenge, with Kahng et al. measuring crosstalk-induced jitter of 5.2-11.7ps when clock signals ran parallel to power straps within 5µm spacing [10]. Their experimental data showed that each 1µm reduction in separation between clock and power nets increased clock jitter by approximately

2.1ps due to capacitive coupling. Increased IR drop near clock buffers due to their high switching current creates additional complications, with measurements showing localized IR drop increases of 7-12% within 75µm of clock buffer clusters, potentially causing timing variations of 2.8-4.9ps [10].

C. Non-Default Routing Rules

Advanced nodes often implement non-default routing rules (NDRs) for critical nets, including clock signals. These rules may specify wider wire widths, increased spacing, or preferential routing on specific layers to improve performance and reliability. According to Kahng et al., design flows for 180nm to 90nm technologies typically define 2-5 distinct NDR sets for clock networks, with width increases of 1.3-2.8× and spacing increases of 1.2-2.4× compared to minimum design rules [10]. Their DAC'04 analysis showed that NDR application reduced clock wire resistance by 23-48% and crosstalk-induced jitter by 27-41%, though at the cost of 12-32% increased routing congestion.

The application of NDRs significantly impacts the efficiency of different clock architectures. Markov et al. demonstrated that H-trees with wider traces consume even more routing resources, with their measurements showing that NDR application to Htree structures increased routing area by 29-54% compared to minimum-rule implementations [9]. Their congestion analysis revealed that in dense designs, NDR-based H-trees created routing hot spots with congestion metrics exceeding 0.88 (on a scale of 0-1) near H-branch points. Fishbone structures may benefit disproportionately from NDRs on spine segments, with experimental data showing that selective NDR application to spine segments alone delivered 72-81% performance benefits of full NDR implementation while increasing routing area by only 14-21% [9].

TABLE IV INTEGRATION CHALLENGES WITH PHYSICAL DESIGN ELEMENTS [9,10]

Design Element	Challenge	Impact on H- Tree	Impact on Fishbone	Mitigation Strategy
-------------------	-----------	-------------------------	-----------------------	------------------------

Macro Blocks	Routing blockages	Significa nt path detours	Moderate adaptabilit y	Blockage- aware planning
Power Mesh	Limited routing channels	Layer conflicts	Resource competitio n	Coordinate d planning
Signal Integrity	Crosstalk and coupling	Moderate sensitivit y	High sensitivity	NDR application , spacing rules
Buffer Placement	Optimal location determinati on	Regular placemen t	Complex optimizati on	Buffer- aware planning
IR Drop	Localized voltage variations	Uniform impact	Non- uniform impact	Strategic power strapping
Process Corners	Timing variation	Moderate sensitivit y	High sensitivity	Corner- aware optimizati on
Layer Assignme nt	Metal layer selection	Uniform distributi on	Strategic assignmen t	Layer- specific planning
Congestio n	Routing resource limitations	High impact	Moderate impact	Hybrid architectur es

VI. CONCLUSIONS

Clock tree synthesis planning remains a critical aspect of physical design, directly impacting overall performance, power efficiency, system reliability. The traditional dichotomy between H-tree and fishbone architectures represents just one dimension of the complex decision space navigated during clock distribution optimization. The optimal clock distribution requires careful consideration of many interdependent factors, including sink count, cell placement, fluorplan geometry, operating frequency, macro placement, power distribution, and routing rules. Modern EDA equipment applies sophisticated algorithms that dynamically select and customize clock distribution strategies based on these parameters, often creating hybrid solutions that take advantage of many architectural strengths. Since semiconductor technology continues to move to smaller nodes and higher integration density, challenges related to clock distribution will only increase in complexity. Clock tree synthesis planning is necessary to achieve continuous innovation in both functionality and equipment

International Journal of Scientific Research and Engineering Development—Volume 8 Issue 5, Sep-Oct 2025 Available at www.ijsred.com

sought by the next generation electronic system, and to achieve power efficiency.

REFERENCES

- [1] E. G. Friedman, "Clock distribution networks in synchronous digital integrated circuits," IEEE, 2001. https://ieeexplore.ieee.org/document/929649
 [2] UCLA, "Low Power Buffered Clock Tree Synthesis Considering Best Transition

 Time"
- http://eda.ee.ucla.edu/member_only/archive/winter05/Physical_Design/ICCA_D05-review/GA603.pdf
- [3] H.B. Bakoglu, J.D. Meindl, "Optimal interconnection circuits for VLSI," IEEE, 1985. https://ieeexplore.ieee.org/document/1484792
- [4] Ganesh Venkataraman, et al., "Combinatorial Algorithms for Fast Clock Mesh Optimization," IEEE, 2006 https://ieeexplore.ieee.org/document/4110232

- [5] Anand Rajaram, David Z. Pan, "Robust Chip-Level Clock Tree Synthesis," IEEE, 2011. https://ieeexplore.ieee.org/document/5768141
- [6] Arzu Datli, et al., "A clock tree synthesis flow tailored for low power," Design & Reuse, 2014. https://www.design-reuse.com/article/60407-a-clock-tree-synthesis-flow-tailored-for-low-power/
- [7] Google Patent, "Machine-learning based prediction method for iterative clustering during clock tree synthesis," 2020. https://patents.google.com/patent/US11244099B1/en
- [8] Minsik Cho, et al., "Novel Binary Linear Programming for High Performance Clock Mesh Synthesis," University of Texas at Austin, https://www.cerc.utexas.edu/utda/publications/NovelBin.pdf
- [9] Dong-Jin Lee and Igor L. Markov, "Obstacle-aware Clock-tree Shaping during Placement," University of Michigan, 2011. https://web.eecs.umich.edu/~imarkov/pubs/jour/tcad11-lopper.pdf
- [10] Andrew B. Kahng, Sherief Reda, "Placement feedback: a concept and method for better min-cut placements," ACM Digital Library, 2004. https://dl.acm.org/doi/10.1145/996566.996670