International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 5, Sep-Oct 2025
Available at www.ijsred.com

RESEARCH ARTICLE OPEN ACCESS

Review on Deadlock Handling

Shruti Kedare*, Shruti Shengule**, Ruchi Kamble***, Sonali Ingole****

*(Computer Engineering, P.E.S College of Polytechnic, and Chh. Sambhaji Nagar
Email: shrutikedare882 @ gmail.com)
**(Computer Engineering, P.E.S College of Polytechnic, and Chh. Sambhaji Nagar
Email: shrutishengule @ gmail.com)
#*%(Computer Engineering, P.E.S College of Polytechnic, and Chh. Sambhaji Nagar
Email: ruchi.kamble2007 @ gmail.com)
#*#%(Computer Engineering, P.E.S College of Polytechnic, and Chh. Sambhaji Nagar
Email: sonaliingole2007 @ gmail.com)
skoskeoskeo sk skoskeo st sk sk sk skeoskesk sk sk sk sk skeske sk skeskeskosk

Abstract:

In operating system one of the most important task is sharing and allocating resources in the process
which are new and running. In multiprocessing environment, resource allocation is can become a point of
conflict and this conflict is called deadlock. Deadlock detection is a very important, in this paper overlooked
problem that can significantly overall deadlock handling performance affect. In operating system Deadlock
is consider as critical problem where each process is waiting for resources which is held by other process,
because of these multiple processes are stuck forever. Because of deadlock, performance of system is
reducing and if this problem is not handled it can cause to complete system freeze. This paper shows
deadlock concept, the condition in which deadlock occurs, and different types of approach like, prevention,
avoidance, detection and recovery. The purpose is to explain how operating system manage deadlock and
what future methods can improve system reliability

Keywords — Operating System; Deadlock, Resource Allocation, Multiprocessing Environment,
System Freeze.
sk sk sk st sk sk sk st sk sk steskesk sk stk sk skeskokokokskok

I. INTRODUCTION

Operating system is a program that acts as an
interface between user and the computer and manage
all computer resources. In today’s computing
environment, modern operating system allows
multiprocessing in which multiple processes are run
at the same time, and these processes require shared
resources such as files, memory, printers, CPU for
completing their task. Since, system have limited
shared resources so, allocating and sharing resources
to the task to be completed according to their
requirement or need in proper manner is very
necessary. When more than one processes are unable
to proceed their task because one process require
resource held by another process and is not ready to
release resource it means that deadlock is occurred.

Deadlock is matters in operating system and if we
ignore that instead of handling it may slow down the
system or crash which is harmful for our system. It
is lead to many problems like one car cannot move
forward, need to wait for reach destination, if try to
move forward an accident may happen because it
causes underutilization of CPU.

II. DEADLOCK CONDITIONS

Deadlock does not occur randomly in the system for
deadlock occur there are 4 conditions identified by
coffman in 1971 and these conditions must present
simultaneously.

» There are four conditions of deadlock:

1. Mutual Exclusion.
2. Hold and Wait.

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 1670

International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 5, Sep-Oct 2025

3. No Preemption.
4. Circular Wait.

1. Mutual Exclusion

In this condition at least one resource is must hold in
non-sharable mode by the process hence only one
process can hold this resource for its execution if
another process have wish to use same resource and
makes request for this resource then it is impossible
to share the resource because this resource is in the
non- sharable mode. Example: two friends (process)
want to attend party only one of them (process) has
party dress(resource) so she cannot lend to another
(process).

2. Hold and Wait

This condition state that, at least one resource is
hold by a process and simultaneously waits for one
more additional resource that is already held by
another process this condition completes its
execution but also create problem Example: There
are two process pl and p2, pl holds resource rl and
request to resource r2 while resource r2 is hold by p2
Waiting for resource rl which is hold by pl.
Combination of these process and resources leads to
chances of occur deadlock and begin to circular
waiting chain.

3. No Preemption

This condition state that once the resource is
allocated to the one process other process cannot
forcibly taken away that resource until execution is
complete of current process even if that process high
priority. So Other process have to wait until
execution of current process completes because once
resource the resource allocated to the process,
process keeps the resource until it releases resource
either by terminating or by switching to waiting state
So, this condition also contributes chances of
deadlock. In short resource can only be released by
choice of process.

4. Circular Wait

In this condition each process is waiting for
resource held by next process it makes circular chain,
where chain of two or more process there is existence
of circular chain thus each of these processes cannot
complete its execution. Example: Process pl is

Available at www.ijsred.com

waiting for the resource hold by the process p2 and
process p2 is also waiting for the resource held by
process p3.

When each of above conditions are true then
deadlock occurs

Mutual
Exclusion

Hold and
Wait

Circular

Chain Deadlock

No
Preemption

Fig: Conditions of Deadlock.

III. DEADLOCK PREVENTION

To protect the system from deadlock in operating
system the method is used called as deadlock
prevention it is useful to ensure that from four
condition of deadlock at least one condition never
occurs if prevent at least one condition, the system
has no chance to deadlock will occur. This idea
protects the system from deadlock before Deadlock
occurs instead of after deadlock happen.

» There are four methods of deadlock
prevention:

Eliminate Mutual Exclusion.

Eliminate Hold and Wait.

Eliminate No Preemption.

Eliminate Circular Chain.

el e

1. Eliminate Mutual Exclusion
Since in mutual exclusion condition, resource is
hold by the process in non-shareable mode now we
Try to share resource in shareable mode. Example:

ISSN: 2581-7175

©IJSRED: All Rights are Reserved

Page 1671

International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 5, Sep-Oct 2025

Multiple processes can share resources such as read
only file and code segment simultaneously. But there
is no guarantee of all-time resources like printer or
I/0 device are in shareable mode. So, Eliminate
mutual exclusion not always possible.

2. Eliminate Hold and Wait
In this method, process prevent by a process cannot
hold resource while waiting for another resource.

» This method has two sub methods:
A. All-or-Nothing Allocation.
B. Release Before Request.

A. All-or-Nothing Allocation: Before starting
execution of process, it must request all the
resource at once it requires.

B. Release Before Request: A process before
making new request for resource. It is must to
release current all resources. But, this method of
prevention also leads to drawback of low
resource utilization and possible starvation
(indefinitely waiting for resource).

3. Eliminate No Preemption

No Preemption means once the resource is
allocated to a process it cannot forcibly remove
from that process till this process release that
resource. To eliminate this condition, the
operating system says use preemption means
resource allocated to the process can forcibly
remove during execution of process for current
executing process when another process has high
priority or other scenario of execution. If a process
holds one resource and also waits for another
resource held by another process, can preempt
means forcibly take away and gives to current
process for its execution so no preemption is
eliminated. Example: There are two processes P1
and P2 and two resources R1 and R2.
When P1 holds R1 and P2 holds R2, P1 has need
of R2 then P1 forcibly take away R2 from P2 by
stopping execution of P2. After complete
execution of P1 then it gives R2 to P2 for
remaining execution

Available at www.ijsred.com

4. Eliminate Circular Wait

In a circular wait deadlock, each process waiting
for a resource which is hold by another process in
a circular chain. Example:
pl -- wait for resources R2 (that are hold by p2)
p2 -- wait for resources R3(that are hold by p3)
p3--wait for resources R1(that are hold by p1).
That cause a deadlock loop where no one came
proceed. Let's we see how to prevent deadlock in
eliminating circular wait. To release of circular
wait we follow a strict order on resources
allocation.
Rule: All resources must be requested in a
predefined fixed order. That's means every
resource has a unique number and processes can
only request in forward order of that numbering.

IV. DEADLOCK AVOIDANCE

Deadlock prevention is a active approach method
implemented in operating system to make sure that
system prevent the unsafe condition that might create
a deadlock. In contrast to deadlock prevention,
which not allow the managing resources to avoid the
risk of deadlock. Deadlock avoidance enables better
process execution by deciding based on current
resource use and expected future needs. In this
method, the system wants more knowledge of each
process peak resources are required. Before giving a
resource request, the system check whether giving
the request, will maintain the system in a safe place.
A save condition is one in which all process can
fulfill their completion without causing a deadlock.
If the process remains save, resources is provided,
otherwise, the process must wait. A more used
algorithm for deadlock avoidance is the Bankers
Algorithm, suggested by Dijkstra. This test the
allocation of resources for every potential request
and make sure that system stay safe before giving the
request. By using deadlock prevention method,
operating system get harmony between resources
utilization and system safety, stopping deadlocks
while sustaining effective task performance.

The banker's Algorithm is a deadlock avoidance
algorithm which is developed by Edsger Dijkastra.it
is used for suppose a system is in a safe state or not
by simulating the allocation of resources to
processes. It situation that the system never enters in

ISSN: 2581-7175

©IJSRED: All Rights are Reserved

Page 1672

International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 5, Sep-Oct 2025

an unsafe state that could lead to a deadlock.
Banker’s algorithm works like banker giving loans:
Let's see the banker (operating system) will only
grant a loan (resource) if it knows it can still satisfy
all other stakeholders (processes) in the future.
Bankers denies request temporarily when if giving
the resource makes it impossible to fulfill other's
maximum needs.

Important terms
1) Available
2) Max

3) Allocation
4) Need

Algorithm steps :

1.Safety algorithm.

2.Resources Request Algorithm.

3.pretend to allocates resources temporarily.
4)Run the safety algorithm

V. DEADLOCK RECOVERY

Deadlock Recovery is nothing but the fixing the
situation means when the deadlock occurs in the
system.
There is some way to do this:

1. Priority method.

2. Checkpoint and Rollback Method.

3. Progress Termination.

1. Priority method:

One simple way is to give importance to some
processes first. The system can give another process
to release a resource so that the waiting process can
run its work, if there is any process in stuck. In some
cases, a problem happens again when the same
process that release and resource give it back later
and run as nothing happened at all.

2. Checkpoint and Rollback Method:

In this method, there is a system that takes
snapshots checkpoint time to time of its state. If a
deadlock occurs, the system returns previous
snapshots and restart from there before the deadlock.
It helps to make the locked resource free.

At the same time, some progress create after the last
checkpoint will gone. It will again have to wait, if
there is a low priority process ask for any resource.

Available at www.ijsred.com

3. Progress Termination:

Another way to stop recovery from deadlock is
involving one or more processes. It is very effective
method. The system needs to decide that which
process to stop because it depends on that what loss
will be happen if it is stopped. Usually, there is no
rules fixed this but something the process that can be
reopened effortlessly and don't have any important
work is selected for termination.

VI. DEADLOCK SIDE-EFFECTS

Undesirable system condition in a same group are
also starvation and live lock. Both are considered as
derivatives of deadlock. Restricted the process, it has
the common attributes involved from making
progress. When some scheduling algorithm
determines the acquisition and utilization of
resources, starvation happens but there are some
processes that even though are not deadlock and
never acquired required resources so for that reason
making no progress. Live lock or busy-waiting
describe in a state that where a process is 'spinning’
forever waiting for a condition that not satisfied,
again blocking progress. Thus, the efforts to avoid
deadlock and starvation condition, the equity of
nation threatened. Impartiality indicates the process
that something has to executed and complete the
task. To accomplish this, the existence of arbitrary
planning scheduling ensure that all processes
executed within an acceptable time frame. The
solution to justice related problems is addressing
normal with the process prioritization handled by the
operating system with a specific algorithm.

CONCLUSION

Deadlock is a serious issue in operating systems
where processes compete for limited resources. It
can halt system operations if not properly managed.
This paper explained the conditions for deadlock and
outlined key strategies for handling it—prevention,
avoidance, detection, and recovery. Effective
deadlock management ensures better resource
utilization, system performance, and overall
reliability.

ISSN: 2581-7175

©IJSRED: All Rights are Reserved

Page 1673

International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 5, Sep-Oct 2025

ACKNOWLEDGE

I really thankful and grateful to my Prof. Nisha
Pawar mam for continuous support and guidance and
I also thankful to my institute P.E.S of polytechnic
for providing resources and support in completing
this work.

REFERENCE

[1] Coffman E. G., Elphick M. J., Shoshani A. 1971.
System Deadlocks. ACM Computing Surveys. 3(2):
67-78.
https://dl.acm.org/doi/10.1145/356586.356588

[2] Dijkstra E. W. 1965. Cooperating Sequential
Processes. Technical Report EWD-123,
Technological University Eindhoven.
https://www.cs.utexas.edu/~EWD/transcriptions/E
WDO01xx/EWD123-2.html

[3] Silberschatz A., Galvin P. B., Gagne G. 2018.
Operating System Concepts (10th ed.). Wiley.
https://www.wiley.com/enus/Operating%2BSystem
902BConcepts%2C%2B10th%2BEdition-p-
9781119320913

[4] Dimitoglou G. 1998. Deadlocks and Methods for
their Detection, Prevention and Recovery in Modern
Operating Systems. ResearchGate. Available:
https://www.researchgate.net/publication/22062392
9

[S] Mohanty M., Kumara P. 2013. Deadlock
Prevention in Process Control Computer System.
International Journal of Computer Applications.
ICDCIT Special Issue.
https://ijcaonline.org/proceedings/icdcit/numberl/1
0236-1003/

Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved

Page 1674

