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Abstract: 
            This paper provides a thorough comparison of traditional Quality of Service (QoS) methods and 

new AI-based architectures. It looks closely at the main principles, operational models, and performance 

features of Integrated Services (IntServ) and Differentiated Services (DiffServ). The paper points out the 

trade-off between reliable guarantees and network scalability. It also introduces the change brought by 

artificial intelligence and discusses key techniques like Deep Reinforcement Learning (DRL) and 

predictive analytics, which allow for proactive, dynamic, and automated network management. The 

discussion highlights the important role of enabling technologies such as Software-Defined Networking 

(SDN) and 5G in implementing AI-driven QoS. A detailed operational and architectural comparison 

follows, along with a deep dive into the major challenges and a plan for a future where AI smartly 

organizes and improves traditional QoS policies. The analysis concludes that while traditional methods 

offer a solid base, AI is crucial for meeting the needs of dynamic, complex, and intent-driven networks, 

providing unmatched efficiency, reliability, and flexibility. 
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I. INTRODUCTION 

    The modern digital landscape is shaped by a 

wide variety of applications. These range from low-

latency, real-time services like Voice over IP 

(VoIP), video conferencing, and online gaming to 

bandwidth-heavy streaming and essential industrial 

control systems. Each application has its own 

requirements for network performance, including 

bit rate, delay, jitter, and packet loss. The default 

"Best Effort" service model is commonly used on 

the public Internet and treats all traffic the same. 

However, it does not meet the diverse and often 

strict requirements because it offers no guarantees 

on delay, throughput, or packet loss. This situation 

has led to the creation of Quality of Service (QoS) 

mechanisms, designed to prioritize different 

applications, users, or data flows to ensure a 

specific level of performance. Traditional QoS 

mechanisms have been crucial for managing 

network performance for many years. However, 

they are mostly static and rule-based. They depend 

on manual setups and human oversight to monitor 

and manage network performance and security [1]. 

This reactive approach struggles to keep up with the 

complex, ever-changing nature of modern networks. 

Relying on manual oversight increases the risk of 

mistakes and limits the network's ability to quickly 

respond to changes in traffic and demands. This 

issue is especially noticeable in environments with 

rapidly shifting conditions, such as wireless 

connections in tactical networks or large-scale 
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Internet of Things (IoT) deployments. The main 

problem is that static, pre-defined rules cannot 

effectively manage networks that are in constant 

flux. This leads to performance decline and 

vulnerabilities that can reduce a business's ability to 

innovate and meet market needs. 

 

The rise of artificial intelligence (AI), especially 

machine learning (ML) and deep reinforcement 

learning (DRL), presents a new approach to 

network management that overcomes the 

weaknesses of traditional QoS. AI-enhanced 

networks use advanced data analysis and machine 

learning algorithms to learn from network traffic 

and performance data [2]. This allows them to make 

smart, data-driven decisions. The shift involves 

moving from fixed rules to dynamic learning and 

from reactive management to proactive and 

automatic responses to network changes. AI-

powered networks can predict traffic flows, detect 

problems, and respond to changes without human 

intervention, resulting in enhanced efficiency and 

reliability. This paper offers a detailed comparison 

of traditional and AI-based QoS mechanisms. 

 

It includes a side-by-side analysis of both 

approaches, discussing their technical foundations, 

operational philosophies, performance metrics, and 

scalability. It points out the relationships between 

network complexity and the need for intelligent 

systems. The paper shows that the main issue with 

traditional QoS is the significant trade-off between 

guaranteed performance and network scalability. It 

argues that AI provides a way to move beyond this 

fundamental compromise by enabling a learning-

based approach to network control. Lastly, the 

report suggests a future research agenda focusing 

on hybrid solutions, where AI intelligently manages 

and improves traditional QoS policies in real-time. 

II. RELATED WORK 

A. Overview of Foundational Concepts 

  Quality of Service (QoS) is defined as the 

ability to provide different priorities to different 

applications or data flows to guarantee a certain 

level of performance [3]. The primary goal of QoS 

is to ensure that mission-critical applications have 

the necessary resources and priority to achieve high 

performance, even when network capacity is 

limited. This is achieved by managing and 

controlling key performance metrics that directly 

impact the user experience [4]. Network 

performance is evaluated using several critical 

metrics including latency, jitter, packet loss, and 

throughput. Latency or delay refers to the time 

taken for a data packet to travel from its source to 

its destination, and excessive latency can severely 

affect real-time applications such as VoIP and 

online gaming by making them practically unusable. 

Jitter denotes the variation in packet arrival delays, 

where high jitter can distort audio or video streams, 

leading to choppy or incoherent playback.  

 

Packet loss occurs when packets fail to reach 

their destination due to congestion or errors within 

the network, necessitating retransmission that 

further increases delay and may cause network 

collapse under severe conditions. Throughput or 

bandwidth represents the rate at which data is 

successfully transmitted through a communication 

channel, with Quality of Service (QoS) mechanisms 

ensuring that applications needing specific bit rates, 

like video streaming, receive the required dedicated 

bandwidth for optimal performance. Most networks 

operate under a default Best Effort model, 

characterized by the absence of QoS controls, 

where the network simply attempts to deliver data 

using the maximum available performance and 

bandwidth at any given time without guaranteeing 

delay, throughput, or packet loss constraints. This 

limitation of the Best Effort model underscores the 

need for advanced QoS architectures that provide 

predictable and efficient service delivery for critical 

applications. 

 

B. Integrated Services (IntServ) Model 

  The Integrated Services (IntServ) model is a 

deterministic, per-flow QoS architecture designed 

to provide explicit, end-to-end performance 

guarantees. Its design philosophy is rooted in the 

idea of providing a predictable and quantifiable 

service level for a specific data stream [5]. The 

IntServ model operates on the principle of explicit 

resource reservation. Before an application begins 

transmitting data, it uses a signaling protocol, 

typically the Resource Reservation Protocol 
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(RSVP), to request and reserve network resources 

(e.g., bandwidth, delay) along the entire path from 

the source to the destination.  

 

Every routing device in the end-to-end path must 

negotiate and support these RSVP reservations. The 

network performs a deterministic Admission 

Control (AC) check to verify if the requested 

resources are available. If all intermediary devices 

can reserve the required resources, the application 

is cleared to send traffic within its requested profile, 

and the network guarantees to maintain the 

specified level of service. The primary advantage of 

IntServ is its ability to provide quantifiable and 

predictable performance guarantees. This is ideal 

for small, highly controlled environments, such as a 

military or industrial network, where mission-

critical applications require an absolute assurance 

of service quality that cannot be compromised. 

 

However, the model's major weakness is its poor 

scalability, which is a direct consequence of its per-

flow state design. To provide end-to-end guarantees, 

every network node must create, support, and 

maintain state information for every single flow 

traversing it, which includes the source and 

destination IP addresses and ports [6]. This creates 

significant overhead in terms of CPU processing 

and memory consumption, making it impractical for 

large-scale networks like the public Internet, which 

may have thousands or even millions of flows. The 

continuous signaling required by RSVP also adds to 

this overhead. 

 

C. Differentiated Services (DiffServ) Model 

The Differentiated Services (DiffServ) model was 

developed to address the scalability shortcomings 

of the IntServ model [7]. It is a class-based, soft-

QoS model designed for high scalability across 

large networks. The DiffServ model eliminates per-

flow state by classifying packets into a limited 

number of traffic classes and marking them with a 

Differentiated Services Code Point (DSCP) in the 

IP header. This marking, which can also use values 

like MPLS EXP or CoS, allows for traffic 

classification at the network edge [8]. Network 

nodes then apply a defined.Per-Hop Behavior (PHB) 

to each class, which dictates how the packet should 

be forwarded, queued, or shaped. The PHB is a 

standardized method for handling traffic at each 

hop in a DiffServ-enabled network and refers to the 

way scheduling, queueing, policing, and shaping 

are configured on a router.  

 

The Differentiated Services (DiffServ) architecture 

defines several key Per-Hop Behaviors (PHBs) that 

determine how packets are treated across network 

nodes to achieve varying levels of Quality of 

Service. The Expedited Forwarding (EF) PHB 

offers a low-loss, low-latency, and low-jitter service 

by assigning the highest priority to a particular 

traffic class, effectively functioning as a virtual 

leased line ideal for delay-sensitive applications 

like telephony and Voice over IP (VoIP). The 

Assured Forwarding (AF) PHB provides four 

distinct forwarding classes, labeled AF1 through 

AF4, each incorporating three drop precedence 

levels—low, medium, and high—to enable granular 

control over traffic handling and ensure bandwidth 

assurance for different aggregated traffic types 

based on priority. In contrast, the Best Effort (BE) 

PHB represents the default traffic class that 

operates without any guarantee of QoS, handling 

general data transmissions that do not require 

preferential treatment [9]. Together, these PHBs 

enable DiffServ networks to balance efficiency, 

reliability, and prioritization according to 

application requirements and service-level 

agreements. 

DiffServ's core strength is its high scalability and 

low overhead. Since it doesn't require complex 

signaling protocols or the maintenance of per-flow 

state, DiffServ is a much more efficient model for 

large deployments. It is also much easier to 

configure and maintain than IntServ, making it the 

dominant model for large enterprise and service 

provider networks [10]. The main drawback, 

however, is the lack of hard, end-to-end 

performance guarantees. DiffServ is based on 

statistical preferences per traffic class, and the QoS 

provided is a local, per-hop affair based on locally 

defined policies. While this approach is effective 

under normal conditions, it can still lead to service 

degradation during periods of high congestion 

because there is no explicit resource reservation. 
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C. The IntServ over DiffServ Hybrid Approach 

  The IntServ and DiffServ models are not 

mutually exclusive but can be combined to leverage 

their respective strengths. The IntServ over 

DiffServ hybrid model is a practical attempt to 

reconcile the fundamental trade-off between 

deterministic guarantees and scalability. The 

approach is to use the IntServ model at the network 

edge, where the number of connections is limited 

and per-flow state is manageable. This provides 

end-to-end guarantees for a limited number of 

applications. The core of the network, which 

handles a much larger volume of aggregated traffic, 

then uses DiffServ's scalable, class-based approach. 

This model seeks to provide the predictable 

performance of IntServ while leveraging the 

efficiency and scalability of DiffServ in the network 

core. The IntServ reservations at the edge are 

mapped to DiffServ traffic classes, which are then 

carried over the core network, thereby offering a 

more practical solution for large deployments 

without requiring per-flow state on every router. 

 

The fundamental trade-off between deterministic 

performance guarantees and network scalability 

represents a core philosophical choice in network 

design. IntServ's mechanism of per-flow state and 

signaling directly provides the foundation for hard 

guarantees but inherently limits its scalability due to 

the computational and memory overhead on every 

router. Conversely, DiffServ's class-based 

aggregation and marking enable high scalability by 

abstracting away individual flows, but in doing so, 

it loses the granular control needed for hard 

guarantees, providing only statistical assurances. 

The "IntServ over DiffServ" hybrid is a direct, rule-

based attempt to manage this trade-off, but it 

remains a static compromise. The system relies on a 

human administrator to pre-configure a set of rules 

(PHBs, RSVP signaling) that remain largely 

unchanged unless manually updated. This means 

that traditional QoS mechanisms are inherently 

reactive, only working to enforce the pre-

configured rules once a traffic event occurs. They 

are not designed to learn or adapt to novel, 

unforeseen network conditions, which is the precise 

gap that AI aims to fill. 

III. THE PARADIGM OF AI ENHANCED QOS 

MECHANISMS 

A. The Shift to Intelligent Networking 

  AI-enhanced networks represent a significant 

leap forward in terms of automation and 

intelligence, moving beyond the static, rule-based 

operations of traditional networking. This new 

paradigm is characterized by a shift from a reactive 

to a proactive management philosophy, where 

networks are capable of learning from data, 

adapting to changes, and optimizing performance 

autonomously. The goal is to address the limitations 

of manual configurations in dynamic and complex 

networks by leveraging machine learning and data 

analytics to continuously monitor, analyze, and 

optimize network performance in real-time. 

 

B. Core AI Techniques for QoS Optimization 

  Deep Reinforcement Learning (DRL) is an 

advanced artificial intelligence approach in which 

an agent autonomously learns an optimal policy 

through trial-and-error interactions with an 

environment, guided by a reward signal. Applied in 

the context of Quality of Service (QoS), DRL 

effectively addresses the challenges of dynamic 

routing and resource allocation in complex network 

environments. In this framework, the agent 

embedded within the network’s control plane 

makes intelligent routing and resource management 

decisions based on real-time network states, such as 

topology, traffic load, and link conditions. The 

environment comprises the network infrastructure 

itself, while the reward function plays a pivotal role 

by incentivizing actions that enhance QoS metrics, 

including reduced latency, increased throughput, 

and minimized packet loss. 

 

The learning mechanism involves the agent 

continuously observing the network’s state, 

selecting routing actions such as determining the 

optimal next hop, and receiving feedback in the 

form of rewards that reflect the impact of its 

decisions. Over time, using advanced algorithms 

like Deep Deterministic Policy Gradient (DDPG), 

the DRL agent refines its policy to maximize 

cumulative rewards, thereby evolving an optimal 

and adaptive routing strategy that maintains 

superior QoS even under dynamic traffic and 
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topology variations. This data-driven model 

provides a scalable and intelligent solution for 

complex, non-linear problems in network 

management. Figure 1 shows deep reinforcement 

learning cycle for QoS enhanced Mechanisms. 

 

 
 

Figure 1. Deep Reinforcement Learning Cycle for QoS Enhanced 
Mechanisms 

 

AI-enhanced networking empowers systems to 

operate proactively through predictive analytics and 

anomaly detection, shifting from traditional reactive 

approaches to intelligent foresight-driven 

management. By leveraging machine learning 

models such as Graph Convolutional Networks 

(GCNs) and Gated Recurrent Units (GRUs), vast 

historical and real-time network data can be 

analyzed to uncover patterns and forecast future 

conditions, predicting potential traffic congestions 

and performance bottlenecks before they impact 

service quality. This predictive capability marks a 

transformative shift from the manual and reactive 

nature of conventional QoS mechanisms. With 

proactive management, AI systems can anticipate 

service-level agreement (SLA) violations or 

network degradations and initiate corrective 

measures automatically such as reallocating 

bandwidth or rerouting traffic along less congested 

paths before disruptions occur, thereby enhancing 

both efficiency and reliability. 

 

Expanding on this intelligence, hybrid AI models 

integrate the strengths of multiple learning 

strategies to achieve higher adaptability and 

precision. For instance, models combining GCNs 

and GRUs can predict evolving network topologies 

and performance metrics, while a Deep 

Reinforcement Learning (DRL) agent utilizes these 

predictions to dynamically optimize QoS 

parameters in real time. Such hybrid architectures 

are particularly effective in complex and dynamic 

environments like Mobile Ad Hoc Networks 

(MANETs), where topology and traffic conditions 

frequently change. Additionally, other hybrid 

frameworks incorporate deep learning methods 

such as Multilayer Perceptrons (MLP) and Deep 

Belief Networks (DBN) to model and predict 

Quality of Experience (QoE) by mapping QoS 

indicators to user satisfaction outcomes, thereby 

enabling comprehensive, intelligent, and adaptive 

network optimization. 

 

C. Enabling Architectures: SDN and 5G  

   The integration of AI for Quality of Service 

(QoS) optimization is deeply intertwined with 

modern networking architectures such as Software-

Defined Networking (SDN) and 5G, which 

collectively provide the structural and operational 

foundation for AI’s capabilities. SDN serves as a 

crucial enabler by decoupling the control plane 

from the data plane, thereby granting a centralized 

controller the ability to manage network behavior 

programmatically. This architecture creates a direct 

interface for AI analytics engines to issue dynamic 

configuration commands such as rerouting traffic, 

reallocating bandwidth, and adjusting priorities 

which the SDN controller enforces across the 

network in real time. While SDN delivers the 

mechanism for adaptive control, AI injects the 

intelligence necessary to interpret network states 

and make optimal, context-aware decisions. At the 

same time, 5G and intent-based networking extend 

AI’s role by supporting ultra-low latency 

communication and flexible network slicing. Figure 

2 shows AI driven QoS optimization. 
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Figure 2. AI-Driven QoS Optimization 

 

In this paradigm, high-level business intents, 

expressed in natural language (for instance, “ensure 

ultra-low latency video for remote surgery”), are 

automatically converted into granular, technical 

QoS configurations through AI-driven orchestration. 

AI agents manage these network slices to meet 

precise performance goals, using closed-loop 

automation systems to continuously monitor 

metrics such as latency, jitter, and packet loss. If 

deviations from performance targets are detected or 

predicted, the AI system autonomously triggers 

corrective measures to restore service levels. 

Together, SDN and 5G architectures amplify the 

potential of AI to deliver intelligent, responsive, 

and self-optimizing network environments that 

align with evolving user and application demands. 

 

The fundamental difference between AI-enhanced 

and traditional QoS is the shift from rule-based to 

learning-based control. A traditional DiffServ 

policy will react to congestion by dropping lower-

priority packets when a queue is full. An AI-

enhanced system, however, might have already 

predicted the congestion using models like GCNs 

and GRUs, and proactively rerouted traffic to an 

uncongested path or dynamically adjusted queue 

sizes before any packets are dropped. This is not a 

reactive enforcement of a static rule but a dynamic, 

proactive optimization based on a learned policy. 

This learning process, guided by a reward function, 

allows the AI agent to explore a vast solution space 

to find optimal paths that a human administrator 

would be unable to configure statically. 

 

The power of this approach is unlocked by the 

symbiotic relationship between AI and enabling 

architectures. Without a programmable control 

plane like SDN, an AI's optimal routing policy 

would be a theoretical conclusion, unable to be 

implemented in a distributed, device-by-device 

fashion. The synergy is profound: SDN provides 

the mechanism for dynamic control, and AI 

provides the intelligence to drive that control. 5G 

network slicing is the perfect application driver for 

this synergy, as it demands the real-time, dynamic 

orchestration that only an intelligent, automated 

system can provide. 

IV. COMPREHENSIVE COMPARATIVE AND 

PERFORMANCE EVALUATION 

A. Operational and Architectural Comparison 

  The operational and architectural differences 

between traditional and AI-enhanced QoS are stark, 

representing a fundamental philosophical 

divergence in network management. A comparative 

table can serve as a powerful tool to synthesize 

these distinctions. Table 1 shows the comparison of 

traditional and Enhanced QoS approaches. As 

shown in the table, traditional QoS mechanisms are 

built on a static, human-centric paradigm. The 

configuration process is manual and time-intensive, 

whether it involves the per-flow signaling of 

IntServ or the class-based marking of DiffServ. 

This results in low adaptability, as the network is 

limited by the administrator's pre-defined rules and 

cannot respond autonomously to unforeseen 

network changes or traffic spikes. The performance 

optimization philosophy is inherently reactive; it 

acts on events that have already occurred, such as a 

full queue triggering a drop precedence policy. 

TABLE I 

TRADITIONAL VS. ENHANCED QOS 

Aspect IntServ DiffServ AI-

Enhanced 

QoS 

Configuration Manual, per-
flow 
signaling 

Manual, 
class-based 

Automated, 
dynamic, 
intent-based 

Adaptability static 
resource 
reservation 

Low; static, 
rule-based 
PHBs 

High; real-
time 
learning & 



International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025  

              Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 1886 

adaptation 

Control 
Mechanism 

Centralized, 
per-flow 
signaling 

Distributed, 
per-hop 
forwarding 

Centralized, 
learning-
based 
control 
plane 

Performance 
Opt. 

Reactive, 
explicit 

reservation 

Reactive, 
class-based 

rules 

Proactive, 
predictive 

optimization 

Core 
Philosophy 

Hard, 
deterministic 
guarantees 

Soft, 
statistical 
preferences 

Dynamic, 
predictive 
optimization 

 

In contrast, AI-enhanced QoS operates on an 

automated, dynamic, and intent-based model. AI 

systems continuously learn from network data, 

enabling high adaptability and real-time responses 

to changing conditions. The control mechanism 

shifts from a distributed, per-hop model or a 

centralized, per-flow signaling model to a 

centralized, learning-based control plane, often 

facilitated by an SDN controller. The core 

philosophy is not about enforcing a static rule but 

about a proactive, predictive optimization of the 

network to achieve a high-level intent, preventing 

issues before they arise. 

 

B. Performance and Scalability Comparison   

      The comparison of IntServ, DiffServ, and AI-

enhanced networking reveals key distinctions 

across performance guarantees, scalability, and 

resource utilization, highlighting AI’s 

transformative potential in modern QoS 

architectures. IntServ provides deterministic, hard 

performance guarantees for individual traffic flows 

by explicitly reserving network resources along the 

entire transmission path, ensuring predictable 

service quality but at the cost of high complexity. 

Figure 3 shows comparison of recent QoS 

approaches. 

 
Figure 3. Comparison of Recent QoS Approaches 

DiffServ, on the other hand, offers statistical or soft 

guarantees based on Per-Hop Behaviors (PHBs), 

providing a scalable yet less precise mechanism 

where performance can still degrade under heavy 

congestion. AI-enhanced QoS systems bridge this 

gap by proactively managing congestion, 

forecasting traffic variations, and dynamically 

reallocating resources, enabling performance that 

approaches the deterministic reliability of IntServ 

while retaining the flexibility of DiffServ. 

 

Scalability further differentiates the three 

frameworks—IntServ suffers from high overhead 

due to per-flow state maintenance on every device, 

making it unsuitable for large-scale networks, 

whereas DiffServ achieves superior scalability by 

aggregating traffic into a small number of classes. 

In contrast, AI-based QoS models, particularly 

those integrated with Software-Defined Networking 

(SDN), are inherently scalable and capable of 

handling network complexity far beyond traditional 

manual configurations. These systems are limited 

only by the computational capacity of the AI engine, 

which can be elastically scaled using cloud or edge 

resources. 

 

When it comes to resource utilization, IntServ often 

results in inefficiency due to static reservations that 

lock bandwidth even when flows are inactive, while 

DiffServ, despite being more efficient, can still 

waste resources due to rigid, pre-configured 

policies that fail to adapt to changing conditions. 

AI-driven systems overcome these inefficiencies 

through continuous monitoring, adaptive 

optimization, and predictive analytics, enabling 

dynamic allocation and reclamation of bandwidth in 

real time. This results in sustainably higher resource 

utilization, cost-effectiveness, and responsiveness, 

establishing AI as a pivotal enabler for intelligent 

QoS management in future network infrastructures. 

 

C. Applicability and Use Cases 

      The IntServ, DiffServ, and AI-enhanced QoS 

models each excel in distinct network environments 

based on their design principles and operational 

strengths. The IntServ model is most appropriate 

for small, controlled, and mission-critical networks 

where deterministic performance guarantees are 
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essential, such as in military command-and-control 

infrastructures, dedicated industrial automation 

systems, or compact campus networks with a 

manageable number of real-time flows. Its resource 

reservation mechanism ensures strict quality 

assurance but limits scalability, making it 

unsuitable for large-scale implementations. 

DiffServ, by contrast, serves as the preferred 

standard for large enterprise, campus, and service 

provider networks where scalability, efficiency, and 

simplicity are prioritized. It aggregates traffic into 

service classes to offer differentiated service levels 

without maintaining per-flow state, providing a 

practical and scalable solution for managing varied 

QoS requirements across numerous users. However, 

its statistical guarantees make it less suited for 

highly dynamic or unpredictable scenarios. 

 

AI-enhanced QoS represents the next evolutionary 

stage, designed for modern, complex, and adaptive 

network infrastructures such as 5G, which demand 

ultra-low latency, high throughput, and intelligent 

orchestration to support use cases like enhanced 

mobile broadband and large-scale IoT deployments. 

It is particularly advantageous in environments like 

tactical Mobile Ad Hoc Networks (MANETs), 

cloud-native infrastructures, and mission-critical 

systems where predictive maintenance, real-time 

decision-making, and dynamic adaptability are 

necessary to sustain optimal performance and 

reliability. Through continuous learning, predictive 

analytics, and automation, AI-driven QoS systems 

provide the flexibility and intelligence required to 

meet the demands of next-generation networking. 

V. CHALLENGES AND OPEN ISSUES 

Despite the significant advantages of AI-

enhanced QoS, several major challenges and open 

issues must be addressed before widespread 

adoption. 

 

A. Technical and Algorithmic Challenges 

     AI-driven QoS optimization, while highly 

promising, faces several ongoing challenges that 

must be addressed to achieve efficient and 

sustainable deployment in real-world network 

environments. One major concern lies in the 

computational complexity of many deep learning 

architectures, which imposes significant processing 

and energy demands. For time-sensitive 

applications operating at the network edge, this 

necessitates the design of lightweight and resource-

efficient AI models capable of delivering intelligent 

decision-making without introducing notable 

latency or computational overhead. Equally critical 

are data-related challenges, as the accuracy and 

generalization ability of machine learning models 

depend heavily on the quality, diversity, and 

quantity of training data. Building large, 

representative datasets remains difficult due to the 

complexities of data collection, potential biases, 

and the labor-intensive process of labeling network 

traffic flows according to specific QoS parameters.  

 

Future research must therefore emphasize advanced 

data augmentation, transfer learning, and synthetic 

environment generation to support robust AI 

training. Additionally, maintaining model 

performance over time presents its own difficulty 

due to “model drift,” a condition where learned 

policies degrade as underlying network patterns 

evolve. This problem underscores the need for 

continuous learning mechanisms, periodic 

retraining pipelines, and adaptive model 

architectures that can evolve alongside dynamic 

network conditions. Together, addressing these 

challenges will be key to realizing fully 

autonomous, resilient, and scalable AI-driven QoS 

systems capable of adapting seamlessly to future 

networking demands. 

 

B. Architectural and Integration Challenges 

  The shift toward AI-enhanced networking 

introduces several significant implementation 

challenges that must be carefully managed to ensure 

successful adoption and operation. One of the 

foremost issues is integration with legacy 

infrastructure; the transition from traditional 

networking systems to AI-driven platforms is rarely 

straightforward, as existing network hardware and 

software—often proprietary and vendor-specific—

may be incompatible or only partially compatible 

with new AI technologies. This can necessitate 

complex adjustments, middleware development, or 

outright replacement of components, all of which 

increase cost and implementation complexity. 



International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025  

              Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 1888 

 

In parallel, security and privacy concerns become 

more prominent in AI-powered networks due to 

their extensive reliance on real-time telemetry and 

other sensitive data feeds. Safeguarding this data 

from breaches and ensuring that AI models are 

resistant to adversarial manipulations are critical 

research priorities that must be addressed to 

maintain trust and operational integrity. Another 

vital consideration is the explainability and 

trustworthiness of AI-driven systems. Many 

advanced AI models operate as "black boxes," 

generating decisions that are difficult for network 

operators and administrators to interpret or justify. 

As organizations expect transparency and 

auditability—especially when lives, assets, or 

compliance are at stake—ongoing research into 

explainable AI (XAI) remains essential. 

Empowering administrators to understand, validate, 

and trust automated recommendations and actions 

will be crucial for the broader acceptance and 

integration of AI within production network 

environments. 

 

VI. CONCLUSION 

     This paper highlights how traditional Quality of 

Service (QoS) mechanisms, especially Integrated 

Services (IntServ) and Differentiated Services 

(DiffServ), have played a crucial role in managing 

network performance. However, they face 

limitations due to their static, rule-based nature. 

This lack of adaptability and scalability has paved 

the way for the rise of AI-enhanced architectures. 

AI brings a revolutionary approach to QoS, 

allowing for real-time, dynamic, and predictive 

network management—something traditional 

methods simply can't achieve. The collaboration 

between AI and technologies like Software-Defined 

Networking (SDN) and 5G isn't just a coincidence; 

it's essential. These architectures offer the 

programmable control and application drivers that 

enable AI to truly shine. While there are still 

significant challenges ahead, the future of QoS is 

clearly heading towards a hybrid model. In this 

model, intelligent systems will serve as a dynamic 

orchestration layer, enhancing and optimizing 

traditional mechanisms to provide unmatched levels 

of performance, scalability, and reliability, thus 

meeting the needs of both current and future 

communication systems. 

 

VII. FUTURE SCOPE 

         A practical future direction lies in a hybrid 

model where AI enhances rather than replaces 

traditional Quality of Service (QoS) mechanisms. 

Acting as an intelligent orchestration layer over a 

DiffServ framework, AI could predict congestion 

and dynamically adjust Per-Hop Behavior (PHB) 

weights or traffic shaping policies in real time. This 

merges the reliability of classical systems with AI’s 

adaptability. Future research should develop hybrid 

AI models—such as Graph Convolutional 

Networks for prediction and Deep Reinforcement 

Learning for optimization—to advance network 

management. Similarly, in speech recognition under 

noisy conditions, the emphasis is on adaptive, 

privacy-aware systems using multimodal deep 

learning, self-supervised pre-training, edge 

computing, and context-aware integration for robust 

real-world performance. 
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