
International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 1670

Review on Deadlock Handling

Shruti Kedare*, Shruti Shengule**, Ruchi Kamble***, Sonali Ingole****
 *(Computer Engineering, P.E.S College of Polytechnic, and Chh. Sambhaji Nagar

 Email: shrutikedare882@gmail.com)

 **(Computer Engineering, P.E.S College of Polytechnic, and Chh. Sambhaji Nagar

 Email: shrutishengule@gmail.com)

 ***(Computer Engineering, P.E.S College of Polytechnic, and Chh. Sambhaji Nagar

 Email: ruchi.kamble2007@gmail.com)

 ****(Computer Engineering, P.E.S College of Polytechnic, and Chh. Sambhaji Nagar

 Email: sonaliingole2007@gmail.com)

---************************-------------------------------------

Abstract:
 In operating system one of the most important task is sharing and allocating resources in the process

which are new and running. In multiprocessing environment, resource allocation is can become a point of

conflict and this conflict is called deadlock. Deadlock detection is a very important, in this paper overlooked

problem that can significantly overall deadlock handling performance affect. In operating system Deadlock

is consider as critical problem where each process is waiting for resources which is held by other process,

because of these multiple processes are stuck forever. Because of deadlock, performance of system is

reducing and if this problem is not handled it can cause to complete system freeze. This paper shows

deadlock concept, the condition in which deadlock occurs, and different types of approach like, prevention,

avoidance, detection and recovery. The purpose is to explain how operating system manage deadlock and

what future methods can improve system reliability

Keywords — Operating System; Deadlock, Resource Allocation, Multiprocessing Environment,

System Freeze.

---************************-------------------------------------

 I. INTRODUCTION

 Operating system is a program that acts as an

interface between user and the computer and manage

all computer resources. In today’s computing

environment, modern operating system allows

multiprocessing in which multiple processes are run

at the same time, and these processes require shared

resources such as files, memory, printers, CPU for

completing their task. Since, system have limited

shared resources so, allocating and sharing resources

to the task to be completed according to their

requirement or need in proper manner is very

necessary. When more than one processes are unable

to proceed their task because one process require

resource held by another process and is not ready to

release resource it means that deadlock is occurred.

Deadlock is matters in operating system and if we

ignore that instead of handling it may slow down the

system or crash which is harmful for our system. It

is lead to many problems like one car cannot move

forward, need to wait for reach destination, if try to

move forward an accident may happen because it

causes underutilization of CPU.

II. DEADLOCK CONDITIONS

Deadlock does not occur randomly in the system for

deadlock occur there are 4 conditions identified by

coffman in 1971 and these conditions must present

simultaneously.

 There are four conditions of deadlock:

1. Mutual Exclusion.

2. Hold and Wait.

RESEARCH ARTICLE OPEN ACCESS

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025

 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 1671

3. No Preemption.

4. Circular Wait.

 1. Mutual Exclusion

In this condition at least one resource is must hold in

non-sharable mode by the process hence only one

process can hold this resource for its execution if

another process have wish to use same resource and

makes request for this resource then it is impossible

to share the resource because this resource is in the

non- sharable mode. Example: two friends (process)

want to attend party only one of them (process) has

party dress(resource) so she cannot lend to another

(process).

 2. Hold and Wait

This condition state that, at least one resource is

hold by a process and simultaneously waits for one

more additional resource that is already held by

another process this condition completes its

execution but also create problem Example: There

are two process p1 and p2, p1 holds resource r1 and

request to resource r2 while resource r2 is hold by p2

Waiting for resource r1 which is hold by p1.

Combination of these process and resources leads to

chances of occur deadlock and begin to circular

waiting chain.

3. No Preemption

This condition state that once the resource is

allocated to the one process other process cannot

forcibly taken away that resource until execution is

complete of current process even if that process high

priority. So Other process have to wait until

execution of current process completes because once

resource the resource allocated to the process,

process keeps the resource until it releases resource

either by terminating or by switching to waiting state

So, this condition also contributes chances of

deadlock. In short resource can only be released by

choice of process.

4. Circular Wait

In this condition each process is waiting for

resource held by next process it makes circular chain,

where chain of two or more process there is existence

of circular chain thus each of these processes cannot

complete its execution. Example: Process p1 is

waiting for the resource hold by the process p2 and

process p2 is also waiting for the resource held by

process p3.

When each of above conditions are true then

deadlock occurs

Fig: Conditions of Deadlock.

III. DEADLOCK PREVENTION

To protect the system from deadlock in operating

system the method is used called as deadlock

prevention it is useful to ensure that from four

condition of deadlock at least one condition never

occurs if prevent at least one condition, the system

has no chance to deadlock will occur. This idea

protects the system from deadlock before Deadlock

occurs instead of after deadlock happen.

 There are four methods of deadlock

prevention:

1. Eliminate Mutual Exclusion.

2. Eliminate Hold and Wait.

3. Eliminate No Preemption.

4. Eliminate Circular Chain.

 1. Eliminate Mutual Exclusion

 Since in mutual exclusion condition, resource is

hold by the process in non-shareable mode now we

Try to share resource in shareable mode. Example:

Mutual

Exclusion

No

Preemption

Circular

Chain Deadlock
Hold and

Wait

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025

 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 1672

Multiple processes can share resources such as read

only file and code segment simultaneously. But there

is no guarantee of all-time resources like printer or

I/O device are in shareable mode. So, Eliminate

mutual exclusion not always possible.

2. Eliminate Hold and Wait

In this method, process prevent by a process cannot

hold resource while waiting for another resource.

 This method has two sub methods:

A. All-or-Nothing Allocation.

B. Release Before Request.

A. All-or-Nothing Allocation: Before starting

execution of process, it must request all the

resource at once it requires.

B. Release Before Request: A process before

making new request for resource. It is must to

release current all resources. But, this method of

prevention also leads to drawback of low

resource utilization and possible starvation

(indefinitely waiting for resource).

3. Eliminate No Preemption

 No Preemption means once the resource is

allocated to a process it cannot forcibly remove

from that process till this process release that

resource. To eliminate this condition, the

operating system says use preemption means

resource allocated to the process can forcibly

remove during execution of process for current

executing process when another process has high

priority or other scenario of execution. If a process

holds one resource and also waits for another

resource held by another process, can preempt

means forcibly take away and gives to current

process for its execution so no preemption is

eliminated. Example: There are two processes P1

and P2 and two resources R1 and R2.

When P1 holds R1 and P2 holds R2, P1 has need

of R2 then P1 forcibly take away R2 from P2 by

stopping execution of P2. After complete

execution of P1 then it gives R2 to P2 for

remaining execution

4. Eliminate Circular Wait

In a circular wait deadlock, each process waiting

for a resource which is hold by another process in

a circular chain. Example:

p1 -- wait for resources R2 (that are hold by p2)

p2 -- wait for resources R3(that are hold by p3)

p3--wait for resources R1(that are hold by p1).

That cause a deadlock loop where no one came

proceed. Let's we see how to prevent deadlock in

eliminating circular wait. To release of circular

wait we follow a strict order on resources

allocation.

Rule: All resources must be requested in a

predefined fixed order. That's means every

resource has a unique number and processes can

only request in forward order of that numbering.

IV. DEADLOCK AVOIDANCE

Deadlock prevention is a active approach method

implemented in operating system to make sure that

system prevent the unsafe condition that might create

a deadlock. In contrast to deadlock prevention,

which not allow the managing resources to avoid the

risk of deadlock. Deadlock avoidance enables better

process execution by deciding based on current

resource use and expected future needs. In this

method, the system wants more knowledge of each

process peak resources are required. Before giving a

resource request, the system check whether giving

the request, will maintain the system in a safe place.

A save condition is one in which all process can

fulfill their completion without causing a deadlock.

If the process remains save, resources is provided,

otherwise, the process must wait. A more used

algorithm for deadlock avoidance is the Bankers

Algorithm, suggested by Dijkstra. This test the

allocation of resources for every potential request

and make sure that system stay safe before giving the

request. By using deadlock prevention method,

operating system get harmony between resources

utilization and system safety, stopping deadlocks

while sustaining effective task performance.

The banker's Algorithm is a deadlock avoidance

algorithm which is developed by Edsger Dijkastra.it

is used for suppose a system is in a safe state or not

by simulating the allocation of resources to

processes. It situation that the system never enters in

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025

 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 1673

an unsafe state that could lead to a deadlock.

Banker’s algorithm works like banker giving loans:

Let's see the banker (operating system) will only

grant a loan (resource) if it knows it can still satisfy

all other stakeholders (processes) in the future.

Bankers denies request temporarily when if giving

the resource makes it impossible to fulfill other's

maximum needs.

Important terms

1) Available

2) Max

3) Allocation

4) Need

Algorithm steps :

1.Safety algorithm.

2.Resources Request Algorithm.

3.pretend to allocates resources temporarily.

4)Run the safety algorithm

V. DEADLOCK RECOVERY

 Deadlock Recovery is nothing but the fixing the

situation means when the deadlock occurs in the

system.

There is some way to do this:

1. Priority method.

2. Checkpoint and Rollback Method.

3. Progress Termination.

 1. Priority method:

One simple way is to give importance to some

processes first. The system can give another process

to release a resource so that the waiting process can

run its work, if there is any process in stuck. In some

cases, a problem happens again when the same

process that release and resource give it back later

and run as nothing happened at all.

2. Checkpoint and Rollback Method:

In this method, there is a system that takes

snapshots checkpoint time to time of its state. If a

deadlock occurs, the system returns previous

snapshots and restart from there before the deadlock.

It helps to make the locked resource free.

At the same time, some progress create after the last

checkpoint will gone. It will again have to wait, if

there is a low priority process ask for any resource.

3. Progress Termination:

Another way to stop recovery from deadlock is

involving one or more processes. It is very effective

method. The system needs to decide that which

process to stop because it depends on that what loss

will be happen if it is stopped. Usually, there is no

rules fixed this but something the process that can be

reopened effortlessly and don't have any important

work is selected for termination.

VI. DEADLOCK SIDE-EFFECTS

Undesirable system condition in a same group are

also starvation and live lock. Both are considered as

derivatives of deadlock. Restricted the process, it has

the common attributes involved from making

progress. When some scheduling algorithm

determines the acquisition and utilization of

resources, starvation happens but there are some

processes that even though are not deadlock and

never acquired required resources so for that reason

making no progress. Live lock or busy-waiting

describe in a state that where a process is 'spinning'

forever waiting for a condition that not satisfied,

again blocking progress. Thus, the efforts to avoid

deadlock and starvation condition, the equity of

nation threatened. Impartiality indicates the process

that something has to executed and complete the

task. To accomplish this, the existence of arbitrary

planning scheduling ensure that all processes

executed within an acceptable time frame. The

solution to justice related problems is addressing

normal with the process prioritization handled by the

operating system with a specific algorithm.

CONCLUSION

Deadlock is a serious issue in operating systems

where processes compete for limited resources. It

can halt system operations if not properly managed.

This paper explained the conditions for deadlock and

outlined key strategies for handling it—prevention,

avoidance, detection, and recovery. Effective

deadlock management ensures better resource

utilization, system performance, and overall

reliability.

International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025

 Available at www.ijsred.com

ISSN: 2581-7175 ©IJSRED: All Rights are Reserved Page 1674

ACKNOWLEDGE

I really thankful and grateful to my Prof. Nisha

Pawar mam for continuous support and guidance and

I also thankful to my institute P.E.S of polytechnic

for providing resources and support in completing

this work.

REFERENCE

[1] Coffman E. G., Elphick M. J., Shoshani A. 1971.

System Deadlocks. ACM Computing Surveys. 3(2):

67–78.

https://dl.acm.org/doi/10.1145/356586.356588

[2] Dijkstra E. W. 1965. Cooperating Sequential

Processes. Technical Report EWD-123,

Technological University Eindhoven.

https://www.cs.utexas.edu/~EWD/transcriptions/E

WD01xx/EWD123-2.html

[3] Silberschatz A., Galvin P. B., Gagne G. 2018.

Operating System Concepts (10th ed.). Wiley.

https://www.wiley.com/enus/Operating%2BSystem

%2BConcepts%2C%2B10th%2BEdition-p-

9781119320913

[4] Dimitoglou G. 1998. Deadlocks and Methods for

their Detection, Prevention and Recovery in Modern

Operating Systems. ResearchGate. Available:

https://www.researchgate.net/publication/22062392

9

[5] Mohanty M., Kumara P. 2013. Deadlock

Prevention in Process Control Computer System.

International Journal of Computer Applications.

ICDCIT Special Issue.

https://ijcaonline.org/proceedings/icdcit/number1/1

0236-1003/

