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Abstract- By enabling cooperative model training on dispersed datasets without sharing raw data, Federated 

Learning (FL), a decentralized paradigm, guarantees adherence to privacy laws like the GDPR. Although FL 

reduces the hazards of centralized data disclosure, it introduces new vulnerabilities through parameter and 

gradient exchanges. While backdoors, Byzantine attacks, and poisoning are significant security dangers, 

inference-based approaches such as Deep Leakage from Gradients (DLG) present privacy risks. Secure multi-

party computation (SMC), homomorphic encryption (HE), differential privacy, and robust aggregation 

techniques are some of the countermeasures. Despite progress, there are still unanswered research questions 

for safe and scalable FL, such as data heterogeneity, privacy vs. model utility trade-offs, and protecting 

decentralized systems. 

 

I. Introduction: The Two-Sided Sword of 

Generative AI 

Large amounts of sensitive data are sent, stored, and 

processed using the classical Machine Learning 
(ML) paradigm, which is defined by centralized data 

gathering and computation. This poses serious 
confidentiality difficulties by nature. This 

framework has become unsustainable due to the 
pervasive nature of data breaches and the 

enforcement of legally binding constraints on data 
use and protection, such as the General Data 

Protection Regulation (GDPR) [1, 1].   
Federated Learning (FL), introduced as a distributed 

learning framework, provides a definitive solution 
[1, 1 FL allows multiple clients (participants) to 

collaboratively train a common global model. 
Crucially, the sensitive raw data remain strictly 

local, at the edge of the network, and are never 
shared. Only local model parameters or gradients 

are exchanged among collaborative agents and a 

central server (aggregator).  cyberattacks more 

sophisticated and widespread, resulting in a 

dynamic conflict where both sides use the same core 

technology. 

FL's primary selling point is its ability to facilitate 

high-performance model generalization while 

essentially advancing data privacy. Nevertheless, an 

open attack surface is produced by the constant 
swapping of model parameters. Adversarial 

techniques can introduce malicious updates to 
corrupt the model's availability and integrity, or they 

can mathematically infer private data points from 
these shared parameters, jeopardizing 

confidentiality. Successful FL system development 
is therefore inextricably linked to the provision of 

strong and verifiable security guarantees that meet 
the strict requirements of contemporary regulatory 

compliance as well as the high technical standards 
of machine learning efficacy.   

RESEARCH ARTICLE                                          OPEN ACCESS 



International Journal of Scientific Research and Engineering Development-– Volume 8 Issue 5, Sep-Oct 2025 

                          Available at www.ijsred.com 

 

ISSN: 2581-7175                               ©IJSRED: All Rights are Reserved                                                Page 1232 
    

 

II. Federated Learning Fundamentals and 

Taxonomy 

II.A. Fundamental Ideas and Enhancement 
Federated Learning creates a collaborative, iterative 

training process with N participants. 
The global objective function in FL is designed to 

minimize the aggregated loss g(θ) across all 
participating datasets Dn.     

Formally this minimization is expressed as:   

g(θ)=n∈N∑dmnF(Pn,θ), 
where mn is the size of the dataset Pn for participant 

n, d is the total size of all aggregated data, and F(Pn

,θ) is the local loss function. The Federated 

Averaging (FedAvg) algorithm is the foundational 

algorithm for centralized FL, involving four main 

steps: initialization, distributed local learning, 

parameter update, and central aggregation. 

 

 

 

   

II.B. Categorization of Federated Learning 

Architectures 

FL deployments are categorized based on the scale 

of participation, data partitioning, and network 

topology.   

 

1) Taxonomy by Data Partitioning (Data 

Composition) 
Horizontal FL (HFL): Datasets share the same 

feature space but have minimal overlap in samples 
(e.g., Cross-Device FL scenarios) [1, 1]. Clients 

train the exact same model architecture.   
Vertical FL (VFL): Datasets share a large overlap 

in samples (users) but differ significantly in features 
(e.g., collaboration between organizations) [1, 

1].For collaborative model building, VFL usually 
requires homomorphic encryption.   

Federated Transfer Learning (FTL): Utilizes 
knowledge transfer techniques and is used when 

sample and feature overlap is minimal [1, 1]. 
 

2) Taxonomy by Scale and Topology 

Cross-Device FL (CDFL): Consists of a vast 

number of IoT devices or mobile terminals with 

limited resources. Communication snags and client 

instability are important traits. Statistical privacy 

techniques like Differential Privacy are preferred 

due to resource constraints [1, 1].   

Cross-Silo FL (CSFL): Customers are data centers 

or organizations with a lot of resources, few in 

number, and stable [1, 1]. The high computational 

cost of robust cryptographic techniques (SMC or 

HE) is justified in this context.   

Centralized FL (CFL): The typical topology in 

which all participants are coordinated by a central 

server. The aggregator's single point of failure is the 

main weakness.   

Decentralized FL (DFL): Participants 
communicate directly with one another, eliminating 

the need for a central authority. This increases the 
security surface while removing the central 

bottleneck.  
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III. Security and Privacy Threats in FL 

Ecosystems 

Threats in FL are classified by the actor (Aggregator 

or Participant) and their objective 

(integrity/availability or confidentiality) [1, 1]. 

Adversaries are generally classified as Semi-honest 

(passive eavesdropping) or Malicious (active 

deviation and tampering).  
 

III.A. Aggregator-Initiated Attacks 

(Confidentiality) 

A malicious or semi-honest aggregator, due to its 
global view, poses a high-impact confidentiality 

threat. 

• Deep Leakage from Gradients (DLG): 

This is the most critical privacy threat, 

capable of reconstructing sensitive raw data 

[1, 1]. The adversary minimizes the distance 

loss between a dummy gradient and the 

victim's true uploaded gradient, accurately 

reconstructing the original training sample. 
This demonstrates that parameter sharing is 

sufficient for reconstructing private raw 
data.   

• Attacks Based on Generative Adversarial 

Networks (GANs): These attacks train a 

GAN generator to function as a decoder that 
reverses the model updates, using advanced 

generative modeling to reconstruct realistic 
training data.  

 
III.B. Attacks Started by Participants (Integrity 

and Confidentiality) 

Attacks by malicious participants can target the 
confidentiality of other participants' data (privacy) 

or the integrity of the model (security) 
Poisoning Attacks (Integrity/Availability): These 

aim to undermine the integrity of the global model, 
leading to prediction failures. They are major 

security threats.   

• Data Poisoning: Introducing rigged or 

mislabeled data into the local training 
dataset to bias the global model [1, 1]. 

• Model Poisoning: Directly manipulating 

model parameters or gradients before 
uploading them.   

• Membership Inference Attacks (MIA): 

Attempting to determine if a specific data 

record was part of a targeted client's training 

set.   

• Property Inference Attacks (PIA): 

Aiming to extract valuable properties or 

attributes about the training data irrelevant 

to the main FL task. 

 

IV. Privacy-Preserving and Security 

Countermeasures 

The defense landscape combines mathematical, 

cryptographic, and architectural strategies, all 

navigating the trade-off between utility (accuracy), 

computation cost, and communication overhead.   

 

IV.A. Cryptographic Methods (Confidentiality) 

These methods provide information-theoretic 

confidentiality, ensuring data or model updates 
remain private during computation, suitable for 

resource-rich CSFL environments. 
SMC, or secure multi-party computation, is made 

possible by protocols like pairwise masking and 
secret sharing that allow for joint computation on 

private inputs without disclosing individual 
contributions to the aggregator or any other party. 

The primary drawback is the high overhead of 
communication, which increases exponentially with 

the number of participants.   
Calculations can be performed directly on encrypted 

data (ciphertext) thanks to homomorphic encryption 
(HE). Data breaches are avoided by using additive 
HE (such as Paillier) to conceal local gradient 

updates during aggregation.  
 

IV.B. Techniques for Robustness (Availability 

and Integrity) 

These methods protect model integrity from 
Byzantine attacks and poisoning.   

Aggregation with Byzantine Resilience: 

Techniques that adapt the aggregation process to 

accept arbitrary inputs include: 
Krum: Implicitly eliminates extreme outliers by 

choosing the local model update that is closest to its 
nearest neighbors.   
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Coordinate-wise Median/Trimmed Mean: These 

techniques improve robustness against arbitrary 

outliers by calculating the median or eliminating 

extreme parameter contributions prior to 

averaging.   

 

IV.C. Architectural and Hardware Defenses 

Blockchain Integration (BlockFL): Replaces or 
supplements the central aggregator with a 

decentralized ledger [1, 1]. This provides tamper-
proof storage, verifies model updates, and manages 

incentives. 
Trusted Execution Environments (TEEs): Rely 

on hardware separation (e.g., Intel SGX) to create a 
secure, isolated environment, guaranteeing 

confidentiality of loaded data and integrity of code 
execution. TEEs can be used for secure aggregation 

or local training [1, 1]. They are constrained by a 
small secure memory (Trusted Computing Base or 

TCB), limiting their use for training large DNN 
models [1, 1].   

 
V. Challenges and Future Directions 

The secure deployment of FL is hindered by 

persistent, multi-faceted challenges. 

V.A. The Tripartite Trade-off: Utility, Privacy, 

and Cost 

The fundamental conflict between model 

performance (utility), privacy strength, and resource 

consumption (cost) remains the greatest barrier [1, 

1]. Implementing stronger privacy inevitably leads 

to diminished model utility or soaring costs.  

 

V.B. Data Heterogeneity and Convergence Non-

IID data distribution is a core characteristic of real-

world FL that aggravates learning bias and degrades 

model performance [1, 1]. This challenges 

traditional robust aggregation methods. 
V.C. Personalized Federated Learning (PFL), 

moving beyond the single-global-model paradigm 
to allow clients to train personalized local models or 

grouping clients with similar behaviors.   
V.D. Security in Decentralized FL (DFL) 

 DFL solves the single-point-of-failure but expands 
the attack surface for backdoor insertion and model 

poisoning. The solution lies in robust  .   

 

VI. Conclusion 

Federated Learning represents a vital paradigm 

shift, circumventing the privacy and communication 

constraints inherent in centralized architectures [1, 

1]. However, the reliance on exchanging model 

parameters introduces novel and severe adversarial 

vulnerabilities. The most serious risks to model 
integrity and confidentiality are inference-based 

attacks such as DLG and active malicious 
manipulation through poisoning and Byzantine 

attacks [1, 1, 1].   
A complex, hybrid defense posture is necessary for 

effective mitigation. Differential privacy offers the 
required statistical guarantees in resource-

constrained settings, while cryptographic 
techniques (SMC and HE) provide the strongest 

information-theoretic protection for resource-rich 
environments [1, 1].  

Byzantine-resilient aggregation (Krum) and 
proactive anomaly detection are used to achieve 

robustness. Future secure scalability requires that 
the persistent non-IID data problem be addressed by 

personalized FL models, that the intrinsic resource 

constraints of edge devices (TEEs) be addressed, 

and that transparent, auditable trust management 

systems be established through blockchain 

integration [1, 1].   
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