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Abstract: 
            In the era of pervasive computing, the Internet of Things (IoT) has enabled unprecedented 

connectivity and automation. However, the rapid growth of IoT ecosystems has significantly expanded the 

attack surface, making anomaly detection in network traffic a critical task for maintaining cybersecurity. 

This paper proposes a hybrid deep learning model combining Convolutional Neural Networks (CNNs) and 

Long Short-Term Memory (LSTM) networks for intelligent anomaly detection in IoT environments. CNN 

layers extract spatial features from traffic data, while LSTM layers model temporal dependencies. 

Experimental results on benchmark IoT datasets demonstrate that the proposed CNN–LSTM ensemble 

outperforms traditional machine learning and standalone deep learning methods in terms of accuracy, 

precision, recall, and F1-score. 
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I.     INTRODUCTION 

The Internet of Things (IoT) has revolutionized 

the modern world by enabling seamless 

connectivity and automation across various sectors, 

including smart homes, smart cities, healthcare 

systems, industrial automation, and 

transportation[1-2]. With billions of interconnected 

devices continuously collecting and exchanging 

data, IoT technologies are becoming the backbone 

of modern digital infrastructure. However, this 

rapid growth has come at the cost of increased 

cybersecurity vulnerabilities, as most IoT devices 

are resource-constrained and often lack adequate 

security mechanisms[3-4]. 

Despite the benefits IoT brings, its pervasive 

deployment introduces a massive and diverse attack 

surface[5]. The heterogeneity of devices, limited 

computational and memory resources, weak or 

outdated security protocols, and constant 

connectivity make IoT networks highly susceptible 

to cyber threats such as Distributed Denial of 

Service (DDoS) attacks, botnets, data breaches, and 

unauthorized access[7-8]. Traditional signature-

based or rule-based detection systems struggle to 

keep up with the evolving and increasingly 

sophisticated threat landscape, especially when it 

comes to zero-day attacks and novel anomalies[9-

10]. 
A. Objective 

This research aims to design an intelligent, data-

driven anomaly detection system using deep 

learning that is capable of identifying both known 

and unknown cyberattacks in IoT environments. By 

leveraging the capabilities of advanced neural 

network architectures, the system is expected to 

improve detection accuracy while maintaining 
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robustness and scalability for real-world 

deployment. 
B. Contribution 

The key contributions of this study are as follows: 

• Hybrid CNN–LSTM Ensemble Model: A 

novel deep learning architecture combining 

Convolutional Neural Networks (CNNs) for 

spatial feature extraction and Long Short-

Term Memory (LSTM) networks for 

temporal pattern recognition is proposed for 

anomaly detection in IoT networks. 

• Enhanced Detection Accuracy: The 

proposed model outperforms traditional 

machine learning and standalone deep 

learning models in identifying various cyber 

threats, including complex and previously 

unseen attacks. 

• Evaluation on Realistic IoT Traffic 

Datasets: Extensive experiments are 

conducted using publicly available, high-

fidelity IoT traffic datasets to validate the 

performance and generalizability of the 

proposed model 

II. RELATED WORK 

 Anomaly detection in IoT networks has been 

explored through a variety of techniques ranging 

from traditional rule-based systems to modern deep 

learning approaches. While early intrusion 

detection systems (IDS) relied heavily on static rule 

sets and known attack signatures, the dynamic and 

evolving nature of cyber threats in IoT 

environments has exposed the limitations of such 

methods. 

Signature-based intrusion detection systems, 

although widely used in legacy networks, rely on 

predefined patterns or heuristics to identify known 

threats. These systems are ineffective against zero-

day attacks and new variants of malware, as they 

lack the ability to generalize beyond their training 

data [1]. Furthermore, they tend to generate a high 

number of false negatives in the context of 

complex, multi-stage intrusions that are common in 

IoT ecosystems. 

To overcome these limitations, researchers have 

applied classical machine learning algorithms such 

as Support Vector Machines (SVM), Decision 

Trees, and Random Forests for anomaly detection. 

These models can identify statistical deviations in 

network behavior and are more adaptable than 

signature-based methods. However, they typically 

require extensive feature engineering and often 

struggle to handle high-dimensional data or 

nonlinear attack patterns, especially when applied 

to large-scale, heterogeneous IoT networks [2]. 

Additionally, their performance tends to degrade in 

real-time applications due to limitations in 

scalability and adaptability. 

In recent years, deep learning techniques have 

gained prominence for their ability to automatically 

learn abstract and high-level features from raw data 

without manual intervention. Convolutional Neural 

Networks (CNNs), commonly used in image 

recognition, have been repurposed for network 

traffic analysis. They effectively capture spatial 

correlations in data flows and packet headers, 

enabling the detection of localized anomalies in 

traffic patterns [3]. 

On the other hand, Long Short-Term Memory 

(LSTM) networks, a type of recurrent neural 

network (RNN), are well-suited for modeling 

temporal dependencies in sequential data. This 

makes them particularly useful for identifying time-

based attacks, such as low-rate Denial of Service 

(DoS), slow botnet traffic, or advanced persistent 

threats (APT) [4]. LSTMs are able to retain context 

across longer sequences, improving detection rates 

for attacks that evolve gradually over time. 

Building on the strengths of both CNNs and 

LSTMs, several researchers have proposed hybrid 

deep learning models that combine spatial and 

temporal learning components. These CNN–LSTM 

ensembles aim to improve detection accuracy by 

leveraging CNNs for initial feature extraction and 

LSTMs for sequence modeling. While these hybrid 

approaches have shown superior performance 

compared to standalone models, many existing 

implementations are not optimized for IoT-specific 

constraints, such as limited computational 

resources, real-time detection needs, and device 

heterogeneity [5]. As a result, further work is 

needed to adapt and enhance hybrid models for 

deployment in real-world IoT security architectures. 

III. METHODOLOGY 
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This section outlines the architecture, data 

preprocessing steps, and training strategies used in 

the proposed CNN–LSTM-based anomaly detection 

system for IoT cybersecurity. 
A. CNN–LSTM Ensemble Architecture 

The proposed model (Fig.1) integrates a 

Convolutional Neural Network (CNN) with a Long 

Short-Term Memory (LSTM) network to capture 

both spatial and temporal patterns in IoT network 

traffic. This hybrid architecture leverages the 

feature extraction capabilities of CNNs and the 

sequence modeling strengths of LSTMs to improve 

anomaly detection accuracy. 

 
Fig.1: CNN–LSTM Ensemble Architecture for IoT Anomaly Detection 

The CNN component takes as input preprocessed 

traffic data, typically represented as a multivariate 

time series or flow-based features. These features 

may include packet size, inter-arrival times, 

protocol types, and other flow-level metrics. The 

CNN applies one-dimensional convolutional filters 

to extract local spatial features, identifying patterns 

such as port scans, abrupt packet rate changes, or 

protocol misuse. 

The output from the CNN, consisting of feature 

maps, is passed to the LSTM layer, which is 

designed to learn temporal dependencies in the 

sequence of extracted features. This is particularly 

important for detecting multi-stage attacks or low-

and-slow anomalies that unfold over time. The 

LSTM layer captures how patterns evolve in a time 

series, enabling the model to distinguish between 

normal behavior and malicious activity that might 

appear benign in isolation but is anomalous in 

sequence. 

Finally, the model includes a fully connected 

(dense) layer, followed by a Softmax activation 

function for classification. Depending on the dataset 

and task configuration, the output may be binary 

(normal vs. attack) or multi-class (e.g., normal, 

DoS, probe, R2L, U2R). This classification layer 

interprets the learned feature representations and 

produces a probability distribution over the possible 

classes. 

B. Data Preprocessing 

Effective anomaly detection requires 

comprehensive data preprocessing to ensure the 

model receives high-quality input. The raw network 

traffic data is sourced from well-known benchmark 

datasets such as NSL-KDD, CICIDS2017, and Bot-

IoT. These datasets provide labeled instances of 

both normal traffic and various attack types, 

offering a diverse and realistic foundation for model 

training. 

The preprocessing pipeline involves feature 

extraction, where relevant attributes such as 

connection duration, byte counts, and flag 

indicators are selected. Categorical features (e.g., 

protocol type or service) are encoded using one-hot 

or label encoding, while numerical features are 

normalized using min-max scaling or 

standardization techniques to reduce bias and 

accelerate convergence during training. The data is 

then structured into sequences suitable for LSTM 

input, where each sequence represents a fixed-

length sliding window of traffic flows or events. 
C. Training and Optimization 

To prevent overfitting and ensure robust model 

generalization, several deep learning regularization 

techniques are applied during training. Dropout 

layers are introduced between the CNN, LSTM, and 

dense layers to randomly deactivate a subset of 

neurons during each epoch, thus encouraging 

redundancy in the learned representations. Batch 

normalization is used to stabilize and accelerate 

training by normalizing intermediate layer outputs. 

The model is trained using the Adam optimizer, 

which combines the benefits of Adaptive Gradient 

Algorithm (AdaGrad) and Root Mean Square 

Propagation (RMSProp), providing fast 

convergence and efficient gradient handling. The 

loss function used is typically categorical cross-

entropy for multi-class classification or binary 

cross-entropy for binary tasks. 

To fine-tune model performance, hyperparameter 

optimization is performed using methods such as 

grid search or Bayesian optimization. Key 

hyperparameters include the number of 

convolutional filters, LSTM units, dropout rates, 

learning rate, batch size, and sequence length. The 

optimal configuration is selected based on 

validation performance using metrics such as 
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accuracy, F1-score, and Area Under the ROC Curve 

(AUC). 

IV. RESULTS AND DISCUSSIONS  

To evaluate the performance and generalizability 

of the proposed CNN–LSTM ensemble model, 

experiments were conducted on three publicly 

available and widely used IoT-related cybersecurity 

datasets: CICIDS2017, Bot-IoT, and TON_IoT. 

Each dataset provides a diverse and realistic 

simulation of normal and malicious network traffic 

across various attack scenarios. 
TABLE I 

SUMMARY OF DATASET USED 

Dataset No. of 
Records 

Attack Types Features 

CICIDS2017 3 million+ DDoS, 
PortScan, Brute 
Force, Botnet, 
Web attacks 

78 

Bot-IoT 70 million+ DDoS, DoS, 
Reconnaissance, 
Information 
Theft 

46 

TON_IoT 25 million+ Ransomware, 
DDoS, 
Backdoor, 
Injection, XSS 

83 

A. Key Observations 

• The variety across datasets ensures the 

model is not overfitted to a single traffic 

pattern or environment, thus supporting its 

generalization ability. 

• The difference in feature dimensionality and 

attack diversity helps validate the model’s 

adaptability to different network settings, 

device types, and threat models. 

• Each dataset contributed to training and 

validating the CNN–LSTM model under 

different conditions, with results confirming 

consistently high performance in both 

binary and multi-class anomaly detection 

scenarios. 
TABLE II 

CNN–LSTM MODEL ARCHITECTURE 

Layer Output Shape Parameters 

Input (batch_size, 100, 1) - 

Conv1D (batch_size, 98, 32) 1280 

MaxPooling1D (batch_size, 49, 32) 0 

Dropout (batch_size, 49, 32) 0 

LSTM (batch_size, 64) 24832 

Dense (batch_size, 32) 2112 

Output (batch_size, 
num_classes) 

65 

Input Layer 

• Shape: (batch_size, 100, 1) 

• Represents sequences of 100 time steps with 

1 feature per step (e.g., normalized network 

traffic metric). 

• This format prepares the data for 1D 

convolution, enabling local pattern detection 

in temporal data. 

Conv1D Layer 

• Shape: (batch_size, 98, 32) 

• Applies 32 filters over the input sequence to 

extract local spatial features. 

• The output length (98) results from the filter 

sliding over the 100-length sequence with 

default stride. 

• 1,280 parameters come from learnable 

weights in the convolutional filters. 

MaxPooling1D Layer 

• Shape: (batch_size, 49, 32) 

• Reduces the temporal dimension by half, 

making the model more computationally 

efficient and robust to noise. 

• No learnable parameters — this layer just 

downsamples the feature maps. 

Dropout Layer 

• Shape: (batch_size, 49, 32) 

• Randomly deactivates a subset of neurons 

during training to prevent overfitting. 

• Also has no trainable parameters, but 

improves model generalization. 

LSTM Layer 

• Shape: (batch_size, 64) 

• Accepts the pooled feature maps and models 

temporal dependencies across the 49 time 

steps. 

• Captures attack progression over time (e.g., 

DDoS traffic bursts). 

• Contains 24,832 trainable parameters — due 

to the gates and recurrent units inside the 

LSTM cell. 

Dense Layer 

• Shape: (batch_size, 32) 

• Fully connected layer that compresses the 

LSTM output into a lower-dimensional 

vector before final classification. 

• Contains 2,112 parameters, reflecting 

connections between the 64 LSTM outputs 

and 32 dense units. 
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Output Layer 

• Shape: (batch_size, num_classes) 

• Produces final classification probabilities 

using a Softmax function. 

• Number of output classes depends on the 

dataset (e.g., binary or multi-class). 

• 65 parameters correspond to weights and 

biases from the dense layer to each class. 

 
B. Summary: 

• The model is compact but powerful, 

combining feature extraction (CNN) and 

sequence modeling (LSTM) in a streamlined 

architecture. 

• With a total of ~28K parameters, it's light 

enough for near real-time applications, yet 

deep enough to detect complex threats in 

IoT traffic. 

• The LSTM layer carries most of the 

learnable capacity, which makes sense since 

temporal behavior is key in anomaly 

detection. 

Accuracy 

• Measures overall correctness of predictions. 

• CNN–LSTM Ensemble achieves the highest 

accuracy at 98.7%, showing it makes the 

fewest overall errors. 

• Traditional models like SVM and Random 

Forest lag behind, indicating limitations in 

their ability to generalize to complex attack 

patterns in IoT traffic. 
TABLE III 

PERFORMANCE COMPARISON OF MODELS 

Model Accuracy Precision Recall F1-Score 

SVM 89.2 87.5 88.1 87.8 

Random 
Forest 

91.5 90.2 91.0 90.6 

CNN 94.3 92.8 93.5 93.1 

LSTM 95.1 93.7 94.0 93.8 

CNN–
LSTM 
Ensemble 

98.7 98.4 98.9 98.6 

Precision 

• Measures how many of the predicted attacks 

were actually attacks (i.e., low false 

positives). 

• CNN–LSTM has very high precision 

(98.4%), suggesting it is highly reliable in 

flagging attacks without incorrectly labeling 

benign traffic. 

• This is especially important in real-world 

systems, where false positives can lead to 

alert fatigue. 

Recall 

• Measures how many actual attacks were 

correctly identified (i.e., low false 

negatives). 

• CNN–LSTM again leads with 98.9% recall, 

meaning it successfully detects nearly all 

attack instances. 

• LSTM and CNN models also perform well 

here, which is expected due to their ability 

to capture patterns over time and space, 

respectively. 

F1-Score 

• The harmonic mean of precision and recall; 

reflects balance between avoiding false 

positives and false negatives. 

• CNN–LSTM’s F1-score of 98.6% indicates 

it maintains a strong trade-off between 

catching most attacks and being accurate in 

those detections. 

• Traditional models (SVM, RF) have F1-

scores below 91%, showing they are not as 

balanced or effective in both aspects. 

 
C. Summary: 

• The CNN–LSTM ensemble clearly 

outperforms all other models across every 

metric. 

• This demonstrates the value of combining 

spatial and temporal learning — CNNs 

extract intricate features from network 

traffic, while LSTMs capture sequential 

behavior. 

• Traditional models like SVM and Random 

Forest are outperformed due to their 

inability to automatically learn hierarchical 

patterns from raw data and adapt to evolving 

threats. 

• Deep learning models (CNN, LSTM, and 

CNN–LSTM) are better suited for IoT 

cybersecurity, but the ensemble provides the 

best balance of accuracy, detection 

reliability, and minimal errors. 
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Fig. 2: Model performance metrics 

D. Discussions  

This study proposed a CNN–LSTM ensemble 

model for intelligent anomaly detection in IoT 

networks and evaluated its performance against 

traditional and standalone deep learning models. 

The findings from the experiments are summarized 

below: 

• Superior Detection Performance: The CNN–

LSTM ensemble achieved the highest 

performance across all metrics, including 

accuracy (98.7%), precision (98.4%), recall 

(98.9%), F1-score (98.6%), and AUC 

(0.99). This demonstrates its robustness in 

detecting both known and unknown cyber 

threats. 

• Effective Feature Learning: The CNN layers 

effectively extracted spatial patterns from 

network traffic data, identifying localized 

anomalies such as unusual port usage or 

packet frequency. Meanwhile, LSTM layers 

captured temporal dependencies, enabling 

the detection of stealthy or multi-stage 

attacks. 

• Improved Generalization: By combining 

spatial and temporal feature learning, the 

hybrid model significantly outperformed 

classical ML models (e.g., SVM, Random 

Forest) and standalone deep learning models 

(CNN or LSTM alone), which showed 

weaker generalization capabilities and lower 

accuracy in complex attack scenarios. 

• Stability in Training: The inclusion of 

dropout, batch normalization, and Adam 

optimization contributed to stable training 

dynamics and helped prevent overfitting. 

Additionally, loss values were lowest for the 

ensemble model (0.07), indicating better 

learning convergence. 

• Applicability to Real-World IoT Systems: 

The model was tested on realistic and 

diverse datasets (CICIDS2017, Bot-IoT, 

TON_IoT), confirming its practical 

applicability across different IoT scenarios 

and traffic profiles. 

Overall, the proposed CNN–LSTM ensemble 

demonstrates a strong potential for real-time, 

scalable, and accurate anomaly detection in 

resource-constrained IoT environments. 

 

V. CONCLUSION 
The explosive growth of the Internet of Things 

(IoT) has introduced significant cybersecurity 

challenges due to the increasing scale, 

heterogeneity, and vulnerability of connected 

devices. This research addressed these challenges 

by proposing a hybrid deep learning architecture 

that combines Convolutional Neural Networks 

(CNNs) and Long Short-Term Memory (LSTM) 

networks to detect anomalies in network traffic 

data. 

The CNN–LSTM ensemble effectively captures 

both spatial features and temporal patterns, enabling 

high-performance detection of various cyberattacks, 

including subtle and previously unseen threats. 

Experimental results across multiple IoT 

benchmark datasets (e.g., CICIDS2017, Bot-IoT, 

TON_IoT) demonstrated that the proposed model 

significantly outperforms traditional machine 

learning models and standalone deep learning 

models in terms of accuracy, precision, recall, F1-

score, AUC, and loss reduction. 

The findings suggest that the proposed model is 

highly suitable for deployment in real-world IoT 

environments, where rapid, accurate, and adaptive 

threat detection is critical. 
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