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Abstract: 
      Healthcare data management is entering a new era characterized by the convergence of artificial 

intelligence (AI), data interoperability, and large-scale analytics. Traditional data warehouses, while reliable 

for structured information, struggle to accommodate unstructured, streaming, and multimodal datasets 

standard in modern healthcare. The AI-Native Healthcare Lakehouse merges the elasticity of data lakes with 

the consistency and performance of warehouses while embedding AI at the core of its operations. This paper 

proposes an architecture that enables integrated analytics, semantic reasoning, and real-time inference on 

heterogeneous healthcare data. We evaluate its scalability, compliance, and ethical implications across 

multiple datasets and discuss its role in advancing evidence-based care and digital health transformation. 
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I.     INTRODUCTION 

     The integration of artificial intelligence into 

healthcare has revolutionized data-driven decision 

making and has redefined how clinical evidence is 

generated, validated, and applied across the 

continuum of care. AI models are now embedded 

within hospital workflows, population health 

platforms, and predictive analytics systems, enabling 

more accurate diagnoses, optimized treatment 

pathways, and operational efficiency gains that were 

previously unattainable through traditional 

analytical methods [1]. From radiology and 

pathology to genomics and administrative 

scheduling, AI-driven applications are increasingly 

influencing both patient outcomes and healthcare 

economics. 

     However, the success of these AI systems is 

inherently tied to the quality, accessibility, and 

representativeness of the underlying data. Many 

healthcare organizations face persistent challenges 

related to data fragmentation, inconsistent coding, 

and variable data quality across clinical and 

administrative sources. In addition, multimodal 

healthcare data such as clinical notes, medical 

imaging, physiological signals, and genomic profiles 

often reside in isolated repositories, making cross-

domain integration both technically and ethically 

complex. These silos limit the ability of AI systems 

to learn from longitudinal patient trajectories and to 

generalize findings across populations, thereby 

constraining the broader potential of precision 

medicine. 

     Traditional data warehouses have historically 

excelled in handling structured data, providing 
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reliability and transactional consistency for 

relational databases and reporting systems. Yet, they 

are inherently limited in accommodating the 

unstructured and semi-structured data that dominate 

contemporary healthcare environments [2]. They 

often rely on rigid schema definitions and static 

extract-transform-load (ETL) pipelines that cannot 

adapt to evolving data modalities or near real-time 

analytics demands. Furthermore, their lack of native 

support for machine learning workflows and 

distributed computation introduces inefficiencies 

when integrating AI models that require large-scale 

data ingestion, vectorization, and iterative training. 

      The AI-Native Healthcare Lakehouse has 

therefore emerged as a unifying solution that bridges 

the divide between traditional warehousing and 

modern data science ecosystems. It combines 

analytical robustness with AI readiness, integrating 

structured and unstructured data within a common 

architectural framework that supports both SQL-

based analytics and model-driven intelligence. By 

embedding AI capabilities directly into the data layer, 

the lakehouse enables faster experimentation, 

reduces operational complexity, and ensures that 

analytical and inferential workflows are executed 

within a single, compliant, and traceable 

environment. In doing so, it transforms healthcare 

data platforms from passive repositories of 

information into dynamic engines for knowledge 

discovery and the generation of clinical insights. 

II.     LITERATURE REVIEW 

     The evolution of healthcare data architectures has 

been influenced by developments in both data 

engineering and machine learning. Armbrust et al. [3] 

introduced Delta Lake, which provided ACID 

transactions on cloud object storage and inspired 

subsequent lakehouse designs. In parallel, initiatives 

like FHIR (Fast Healthcare Interoperability 

Resources) [4] improved semantic interoperability 

across medical systems. Rieke et al. [5] 

demonstrated the value of federated learning for 

healthcare, enabling distributed model training 

without centralizing patient data. Studies on 

healthcare-specific lakehouses, such as Chen et al. 

[6], explored AI model integration within EHR 

ecosystems, while Johnson et al. [7] presented the 

MIMIC-IV dataset as a benchmark for multimodal 

analysis. Despite these advancements, few studies 

have comprehensively addressed the architectural 

and ethical considerations of AI-native lakehouses, 

motivating the present research. 

III. BACKGROUND AND MOTIVATION 

     Modern healthcare generates massive amounts of 

structured and unstructured data. These include 

electronic health records, imaging archives, genomic 

sequences, and data from IoMT sensors [8]. 

Conventional warehouses are optimized for 

relational queries but lack mechanisms for 

contextual retrieval and AI-driven insight generation. 

Moreover, data governance frameworks often 

operate in silos, resulting in redundant processing 

and compliance risks. The AI-native lakehouse 

addresses these issues by embedding intelligence 

within the data fabric itself, supporting dynamic 

schema evolution, automated data quality 

monitoring, and built-in lineage tracking [9]. 

IV. PROPOSED ARCHITECTURE 

     The proposed architecture integrates three 

fundamental layers: the ingestion and storage layer, 

the intelligence and analytics layer, and the 

governance and compliance layer [10]. The ingestion 

layer uses streaming frameworks such as Apache 

Kafka and integrates data in formats compliant with 

FHIR and DICOM standards. The intelligence layer 

employs a vector database for semantic retrieval and 

embedding-based search using models such as 

BioClinicalBERT [11]. A unified metadata catalog 

supports feature versioning, reproducibility, and 

provenance tracking. The compliance layer enforces 

fine-grained access control, differential privacy, and 

automated auditing to meet HIPAA and GDPR 

requirements. Fig 1. illustrates the proposed 

architecture at a high-level.  
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Fig. 1 Architectural Overview of AI-Native Healthcare Lakehouse 

 

V.  METHODOLOGY 

     A prototype of the AI-native lakehouse was 

implemented using Apache Iceberg for table 

management, DuckDB for query execution, and 

Milvus for vector search. Datasets from MIMIC-IV 

[7], NIH ChestXray14 [12], and PhysioNet [13] were 

used to evaluate performance across modalities. 

Metrics such as query latency, storage efficiency, 

lineage completeness, and compliance coverage 

were analyzed. Comparative experiments were 

conducted against PostgreSQL and Databricks Delta 

systems [14]. The evaluation incorporated both batch 

and streaming workloads to assess scalability under 

dynamic data ingestion scenarios. In addition, a 

subset of experiments focused on multimodal fusion 

queries combining tabular, textual, and image 

embeddings to simulate realistic clinical data 

retrieval tasks. The overall findings demonstrated 

that integrating vectorized search and structured 

query layers within a unified lakehouse significantly 

improved retrieval precision and reduced end-to-end 

query time. Table I provides a Comparative Analysis 

between Conventional Warehouses and AI-Native 

Lakehouses. 

 

 

 

 

TABLE I 

COMPARATIVE ANALYSIS BETWEEN CONVENTIONAL WAREHOUSES AND AI-

NATIVE LAKEHOUSES 

Criteria 
Conventional 

Warehouse 

AI-Native 

Lakehouse 
Improvement 

Data Types 

Supported 
Structured 

Structured, 
Unstructured, 
Vectorized 

High 

Query 

Latency 
High 

Low 
(Optimized 
caching) 

40% 

Improvement 

AI 

Integration 

External 
Systems 

Embedded 
Inference and 
Registry 

Significant 

Compliance 
Manual 
Reports 

Automated 
Lineage and 
Policy Checks 

High 

 

VI. ETHICAL CONSIDERATIONS 

     AI-native systems must be designed with fairness, 

transparency, and accountability in mind [15]. 

Biases in healthcare data can lead to unequal 

outcomes, particularly across underrepresented 

populations. Ethical design involves implementing 

audit trails, interpretable AI, and differential privacy 

techniques to prevent unintended data exposure [16]. 

Furthermore, governance mechanisms should 

include human oversight and ethical review boards 

to evaluate model behaviour and outcomes [17]. By 

embedding ethics into architecture, AI-native 

lakehouses can enhance both trust and safety in 

clinical applications. 

TABLE II 

BENCHMARK DATASETS USED 

Dataset Domain Description 

MIMIC-IV EHR 
Critical care records with 
demographic and lab data [7] 

NIH 

ChestXray14 
Imaging 

112,000 labeled chest X-rays for 
disease detection [12] 

 

PhysioNet 

IoMT 
Signals 

Physiological time-series data for 
monitoring [13] 

 

VII.  PERFORMANCE EVALUATION 
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     Performance testing showed a 42 percent 

improvement in query response time and a 30 

percent reduction in operational cost. Lineage 

tracking accuracy improved from 65 to 95 percent, 

and compliance automation reduced manual audit 

preparation by 60 percent. The integration of AI 

within the lakehouse significantly lowered the 

barrier for deploying ML models at scale [18]. 

Figure 2, given below, illustrates a comparative 

performance of different data formats.  

 

 
Fig. 2 Performance Comparison across Data Systems 

 

As shown in Table II below, the evaluation metrics 

demonstrated significant gains in query efficiency, 

lineage completeness, and compliance automation. 

TABLE III 

EVALUATION METRICS AND OBSERVED IMPROVEMENTS 

Metric Baseline 
AI-Native 

Lakehouse 

Query Latency (s) 2.3 1.3 

Data Lineage 

Completeness (%) 
65 95 

Operational Cost 

Reduction (%) 
0 30 

Compliance 

Automation (%) 
20 80 

VIII. COMPLIANCE AND GOVERNANCE 

     The AI-native healthcare lakehouse incorporates 

compliance and governance as foundational design 

principles to ensure regulatory alignment and data 

integrity. Automated lineage tracking, policy-based 

access controls, and differential privacy techniques 

enable adherence to HIPAA, GDPR, and ISO 27701 

standards. Continuous audit logging and explainable 

decision records strengthen transparency and 

accountability in AI-assisted analytics. Together, 

these measures create a resilient governance 

framework that promotes trust, security, and ethical 

data stewardship within clinical environments. 

     A prototype of the AI-native lakehouse was 

implemented using Apache Iceberg for table 

management, DuckDB for query execution, and 

Milvus for vector search. Datasets from MIMIC-IV 

[7], NIH ChestXray14 [12], and PhysioNet [13] were 

used to evaluate performance across modalities. 

Metrics such as query latency, storage efficiency, 

lineage completeness, and compliance coverage 

were analysed. Comparative experiments were 

conducted against PostgreSQL and Databricks Delta 

systems [14].  

     As illustrated in Table IV, the compliance and 

governance framework integrates standardized 

controls across access management, privacy 

preservation, auditability, and explainability. These 

mechanisms collectively ensure regulatory 

adherence and reinforce ethical accountability in 

healthcare data operations. 

TABLE IV 

COMPLIANCE AND GOVERNANCE FRAMEWORK 

Control Area 
Mechanism 

Implemented 

Framework 

Reference 

Access Control 
Attribute-based 
Encryption 

HIPAA 
§164.312(a)(1) 

Data Privacy 

Differential 

Privacy, 
Tokenization 

GDPR Art. 25 

Auditability Provenance Graphs ISO 27701 

Explainability 

Model 
Interpretability 
Reports 

IEEE 7001-2021 

IX.  FUTURE OUTLOOK AND CONCLUSION 
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     Future implementations of AI-native lakehouses 

will extend toward continuous learning 

environments that integrate digital twins, generative 

models, and federated data networks [19]. These 

systems will enable adaptive model retraining based 

on incoming clinical data streams, allowing 

predictive algorithms to evolve alongside changing 

patient populations and medical knowledge. By 

leveraging digital twin frameworks, healthcare 

institutions can simulate patient-specific scenarios to 

evaluate treatment efficacy and potential risks before 

real-world application. Such integration enhances 

personalization in care delivery and facilitates 

outcome optimization at both individual and 

population levels. 

     Integration with blockchain-based audit systems 

may further enhance transparency and traceability in 

medical data processing. Blockchain’s immutable 

ledger can ensure verifiable data provenance, 

support decentralized consent management, and 

strengthen accountability across multi-institutional 

collaborations. This capability is especially vital in 

federated environments where data remains 

distributed across hospitals, research centers, and 

cloud infrastructures. Blockchain integration also 

supports compliance verification by providing 

tamper-evident logs of AI model access, training 

datasets, and decision outputs, fostering trust among 

regulatory agencies and stakeholders. 

     Continued interdisciplinary collaboration among 

clinicians, data scientists, and ethicists will be 

critical to achieving equitable and trustworthy AI in 

healthcare [20]. The convergence of these disciplines 

will facilitate the development of governance 

frameworks that address bias mitigation, 

transparency, and fairness in algorithmic decision-

making. Moreover, educational initiatives that 

promote literacy in data ethics and AI interpretability 

among healthcare professionals will be essential to 

ensuring responsible adoption. Ultimately, the future 

of AI-native lakehouses lies in establishing a self-

regulating, transparent, and ethically aligned data 

ecosystem that continuously learns, audits, and 

improves without compromising patient privacy or 

clinical integrity. 
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