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Abstract:

Healthcare data management is entering a new era characterized by the convergence of artificial
intelligence (Al), data interoperability, and large-scale analytics. Traditional data warehouses, while reliable
for structured information, struggle to accommodate unstructured, streaming, and multimodal datasets
standard in modern healthcare. The Al-Native Healthcare Lakehouse merges the elasticity of data lakes with
the consistency and performance of warehouses while embedding Al at the core of its operations. This paper
proposes an architecture that enables integrated analytics, semantic reasoning, and real-time inference on
heterogeneous healthcare data. We evaluate its scalability, compliance, and ethical implications across
multiple datasets and discuss its role in advancing evidence-based care and digital health transformation.

Keywords — Healthcare lakehouse, Clinical Data Integration, AI-Native, Data Lakehouse,
Healthcare, Clinical Data.

skt sk sk sk stk sk sk ok ok sk sk

However, the success of these Al systems is
inherently tied to the quality, accessibility, and
representativeness of the underlying data. Many
healthcare organizations face persistent challenges

I. INTRODUCTION

The integration of artificial intelligence into
healthcare has revolutionized data-driven decision

making and has redefined how clinical evidence is
generated, validated, and applied across the
continuum of care. AI models are now embedded
within hospital workflows, population health
platforms, and predictive analytics systems, enabling
more accurate diagnoses, optimized treatment
pathways, and operational efficiency gains that were

previously  unattainable  through  traditional
analytical methods [1]. From radiology and
pathology to genomics and administrative

scheduling, Al-driven applications are increasingly
influencing both patient outcomes and healthcare
€conomics.

related to data fragmentation, inconsistent coding,
and variable data quality across clinical and
administrative sources. In addition, multimodal
healthcare data such as clinical notes, medical
imaging, physiological signals, and genomic profiles
often reside in isolated repositories, making cross-
domain integration both technically and ethically
complex. These silos limit the ability of Al systems
to learn from longitudinal patient trajectories and to
generalize findings across populations, thereby
constraining the broader potential of precision
medicine.

Traditional data warehouses have historically
excelled in handling structured data, providing
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reliability and transactional consistency for
relational databases and reporting systems. Yet, they
are inherently limited in accommodating the
unstructured and semi-structured data that dominate
contemporary healthcare environments [2]. They
often rely on rigid schema definitions and static
extract-transform-load (ETL) pipelines that cannot
adapt to evolving data modalities or near real-time
analytics demands. Furthermore, their lack of native
support for machine learning workflows and
distributed computation introduces inefficiencies
when integrating AI models that require large-scale
data ingestion, vectorization, and iterative training.
The Al-Native Healthcare Lakehouse has
therefore emerged as a unifying solution that bridges
the divide between traditional warehousing and
modern data science ecosystems. It combines
analytical robustness with Al readiness, integrating
structured and unstructured data within a common
architectural framework that supports both SQL-
based analytics and model-driven intelligence. By
embedding Al capabilities directly into the data layer,
the lakehouse enables faster experimentation,
reduces operational complexity, and ensures that
analytical and inferential workflows are executed
within a single, compliant, and traceable
environment. In doing so, it transforms healthcare
data platforms from passive repositories of
information into dynamic engines for knowledge
discovery and the generation of clinical insights.

II. LITERATURE REVIEW

The evolution of healthcare data architectures has
been influenced by developments in both data
engineering and machine learning. Armbrust et al. [3]
introduced Delta Lake, which provided ACID
transactions on cloud object storage and inspired
subsequent lakehouse designs. In parallel, initiatives
like FHIR (Fast Healthcare Interoperability
Resources) [4] improved semantic interoperability
across medical systems. Rieke et al. [5]
demonstrated the value of federated learning for
healthcare, enabling distributed model training
without centralizing patient data. Studies on
healthcare-specific lakehouses, such as Chen et al.
[6], explored AI model integration within EHR
ecosystems, while Johnson et al. [7] presented the
MIMIC-IV dataset as a benchmark for multimodal
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analysis. Despite these advancements, few studies
have comprehensively addressed the architectural
and ethical considerations of Al-native lakehouses,
motivating the present research.

111. BACKGROUND AND MOTIVATION

Modern healthcare generates massive amounts of
structured and unstructured data. These include
electronic health records, imaging archives, genomic

sequences, and data from IoMT sensors [8].
Conventional warehouses are optimized for
relational queries but lack mechanisms for

contextual retrieval and Al-driven insight generation.
Moreover, data governance frameworks often
operate in silos, resulting in redundant processing
and compliance risks. The Al-native lakehouse
addresses these issues by embedding intelligence
within the data fabric itself, supporting dynamic

schema evolution, automated data quality
monitoring, and built-in lineage tracking [9].
IV.  PROPOSED ARCHITECTURE

The proposed architecture integrates three

fundamental layers: the ingestion and storage layer,
the intelligence and analytics layer, and the
governance and compliance layer [10]. The ingestion
layer uses streaming frameworks such as Apache
Kafka and integrates data in formats compliant with
FHIR and DICOM standards. The intelligence layer
employs a vector database for semantic retrieval and
embedding-based search using models such as
BioClinical BERT [11]. A unified metadata catalog
supports feature versioning, reproducibility, and
provenance tracking. The compliance layer enforces
fine-grained access control, differential privacy, and
automated auditing to meet HIPAA and GDPR
requirements. Fig 1. illustrates the proposed
architecture at a high-level.

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 1720



International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 5, Sep-Oct 2025
Available at www.ijsred.com

TABLEI
Data Ingestion and Unification COMPARATIVE ANALYSIS BETWEEN CONVENTIONAL WAREHOUSES AND Al-
Delta/Icberrg NATIVE LAKEHOUSES
Streaming EHRs, . Tables
Connectors || IoMT, Imaging c . .
Systems 2 Criteria Conventional | AI-Native Improvement
c Warehouse Lakehouse P
- E
Intelligence Layer 2 Data Tynes Structured,
e | Vet Embedded 9 G P | structured Unstructured, | High
mbedaings Search Engine LLM Agents = PP Vectorized
1 (FALSS, Milvus, 8 Low
pgvector) c Query . . 40%
Model Registry i Fine-Grained E Latency High (Optimized Improvement
+Feature Store Access Controls 5 caching)
(MLflow, SageMaker) %
ol Al External Embedded .
Integration | Systems Infe.rence and | Significant
Governance and Security Registry
Audit Trails and .Different'ial. Fine-Grained Manual Automated
Explainability Artifacts Privacy, Tokenization Access Controls Compliance Re (;lrts Lineage and High
p Policy Checks
Fig. 1 Architectural Overview of Al-Native Healthcare Lakehouse
VI.  ETHICAL CONSIDERATIONS

V. METHODOLOGY

A prototype of the Al-native lakehouse was
implemented using Apache Iceberg for table
management, DuckDB for query execution, and
Milvus for vector search. Datasets from MIMIC-1V
[7], NIH ChestXray14 [12], and PhysioNet [13] were
used to evaluate performance across modalities.
Metrics such as query latency, storage efficiency,
lineage completeness, and compliance coverage
were analyzed. Comparative experiments were
conducted against PostgreSQL and Databricks Delta
systems [14]. The evaluation incorporated both batch
and streaming workloads to assess scalability under
dynamic data ingestion scenarios. In addition, a
subset of experiments focused on multimodal fusion
queries combining tabular, textual, and image
embeddings to simulate realistic clinical data
retrieval tasks. The overall findings demonstrated
that integrating vectorized search and structured
query layers within a unified lakehouse significantly
improved retrieval precision and reduced end-to-end
query time. Table I provides a Comparative Analysis
between Conventional Warehouses and Al-Native
Lakehouses.

Al-native systems must be designed with fairness,
transparency, and accountability in mind [15].
Biases in healthcare data can lead to unequal
outcomes, particularly across underrepresented
populations. Ethical design involves implementing
audit trails, interpretable Al, and differential privacy
techniques to prevent unintended data exposure [16].
Furthermore, governance mechanisms should
include human oversight and ethical review boards
to evaluate model behaviour and outcomes [17]. By
embedding ethics into architecture, Al-native
lakehouses can enhance both trust and safety in
clinical applications.

TABLEII
BENCHMARK DATASETS USED
Dataset Domain Description
Critical care records with
MIMIC-TV EHR demographic and lab data [7]
NIH Imagin 112,000 labeled chest X-rays for
ChestXray14 ging disease detection [12]
[oMT Physiological time-series data for
PhysioNet Signals monitoring [13]
VII. PERFORMANCE EVALUATION
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Performance testing showed a 42 percent
improvement in query response time and a 30
percent reduction in operational cost. Lineage
tracking accuracy improved from 65 to 95 percent,
and compliance automation reduced manual audit
preparation by 60 percent. The integration of Al
within the lakehouse significantly lowered the
barrier for deploying ML models at scale [18].
Figure 2, given below, illustrates a comparative
performance of different data formats.

Performance Comparison

@S Runtime
@ Query Throughput

Delta/Iceberg

Parquet

Data Format

Fig. 2 Performance Comparison across Data Systems

As shown in Table II below, the evaluation metrics
demonstrated significant gains in query efficiency,
lineage completeness, and compliance automation.
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The Al-native healthcare lakehouse incorporates
compliance and governance as foundational design
principles to ensure regulatory alignment and data
integrity. Automated lineage tracking, policy-based
access controls, and differential privacy techniques
enable adherence to HIPAA, GDPR, and ISO 27701
standards. Continuous audit logging and explainable
decision records strengthen transparency and
accountability in Al-assisted analytics. Together,
these measures create a resilient governance
framework that promotes trust, security, and ethical
data stewardship within clinical environments.

A prototype of the Al-native lakehouse was
implemented using Apache Iceberg for table
management, DuckDB for query execution, and
Milvus for vector search. Datasets from MIMIC-IV
[7], NIH ChestXray14 [12], and PhysioNet [13] were
used to evaluate performance across modalities.
Metrics such as query latency, storage efficiency,
lineage completeness, and compliance coverage
were analysed. Comparative experiments were
conducted against PostgreSQL and Databricks Delta
systems [14].

As illustrated in Table 1V, the compliance and
governance framework integrates standardized
controls across access management, privacy
preservation, auditability, and explainability. These
mechanisms  collectively  ensure  regulatory
adherence and reinforce ethical accountability in
healthcare data operations.

TABLEIV
COMPLIANCE AND GOVERNANCE FRAMEWORK

TABLE III Control Area Mechanism Framework
EVALUATION METRICS AND OBSERVED IMPROVEMENTS Implemented Reference
AlI-Native i
Metric Baseline Attribute-based HIPAA
Lakehouse Access Control | g ion §164.312(a)(1)
Query Latency (s) 2.3 1.3 Differential
Data Privacy Privacy, GDPR Art. 25
5 Tokenization
Data Lineage 65 95
Completeness (%)
itabili h ISO 27701
Operational Cost . 0 Auditability Provenance Graphs SO 0
Reduction (%)
Model
Compliance 20 80 Explainability Interpretability IEEE 7001-2021
Automation (%) Reports
VIII. COMPLIANCE AND GOVERNANCE IX. FUTURE OUTLOOK AND CONCLUSION
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Future implementations of Al-native lakehouses
will extend toward continuous learning
environments that integrate digital twins, generative
models, and federated data networks [19]. These
systems will enable adaptive model retraining based
on incoming clinical data streams, allowing
predictive algorithms to evolve alongside changing
patient populations and medical knowledge. By
leveraging digital twin frameworks, healthcare
institutions can simulate patient-specific scenarios to
evaluate treatment efficacy and potential risks before
real-world application. Such integration enhances
personalization in care delivery and facilitates
outcome optimization at both individual and
population levels.

Integration with blockchain-based audit systems
may further enhance transparency and traceability in
medical data processing. Blockchain’s immutable
ledger can ensure verifiable data provenance,
support decentralized consent management, and
strengthen accountability across multi-institutional
collaborations. This capability is especially vital in
federated environments where data remains
distributed across hospitals, research centers, and
cloud infrastructures. Blockchain integration also
supports compliance verification by providing
tamper-evident logs of AI model access, training
datasets, and decision outputs, fostering trust among
regulatory agencies and stakeholders.

Continued interdisciplinary collaboration among
clinicians, data scientists, and ethicists will be
critical to achieving equitable and trustworthy Al in
healthcare [20]. The convergence of these disciplines
will facilitate the development of governance
frameworks that address bias  mitigation,
transparency, and fairness in algorithmic decision-
making. Moreover, educational initiatives that
promote literacy in data ethics and Al interpretability
among healthcare professionals will be essential to
ensuring responsible adoption. Ultimately, the future
of Al-native lakehouses lies in establishing a self-
regulating, transparent, and ethically aligned data
ecosystem that continuously learns, audits, and
improves without compromising patient privacy or
clinical integrity.
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