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Abstract:

This paper provides a thorough comparison of traditional Quality of Service (QoS) methods and
new Al-based architectures. It looks closely at the main principles, operational models, and performance
features of Integrated Services (IntServ) and Differentiated Services (DiffServ). The paper points out the
trade-off between reliable guarantees and network scalability. It also introduces the change brought by
artificial intelligence and discusses key techniques like Deep Reinforcement Learning (DRL) and
predictive analytics, which allow for proactive, dynamic, and automated network management. The
discussion highlights the important role of enabling technologies such as Software-Defined Networking
(SDN) and 5G in implementing Al-driven QoS. A detailed operational and architectural comparison
follows, along with a deep dive into the major challenges and a plan for a future where Al smartly
organizes and improves traditional QoS policies. The analysis concludes that while traditional methods
offer a solid base, Al is crucial for meeting the needs of dynamic, complex, and intent-driven networks,
providing unmatched efficiency, reliability, and flexibility.
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mechanisms, designed to prioritize different

L INTRODUCTION applications, users, or data flows to ensure a
The modern digital landscape is shaped by a gpecific level of performance. Traditional QoS
wide variety of applications. These range from low- mechanisms have been crucial for managing
latency, real-time services like Voice over IP petwork performance for many years. However,
(VoIP), video conferencing, and online gaming to they are mostly static and rule-based. They depend
bandwidth-heavy streaming and essential industrial on manual setups and human oversight to monitor
control systems. Each application has its own and manage network performance and security [1].
requirements for network performance, including This reactive approach struggles to keep up with the
bit rate, delay, jitter, and packet loss. The default complex, ever-changing nature of modern networks.
"Best Effort" service model is commonly used on Relying on manual oversight increases the risk of
the public Internet and treats all traffic the same. mistakes and limits the network's ability to quickly
However, it does not meet the diverse and often respond to changes in traffic and demands. This
strict requirements because it offers no guarantees jssue is especially noticeable in environments with
on delay, throughput, or packet loss. This situation rapidly shifting conditions, such as wireless
has led to the creation of Quality of Service (Q0S) connections in tactical networks or large-scale
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Internet of Things (IoT) deployments. The main
problem 1is that static, pre-defined rules cannot
effectively manage networks that are in constant
flux. This leads to performance decline and
vulnerabilities that can reduce a business's ability to
innovate and meet market needs.

The rise of artificial intelligence (AI), especially
machine learning (ML) and deep reinforcement
learning (DRL), presents a new approach to
network management that overcomes the
weaknesses of traditional QoS. Al-enhanced
networks use advanced data analysis and machine
learning algorithms to learn from network traffic
and performance data [2]. This allows them to make
smart, data-driven decisions. The shift involves
moving from fixed rules to dynamic learning and
from reactive management to proactive and
automatic responses to network changes. Al-
powered networks can predict traffic flows, detect
problems, and respond to changes without human
intervention, resulting in enhanced efficiency and
reliability. This paper offers a detailed comparison
of traditional and Al-based QoS mechanisms.

It includes a side-by-side analysis of both
approaches, discussing their technical foundations,
operational philosophies, performance metrics, and
scalability. It points out the relationships between
network complexity and the need for intelligent
systems. The paper shows that the main issue with
traditional QoS is the significant trade-off between
guaranteed performance and network scalability. It
argues that Al provides a way to move beyond this
fundamental compromise by enabling a learning-
based approach to network control. Lastly, the
report suggests a future research agenda focusing
on hybrid solutions, where Al intelligently manages
and improves traditional QoS policies in real-time.

1L RELATED WORK

A. Overview of Foundational Concepts

Quality of Service (QoS) is defined as the
ability to provide different priorities to different
applications or data flows to guarantee a certain
level of performance [3]. The primary goal of QoS
is to ensure that mission-critical applications have
the necessary resources and priority to achieve high
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performance, even when network -capacity is
limited. This is achieved by managing and
controlling key performance metrics that directly
impact the user experience [4]. Network
performance is evaluated using several critical
metrics including latency, jitter, packet loss, and
throughput. Latency or delay refers to the time
taken for a data packet to travel from its source to
its destination, and excessive latency can severely
affect real-time applications such as VoIP and
online gaming by making them practically unusable.
Jitter denotes the variation in packet arrival delays,
where high jitter can distort audio or video streams,
leading to choppy or incoherent playback.

Packet loss occurs when packets fail to reach
their destination due to congestion or errors within
the network, necessitating retransmission that
further increases delay and may cause network
collapse under severe conditions. Throughput or
bandwidth represents the rate at which data is
successfully transmitted through a communication
channel, with Quality of Service (QoS) mechanisms
ensuring that applications needing specific bit rates,
like video streaming, receive the required dedicated
bandwidth for optimal performance. Most networks
operate under a default Best Effort model,
characterized by the absence of QoS controls,
where the network simply attempts to deliver data
using the maximum available performance and
bandwidth at any given time without guaranteeing
delay, throughput, or packet loss constraints. This
limitation of the Best Effort model underscores the
need for advanced QoS architectures that provide
predictable and efficient service delivery for critical
applications.

B. Integrated Services (IntServ) Model

The Integrated Services (IntServ) model is a
deterministic, per-flow QoS architecture designed
to provide explicit, end-to-end performance
guarantees. Its design philosophy is rooted in the
idea of providing a predictable and quantifiable
service level for a specific data stream [5]. The
IntServ model operates on the principle of explicit
resource reservation. Before an application begins
transmitting data, it uses a signaling protocol,
typically the Resource Reservation Protocol
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(RSVP), to request and reserve network resources
(e.g., bandwidth, delay) along the entire path from
the source to the destination.

Every routing device in the end-to-end path must
negotiate and support these RSVP reservations. The
network performs a deterministic Admission
Control (AC) check to verify if the requested
resources are available. If all intermediary devices
can reserve the required resources, the application
is cleared to send traffic within its requested profile,
and the network guarantees to maintain the
specified level of service. The primary advantage of
IntServ is its ability to provide quantifiable and
predictable performance guarantees. This is ideal
for small, highly controlled environments, such as a
military or industrial network, where mission-
critical applications require an absolute assurance
of service quality that cannot be compromised.

However, the model's major weakness is its poor
scalability, which is a direct consequence of its per-
flow state design. To provide end-to-end guarantees,
every network node must create, support, and
maintain state information for every single flow
traversing it, which includes the source and
destination IP addresses and ports [6]. This creates
significant overhead in terms of CPU processing
and memory consumption, making it impractical for
large-scale networks like the public Internet, which
may have thousands or even millions of flows. The
continuous signaling required by RSVP also adds to
this overhead.

C. Differentiated Services (DiffServ) Model

The Differentiated Services (DiffServ) model was
developed to address the scalability shortcomings
of the IntServ model [7]. It is a class-based, soft-
QoS model designed for high scalability across
large networks. The DiffServ model eliminates per-
flow state by classifying packets into a limited
number of traffic classes and marking them with a
Differentiated Services Code Point (DSCP) in the
IP header. This marking, which can also use values
like MPLS EXP or CoS, allows for traffic
classification at the network edge [8]. Network
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be forwarded, queued, or shaped. The PHB is a
standardized method for handling traffic at each
hop in a DiffServ-enabled network and refers to the
way scheduling, queueing, policing, and shaping
are configured on a router.

The Differentiated Services (DiffServ) architecture
defines several key Per-Hop Behaviors (PHBs) that
determine how packets are treated across network
nodes to achieve varying levels of Quality of
Service. The Expedited Forwarding (EF) PHB
offers a low-loss, low-latency, and low-jitter service
by assigning the highest priority to a particular
traffic class, effectively functioning as a virtual
leased line ideal for delay-sensitive applications
like telephony and Voice over IP (VoIP). The
Assured Forwarding (AF) PHB provides four
distinct forwarding classes, labeled AF1 through
AF4, each incorporating three drop precedence
levels—low, medium, and high—to enable granular
control over traffic handling and ensure bandwidth
assurance for different aggregated traffic types
based on priority. In contrast, the Best Effort (BE)
PHB represents the default traffic class that
operates without any guarantee of QoS, handling
general data transmissions that do not require
preferential treatment [9]. Together, these PHBs
enable DiffServ networks to balance efficiency,

reliability, and prioritization according to
application  requirements and  service-level
agreements.

DiffServ's core strength is its high scalability and
low overhead. Since it doesn't require complex
signaling protocols or the maintenance of per-flow
state, DiffServ is a much more efficient model for
large deployments. It is also much easier to
configure and maintain than IntServ, making it the
dominant model for large enterprise and service
provider networks [10]. The main drawback,
however, 1is the lack of hard, end-to-end
performance guarantees. DiffServ is based on
statistical preferences per traffic class, and the QoS
provided is a local, per-hop affair based on locally
defined policies. While this approach is effective
under normal conditions, it can still lead to service
degradation during periods of high congestion

nodes then apply a defined.Per-Hop Behavior (PHB) because there is no explicit resource reservation.

to each class, which dictates how the packet should
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C. The IntServ over DiffServ Hybrid Approach

The IntServ and DiffServ models are not
mutually exclusive but can be combined to leverage
their respective strengths. The IntServ over
DiffServ hybrid model is a practical attempt to
reconcile the fundamental trade-off between
deterministic guarantees and scalability. The
approach is to use the IntServ model at the network
edge, where the number of connections is limited
and per-flow state is manageable. This provides
end-to-end guarantees for a limited number of
applications. The core of the network, which
handles a much larger volume of aggregated traffic,
then uses DiffServ's scalable, class-based approach.
This model seeks to provide the predictable
performance of IntServ while leveraging the
efficiency and scalability of DiffServ in the network
core. The IntServ reservations at the edge are
mapped to DiffServ traffic classes, which are then
carried over the core network, thereby offering a
more practical solution for large deployments
without requiring per-flow state on every router.

The fundamental trade-off between deterministic
performance guarantees and network scalability
represents a core philosophical choice in network
design. IntServ's mechanism of per-flow state and
signaling directly provides the foundation for hard
guarantees but inherently limits its scalability due to
the computational and memory overhead on every
router.  Conversely,  DiffServ's  class-based
aggregation and marking enable high scalability by
abstracting away individual flows, but in doing so,
it loses the granular control needed for hard
guarantees, providing only statistical assurances.
The "IntServ over DiffServ" hybrid is a direct, rule-
based attempt to manage this trade-off, but it
remains a static compromise. The system relies on a
human administrator to pre-configure a set of rules
(PHBs, RSVP signaling) that remain largely
unchanged unless manually updated. This means
that traditional QoS mechanisms are inherently
reactive, only working to enforce the pre-
configured rules once a traffic event occurs. They
are not designed to learn or adapt to novel,
unforeseen network conditions, which is the precise
gap that AT aims to fill.
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II1. THE PARADIGM OF Al ENHANCED QoS

MECHANISMS

A. The Shift to Intelligent Networking

Al-enhanced networks represent a significant
leap forward in terms of automation and
intelligence, moving beyond the static, rule-based
operations of traditional networking. This new
paradigm is characterized by a shift from a reactive
to a proactive management philosophy, where
networks are capable of learning from data,
adapting to changes, and optimizing performance
autonomously. The goal is to address the limitations
of manual configurations in dynamic and complex
networks by leveraging machine learning and data
analytics to continuously monitor, analyze, and
optimize network performance in real-time.

B. Core Al Techniques for QoS Optimization

Deep Reinforcement Learning (DRL) is an
advanced artificial intelligence approach in which
an agent autonomously learns an optimal policy
through trial-and-error interactions with an
environment, guided by a reward signal. Applied in
the context of Quality of Service (QoS), DRL
effectively addresses the challenges of dynamic
routing and resource allocation in complex network
environments. In this framework, the agent
embedded within the network’s control plane
makes intelligent routing and resource management
decisions based on real-time network states, such as
topology, traffic load, and link conditions. The
environment comprises the network infrastructure
itself, while the reward function plays a pivotal role
by incentivizing actions that enhance QoS metrics,
including reduced latency, increased throughput,
and minimized packet loss.

The learning mechanism involves the agent
continuously observing the network’s state,
selecting routing actions such as determining the
optimal next hop, and receiving feedback in the
form of rewards that reflect the impact of its
decisions. Over time, using advanced algorithms
like Deep Deterministic Policy Gradient (DDPG),
the DRL agent refines its policy to maximize
cumulative rewards, thereby evolving an optimal
and adaptive routing strategy that maintains
superior QoS even under dynamic traffic and
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topology variations. This data-driven model
provides a scalable and intelligent solution for
complex, non-linear problems in network
management. Figure 1 shows deep reinforcement
learning cycle for QoS enhanced Mechanisms.

Observe Network

State

Agent adjusts strategy
based on feedback

Agent gathers real-time
network data

Agent gets feedback on

action's impact Agent chooses optimal

routing path

Figure 1. Deep Reinforcement Learning Cycle for QoS Enhanced
Mechanisms

Al-enhanced networking empowers systems to
operate proactively through predictive analytics and
anomaly detection, shifting from traditional reactive
approaches  to  intelligent  foresight-driven
management. By leveraging machine learning
models such as Graph Convolutional Networks
(GCNs) and Gated Recurrent Units (GRUs), vast
historical and real-time network data can be
analyzed to uncover patterns and forecast future
conditions, predicting potential traffic congestions
and performance bottlenecks before they impact
service quality. This predictive capability marks a
transformative shift from the manual and reactive
nature of conventional QoS mechanisms. With
proactive management, Al systems can anticipate

service-level agreement (SLA) violations or
network degradations and initiate corrective
measures automatically such as reallocating

bandwidth or rerouting traffic along less congested
paths before disruptions occur, thereby enhancing
both efficiency and reliability.

Expanding on this intelligence, hybrid AI models
integrate the strengths of multiple learning
strategies to achieve higher adaptability and
precision. For instance, models combining GCNs
and GRUs can predict evolving network topologies
and performance metrics, while a Deep
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Reinforcement Learning (DRL) agent utilizes these
predictions to dynamically optimize QoS
parameters in real time. Such hybrid architectures
are particularly effective in complex and dynamic
environments like Mobile Ad Hoc Networks
(MANETS), where topology and traffic conditions
frequently change. Additionally, other hybrid
frameworks incorporate deep learning methods
such as Multilayer Perceptrons (MLP) and Deep
Belief Networks (DBN) to model and predict
Quality of Experience (QoE) by mapping QoS
indicators to user satisfaction outcomes, thereby
enabling comprehensive, intelligent, and adaptive
network optimization.

C. Enabling Architectures: SDN and 5G

The integration of Al for Quality of Service
(QoS) optimization is deeply intertwined with
modern networking architectures such as Software-
Defined Networking (SDN) and 5G, which
collectively provide the structural and operational
foundation for AI’s capabilities. SDN serves as a
crucial enabler by decoupling the control plane
from the data plane, thereby granting a centralized
controller the ability to manage network behavior
programmatically. This architecture creates a direct
interface for Al analytics engines to issue dynamic
configuration commands such as rerouting traffic,
reallocating bandwidth, and adjusting priorities
which the SDN controller enforces across the
network in real time. While SDN delivers the
mechanism for adaptive control, Al injects the
intelligence necessary to interpret network states
and make optimal, context-aware decisions. At the
same time, 5G and intent-based networking extend
Al's role by supporting ultra-low latency
communication and flexible network slicing. Figure
2 shows Al driven QoS optimization.
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Figure 2. AI-Driven QoS Optimization

In this paradigm, high-level business intents,
expressed in natural language (for instance, “ensure
ultra-low latency video for remote surgery”), are
automatically converted into granular, technical

QoS configurations through Al-driven orchestration.

Al agents manage these network slices to meet
precise performance goals, using closed-loop
automation systems to continuously monitor
metrics such as latency, jitter, and packet loss. If
deviations from performance targets are detected or
predicted, the AI system autonomously triggers
corrective measures to restore service levels.
Together, SDN and 5G architectures amplify the
potential of Al to deliver intelligent, responsive,
and self-optimizing network environments that
align with evolving user and application demands.

The fundamental difference between Al-enhanced
and traditional QoS is the shift from rule-based to
learning-based control. A traditional DiffServ
policy will react to congestion by dropping lower-
priority packets when a queue is full. An Al-
enhanced system, however, might have already
predicted the congestion using models like GCNs
and GRUs, and proactively rerouted traffic to an
uncongested path or dynamically adjusted queue
sizes before any packets are dropped. This is not a
reactive enforcement of a static rule but a dynamic,
proactive optimization based on a learned policy.
This learning process, guided by a reward function,
allows the Al agent to explore a vast solution space
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to find optimal paths that a human administrator
would be unable to configure statically.

The power of this approach is unlocked by the
symbiotic relationship between Al and enabling
architectures. Without a programmable control
plane like SDN, an Al's optimal routing policy
would be a theoretical conclusion, unable to be
implemented in a distributed, device-by-device
fashion. The synergy is profound: SDN provides
the mechanism for dynamic control, and Al
provides the intelligence to drive that control. 5G
network slicing is the perfect application driver for
this synergy, as it demands the real-time, dynamic
orchestration that only an intelligent, automated
system can provide.

IVv. COMPREHENSIVE COMPARATIVE AND

PERFORMANCE EVALUATION

A. Operational and Architectural Comparison

The operational and architectural differences
between traditional and Al-enhanced QoS are stark,
representing a  fundamental  philosophical
divergence in network management. A comparative
table can serve as a powerful tool to synthesize
these distinctions. Table 1 shows the comparison of
traditional and Enhanced QoS approaches. As
shown in the table, traditional QoS mechanisms are
built on a static, human-centric paradigm. The
configuration process is manual and time-intensive,
whether it involves the per-flow signaling of
IntServ or the class-based marking of DiffServ.
This results in low adaptability, as the network is
limited by the administrator's pre-defined rules and
cannot respond autonomously to unforeseen
network changes or traffic spikes. The performance
optimization philosophy is inherently reactive; it
acts on events that have already occurred, such as a
full queue triggering a drop precedence policy.

TABLE1
TRADITIONAL Vs. ENHANCED QoS
Aspect IntServ DiffServ Al-
Enhanced
QoS
Configuration | Manual, per- | Manual, Automated,
flow class-based | dynamic,
signaling intent-based
Adaptability static Low; static, | High; real-
resource rule-based time
reservation PHBs learning &
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adaptation
Control Centralized, | Distributed, | Centralized,
Mechanism per-flow per-hop learning-
signaling forwarding | based
control
plane
Performance Reactive, Reactive, Proactive,
Opt. explicit class-based | predictive
reservation rules optimization
Core Hard, Soft, Dynamic,
Philosophy deterministic | statistical predictive
guarantees preferences | optimization

In contrast, Al-enhanced QoS operates on an
automated, dynamic, and intent-based model. Al
systems continuously learn from network data,
enabling high adaptability and real-time responses
to changing conditions. The control mechanism
shifts from a distributed, per-hop model or a
centralized, per-flow signaling model to a
centralized, learning-based control plane, often
facilitated by an SDN controller. The core
philosophy is not about enforcing a static rule but
about a proactive, predictive optimization of the
network to achieve a high-level intent, preventing
issues before they arise.

B. Performance and Scalability Comparison

The comparison of IntServ, DiffServ, and Al-
enhanced networking reveals key distinctions
across performance guarantees, scalability, and
resource utilization, highlighting Al’s
transformative  potential in  modern QoS
architectures. IntServ provides deterministic, hard
performance guarantees for individual traffic flows
by explicitly reserving network resources along the
entire transmission path, ensuring predictable
service quality but at the cost of high complexity.
Figure 3 shows comparison of recent QoS
approaches.

Hybrid QoS Solutions

Adaptive, reliable resource
management

g

Scalable, statistical QoS

Figure 3. Comparison of Recent QoS Approaches
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DiffServ, on the other hand, offers statistical or soft
guarantees based on Per-Hop Behaviors (PHBs),
providing a scalable yet less precise mechanism
where performance can still degrade under heavy
congestion. Al-enhanced QoS systems bridge this
gap by proactively managing congestion,
forecasting traffic variations, and dynamically
reallocating resources, enabling performance that
approaches the deterministic reliability of IntServ
while retaining the flexibility of DiffServ.

Scalability  further differentiates the three
frameworks—IntServ suffers from high overhead
due to per-flow state maintenance on every device,
making it unsuitable for large-scale networks,
whereas DiffServ achieves superior scalability by
aggregating traffic into a small number of classes.
In contrast, Al-based QoS models, particularly
those integrated with Software-Defined Networking
(SDN), are inherently scalable and capable of
handling network complexity far beyond traditional
manual configurations. These systems are limited
only by the computational capacity of the Al engine,
which can be elastically scaled using cloud or edge
resources.

When it comes to resource utilization, IntServ often
results in inefficiency due to static reservations that
lock bandwidth even when flows are inactive, while
DiffServ, despite being more efficient, can still
waste resources due to rigid, pre-configured
policies that fail to adapt to changing conditions.
Al-driven systems overcome these inefficiencies
through  continuous  monitoring, adaptive
optimization, and predictive analytics, enabling
dynamic allocation and reclamation of bandwidth in
real time. This results in sustainably higher resource
utilization, cost-effectiveness, and responsiveness,
establishing Al as a pivotal enabler for intelligent
QoS management in future network infrastructures.

C. Applicability and Use Cases

The IntServ, DiffServ, and Al-enhanced QoS
models each excel in distinct network environments
based on their design principles and operational
strengths. The IntServ model is most appropriate
for small, controlled, and mission-critical networks
where deterministic performance guarantees are
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essential, such as in military command-and-control
infrastructures, dedicated industrial automation
systems, or compact campus networks with a
manageable number of real-time flows. Its resource

reservation mechanism ensures strict quality
assurance but limits scalability, making it
unsuitable  for large-scale = implementations.

DiffServ, by contrast, serves as the preferred
standard for large enterprise, campus, and service
provider networks where scalability, efficiency, and
simplicity are prioritized. It aggregates traffic into
service classes to offer differentiated service levels
without maintaining per-flow state, providing a
practical and scalable solution for managing varied
QoS requirements across numerous users. However,
its statistical guarantees make it less suited for
highly dynamic or unpredictable scenarios.

Al-enhanced QoS represents the next evolutionary
stage, designed for modern, complex, and adaptive
network infrastructures such as 5G, which demand
ultra-low latency, high throughput, and intelligent
orchestration to support use cases like enhanced
mobile broadband and large-scale [oT deployments.
It is particularly advantageous in environments like
tactical Mobile Ad Hoc Networks (MANETS),
cloud-native infrastructures, and mission-critical
systems where predictive maintenance, real-time
decision-making, and dynamic adaptability are
necessary to sustain optimal performance and
reliability. Through continuous learning, predictive
analytics, and automation, Al-driven QoS systems
provide the flexibility and intelligence required to
meet the demands of next-generation networking.

V. CHALLENGES AND OPEN ISSUES

Despite the significant advantages of Al-
enhanced QoS, several major challenges and open
issues must be addressed before widespread
adoption.

A. Technical and Algorithmic Challenges

Al-driven QoS optimization, while highly
promising, faces several ongoing challenges that
must be addressed to achieve efficient and
sustainable deployment in real-world network
environments. One major concern lies in the
computational complexity of many deep learning
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architectures, which imposes significant processing
and energy demands. For time-sensitive
applications operating at the network edge, this
necessitates the design of lightweight and resource-
efficient AI models capable of delivering intelligent
decision-making  without introducing notable
latency or computational overhead. Equally critical
are data-related challenges, as the accuracy and
generalization ability of machine learning models
depend heavily on the quality, diversity, and
quantity of training data. Building large,
representative datasets remains difficult due to the
complexities of data collection, potential biases,
and the labor-intensive process of labeling network
traffic flows according to specific QoS parameters.

Future research must therefore emphasize advanced
data augmentation, transfer learning, and synthetic
environment generation to support robust Al
training.  Additionally, = maintaining = model
performance over time presents its own difficulty
due to “model drift,” a condition where learned
policies degrade as underlying network patterns
evolve. This problem underscores the need for
continuous learning  mechanisms, periodic
retraining  pipelines, and adaptive  model
architectures that can evolve alongside dynamic
network conditions. Together, addressing these
challenges will be key to realizing fully
autonomous, resilient, and scalable Al-driven QoS
systems capable of adapting seamlessly to future
networking demands.

B. Architectural and Integration Challenges

The shift toward Al-enhanced networking
introduces several significant implementation
challenges that must be carefully managed to ensure
successful adoption and operation. One of the
foremost issues is integration with legacy
infrastructure; the transition from traditional
networking systems to Al-driven platforms is rarely
straightforward, as existing network hardware and
software—often proprietary and vendor-specific—
may be incompatible or only partially compatible
with new Al technologies. This can necessitate
complex adjustments, middleware development, or
outright replacement of components, all of which
increase cost and implementation complexity.
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In parallel, security and privacy concerns become
more prominent in Al-powered networks due to
their extensive reliance on real-time telemetry and
other sensitive data feeds. Safeguarding this data
from breaches and ensuring that Al models are
resistant to adversarial manipulations are critical
research priorities that must be addressed to
maintain trust and operational integrity. Another
vital consideration is the explainability and
trustworthiness of Al-driven systems. Many
advanced Al models operate as "black boxes,"
generating decisions that are difficult for network
operators and administrators to interpret or justify.
As organizations expect transparency and
auditability—especially when lives, assets, or
compliance are at stake—ongoing research into
explainable Al  (XAI) remains essential.
Empowering administrators to understand, validate,
and trust automated recommendations and actions
will be crucial for the broader acceptance and
integration of AI within production network
environments.

VI. CONCLUSION

This paper highlights how traditional Quality of
Service (QoS) mechanisms, especially Integrated
Services (IntServ) and Differentiated Services
(DiffServ), have played a crucial role in managing
network performance. However, they face
limitations due to their static, rule-based nature.
This lack of adaptability and scalability has paved
the way for the rise of Al-enhanced architectures.
Al brings a revolutionary approach to QoS,
allowing for real-time, dynamic, and predictive
network  management—something  traditional
methods simply can't achieve. The collaboration
between Al and technologies like Software-Defined
Networking (SDN) and 5G isn't just a coincidence;
it's essential. These architectures offer the
programmable control and application drivers that
enable Al to truly shine. While there are still
significant challenges ahead, the future of QoS is
clearly heading towards a hybrid model. In this
model, intelligent systems will serve as a dynamic
orchestration layer, enhancing and optimizing
traditional mechanisms to provide unmatched levels
of performance, scalability, and reliability, thus
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meeting the needs of both current and future
communication systems.

VII. FUTURE SCOPE

A practical future direction lies in a hybrid
model where Al enhances rather than replaces
traditional Quality of Service (QoS) mechanisms.
Acting as an intelligent orchestration layer over a
DiffServ framework, Al could predict congestion
and dynamically adjust Per-Hop Behavior (PHB)
weights or traffic shaping policies in real time. This
merges the reliability of classical systems with AI’s
adaptability. Future research should develop hybrid
Al  models—such as Graph Convolutional
Networks for prediction and Deep Reinforcement
Learning for optimization—to advance network
management. Similarly, in speech recognition under
noisy conditions, the emphasis is on adaptive,
privacy-aware systems using multimodal deep
learning,  self-supervised  pre-training, edge
computing, and context-aware integration for robust
real-world performance.
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