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Abstract: 
            Explainable Artificial Intelligence (XAI) is vital for enabling trust, transparency, and accountability 

in medical decision support systems. This paper provides a conceptual survey of core XAI techniques—

such as LIME, SHAP, Integrated Gradients, Grad-CAM, counterfactual explanations, and concept 

activation—and analyzes their theoretical foundations, strengths, and limitations in healthcare settings. We 

further discuss major challenges unique to clinical deployment: explanation validation, human-AI 

interaction, trust calibration, and regulatory compliance. To guide researchers and practitioners, we 

propose a conceptual framework mapping XAI methods by clinical task (diagnosis, prognosis, treatment 

decision), data modality (tabular, imaging, multimodal), and explanation scope (local vs global). We 

conclude with recommendations for future work: benchmark datasets for explanation evaluation, 

multimodal interpretation, human‐centered studies, and integration with causal reasoning. 
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I.     INTRODUCTION 

Artificial Intelligence (AI) holds great promise 

in healthcare—ranging from medical image 

analysis (e.g. tumor detection, segmentation) to 

predictive models on electronic health records 

(EHRs) for disease risk or patient outcome 

forecasting. However, the “black-box” nature of 

many high-performance models (especially deep 

learning) poses a significant barrier to adoption 

in clinical settings, where decisions must be 

interpretable, auditable, and justifiable to 

medical experts and regulators. Explainable AI 

(XAI) aims to reconcile model complexity with 

human understanding by providing insights into 

why a model makes a particular decision or 

prediction. 

In healthcare, the stakes are high: erroneous or 

uninterpretable predictions can risk patient safety, 

raise legal liability, and erode clinician trust. Hence, 

explainability is not a luxury but a necessity. The 

demand for transparent models is reinforced by 

regulatory trends (e.g. GDPR’s “right to 

explanation,” FDA oversight of AI/ML in medical 

devices) and ethical imperatives of fairness and 

accountability. 

This paper seeks to provide a conceptual and 

technical overview of XAI methods applied to 

healthcare use-cases, highlighting their theoretical 

principles, suitability for different data modalities, 

and the unique challenges of clinical integration. 

We also propose a framework to guide selection 

and combination of XAI methods in healthcare 

settings. 

The rest of this paper is organized as follows: 

Section II reviews key XAI methods and their 

theoretical foundations. Section III discusses major 

challenges in medical deployment. Section IV 
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presents the proposed framework mapping XAI 

techniques by task, data type, and interpretability 

scope. Section V outlines comparative analysis and 

best practices. Section VI suggests future directions. 

Section VII concludes.    

METHODS OF EXPLAINABLE AI IN HEALTHCARE 

All paragraphs must be indented.  All paragraphs 

must be justified, i.e. both left-justified and right-

justified. 

There is a broad taxonomy of XAI methods; here 

we cover major classes that are relevant to medical 

applications: perturbation/surrogate-based, Shapley-

based, gradient / saliency-based, counterfactual / 

example-based, and concept-level / global methods. 

A. Perturbation / Surrogate-based Methods (e.g., 

LIME) 

LIME (Local Interpretable Model-Agnostic 

Explanations) is a popular approach that 

approximates the local decision boundary of a 

black-box model by sampling perturbed inputs and 

fitting an interpretable surrogate (e.g., linear model) 

weighted by proximity [4]. The coefficients of the 

surrogate model indicate feature importance locally. 

LIME is model-agnostic and works for tabular, text, 

or imaging features (after embedding). Its 

advantages include flexibility and ease of 

implementation. However, its fidelity is not 

guaranteed when the local decision boundary is 

highly nonlinear, and explanations may be unstable 

(different perturbations can yield different 

explanations). Also, it offers local explanations 

only, and lacks a global view of the model. 

B. Shapley-based Methods (SHAP) 

SHAP (SHapley Additive exPlanations) is based 

on cooperative game theory: every feature is 

assigned a Shapley value representing its average 

marginal contribution across all possible subsets [5]. 

SHAP defines an additive explanation model that 

decomposes the prediction into feature 

contributions summing to the output (plus a 

baseline). It offers strong axiomatic guarantees 

(local accuracy, consistency). Versions such as 

TreeSHAP, DeepSHAP optimize computations for 

tree ensembles or neural networks. In healthcare, 

SHAP is widely used for both local and aggregated 

global explanations, e.g. highlighting which 

biomarkers generally contribute most to risk 

predictions [6]. The main drawbacks are 

computational cost (exact Shapley is exponential) 

and the sensitivity to the choice of baseline or 

reference distribution. 
C. Gradient / Saliency-based Methods 

For differentiable models (especially neural 

networks), gradient-based explanations compute 

partial derivatives of output with respect to inputs. 

Some variants: 

Integrated Gradients (IG): Compute the path 

integral of gradients from a baseline input to the 

actual input [7]. This yields attributions satisfying 

completeness (sum equals model output difference). 

Guided Backpropagation / Saliency maps: Basic 

saliency uses the gradient magnitude; guided 

backprop suppresses negative flows to clean up 

maps. 

Grad-CAM / CAM: Originally for CNNs, Grad-

CAM computes gradients at last convolutional 

layers to generate class activation maps, 

highlighting spatial regions influencing prediction 

[8]. Grad-CAM is extensively used in medical 

imaging (MRI, CT, pathology) to show heatmaps of 

relevant structures [9]. 

These methods are efficient (one backward pass) 

and produce intuitive visual explanations. However, 

they face issues like noise, gradient saturation, 

sensitivity to baseline, and inability to explain non-

differentiable models. Also, explanations are local. 
D. Counterfactual and Example-Based Explanations 

Counterfactual explanations answer “what 

minimal perturbation would flip the model’s 

decision?” (e.g. “If glucose had been 10 mg/dL 

lower, the model would predict no diabetes”) [10]. 

These are intuitive and actionable. Generating valid 

counterfactuals under clinical constraints (e.g. 

realistic feature changes) is nontrivial. Prototype or 

example-based explanations instead point to similar 

instances (nearest neighbors) as reference points. 

Anchors extend LIME by building local rules that 

“anchor” the prediction robustly [11]. These 

methods are local, but conceptually compelling for 

clinicians. 
E. Concept-Level and Global Explanation Methods 

These methods provide higher-level explanations 

or global model insight. For example: 

TCAV (Testing with Concept Activation 

Vectors): Measures sensitivity of model class 
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output to user-defined human concepts (e.g. 

“texture of lesion”) [12]. 

Surrogate models / Rule extraction: Train a 

simpler interpretable model (e.g. decision tree, rule 

lists) approximating the black box; the surrogate 

gives a global interpretability perspective. 

Global SHAP summaries: Aggregate local SHAP 

values (mean absolute) across many instances to 

rank feature importance globally. 

These methods offer global interpretability, 

helpful for auditing, regulatory reporting, and 

understanding model trends. 

II.  CHALLENGES OF XAI IN HEALTHCARE 

Deploying XAI in clinical settings faces several 

domain-specific challenges: 

A. Trust and Clinical Validation 

Clinicians must trust that the provided 

explanation is faithful to the model logic and 

medically plausible. However, some 

explanations (e.g. saliency maps highlighting 

irrelevant regions) may mislead [13]. Without 

empirical evaluations (human-in-the-loop 

studies), trust remains weak. 

B. Evaluation of Explanations 

There is no consensus on metrics for explanation 

quality. Proposed metrics include faithfulness 

(does removing important features change 

predictions), infidelity, sensitivity, and stability. 

In medical domains, comparing explanations to 

known ground truth (e.g. annotated lesions) is 

possible only in certain imaging datasets [14]. 

Human evaluation (clinician scoring) is 

necessary but expensive. Some works examine 

using Delete-and-Retrain or Remove-and-

Retrain to test attribution fidelity [15]. 

C. Clinical Usability and Human-AI Interaction 

Explanations must be concise, intelligible, and 

integrated into workflow. Overly detailed 

explanations can overwhelm clinicians. The 

“human in the loop” paradigm is often necessary: 

experts can override or adjust AI suggestions 

[16]. Design of explanation UI (heatmaps, 

textual summaries) matters significantly. 

D. Data Complexity, Multimodality, and Model Scale 

Clinical data is often multimodal (EHR + 

imaging + genomics). Combining explanations 

across modalities is underexplored. Large 

models (e.g. multi-modal transformers) 

complicate explanation generation and make 

real-time explanation difficult. 

E. Ethical, Privacy, and Regulatory Constraints 

Explanations must not leak private data or 

violate patient confidentiality. Regulatory bodies 

like FDA and GDPR may require “meaningful 

explanations” for automated decisions. 

Explaining AI in a way that meets regulatory 

standards is nontrivial [3]. Also, incorrect 

explanations could lead to liability issues. 

IV. CONCEPTUAL FRAMEWORK FOR 

HEALTHCARE XAI 

We propose a three-axis framework to guide 

selection and evaluation of XAI methods in 

clinical contexts: 

Clinical Task / Use-Case (Diagnosis, Prognosis, 

Treatment) 

Data Modality (Tabular / Time-series, Imaging, 

Multimodal) 

V. COMPARATIVE INSIGHTS AND DISCUSSION 

Model-agnostic vs model-specific: SHAP / 

LIME are broadly applicable but may trade off 

fidelity; gradient-based methods exploit model 

structure with higher efficiency. 

Local vs global: Local explanations help 

individual decisions, while global methods aid 

model audit and regulatory transparency. Hybrid 

systems combining both are promising. 

Fidelity vs interpretability trade-off: Simpler 

explanations may not capture model intricacies; 

more faithful ones may be complex. Always 

validate explanations (e.g. via perturbation tests). 

Concept alignment: Explanations aligned to 

medical concepts (e.g. “edema,” “contrast 
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enhancement”) improve interpretability. 

Methods like TCAV help bridge this gap. 

Efficiency: Real-time clinical use demands fast 

explanation methods; gradient methods are 

advantageous, but scalable approximations of 

SHAP are beneficial. 

Human-centered design: Explanation UI, 

modality (text, visuals), and user training are 

critical but often under-studied in literature. 

VI. FUTURE DIRECTIONS 

Benchmark datasets with ground-truth 

explanations (e.g. annotated lesion maps, expert 

decision rationales) to enable objective 

evaluation of XAI. 

Multimodal explanation methods that unify EHR, 

imaging, genomics, and text. 

Hybrid models of built-in interpretability (self-

explainable architectures) that produce 

explanations inherently. 

Longitudinal clinical studies measuring how 

explanations influence clinician decisions, trust, 

and patient outcomes. 

Regulatory-aligned explanation frameworks: 

standardization of explanation documentation, 

certification, and compliance procedures. 

Causal and actionable explanations: integrate 

causal reasoning so that explanations suggest 

safe clinical interventions. 

VII. CONCLUSION 

     Explainable AI is essential for trustworthy and 

safe deployment of AI in healthcare. While 

many methods exist (LIME, SHAP, Grad-CAM, 

counterfactuals, concept-based), none is 

universally optimal. Clinically meaningful 

application requires tailoring explanation 

techniques to specific use-cases, data modalities, 

and interpretability needs. Our proposed 

framework helps structure this alignment. 

However, challenges remain in validating 

explanations, integrating them into clinical 

workflows, scaling to multimodal data, and 

meeting regulatory demands. Progress in 

benchmark datasets, human-centered evaluation, 

and hybrid interpretable models will be key to 

realizing XAI’s promise in medicine. 
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