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Abstract:

In the era of pervasive computing, the Internet of Things (IoT) has enabled unprecedented
connectivity and automation. However, the rapid growth of 10T ecosystems has significantly expanded the
attack surface, making anomaly detection in network traffic a critical task for maintaining cybersecurity.
This paper proposes a hybrid deep learning model combining Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) networks for intelligent anomaly detection in IoT environments. CNN
layers extract spatial features from traffic data, while LSTM layers model temporal dependencies.
Experimental results on benchmark IoT datasets demonstrate that the proposed CNN-LSTM ensemble
outperforms traditional machine learning and standalone deep learning methods in terms of accuracy,
precision, recall, and F1-score.
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outdated security protocols, and constant
connectivity make IoT networks highly susceptible
to cyber threats such as Distributed Denial of
Service (DDoS) attacks, botnets, data breaches, and
unauthorized access[7-8]. Traditional signature-

I. INTRODUCTION

The Internet of Things (IoT) has revolutionized
the modern world by enabling seamless
connectivity and automation across various sectors,

including smart homes, smart cities, healthcare
systems, industrial automation, and
transportation[ 1-2]. With billions of interconnected
devices continuously collecting and exchanging
data, IoT technologies are becoming the backbone
of modern digital infrastructure. However, this
rapid growth has come at the cost of increased
cybersecurity vulnerabilities, as most IoT devices
are resource-constrained and often lack adequate
security mechanisms[3-4].

Despite the benefits IoT brings, its pervasive
deployment introduces a massive and diverse attack
surface[5]. The heterogeneity of devices, limited
computational and memory resources, weak or

based or rule-based detection systems struggle to
keep up with the evolving and increasingly
sophisticated threat landscape, especially when it
comes to zero-day attacks and novel anomalies[9-
10].
A. Objective

This research aims to design an intelligent, data-
driven anomaly detection system using deep
learning that is capable of identifying both known
and unknown cyberattacks in IoT environments. By
leveraging the capabilities of advanced neural
network architectures, the system is expected to
improve detection accuracy while maintaining
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robustness  and

deployment.
B. Contribution
The key contributions of this study are as follows:

e Hybrid CNN-LSTM Ensemble Model: A
novel deep learning architecture combining
Convolutional Neural Networks (CNNs) for
spatial feature extraction and Long Short-
Term Memory (LSTM) networks for
temporal pattern recognition is proposed for
anomaly detection in IoT networks.

e Enhanced Detection Accuracy: The
proposed model outperforms traditional
machine learning and standalone deep
learning models in identifying various cyber
threats, including complex and previously
unseen attacks.

e Evaluation on Realistic [oT Traffic
Datasets:  Extensive  experiments are
conducted using publicly available, high-
fidelity IoT traffic datasets to validate the
performance and generalizability of the
proposed model

scalability  for real-world

II. RELATED WORK

Anomaly detection in IoT networks has been
explored through a variety of techniques ranging
from traditional rule-based systems to modern deep
learning approaches. While early intrusion
detection systems (IDS) relied heavily on static rule
sets and known attack signatures, the dynamic and
evolving nature of cyber threats in IoT
environments has exposed the limitations of such
methods.

Signature-based intrusion  detection  systems,
although widely used in legacy networks, rely on
predefined patterns or heuristics to identify known
threats. These systems are ineffective against zero-
day attacks and new variants of malware, as they
lack the ability to generalize beyond their training
data [1]. Furthermore, they tend to generate a high
number of false negatives in the context of
complex, multi-stage intrusions that are common in
IoT ecosystems.

To overcome these limitations, researchers have
applied classical machine learning algorithms such
as Support Vector Machines (SVM), Decision
Trees, and Random Forests for anomaly detection.
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These models can identify statistical deviations in
network behavior and are more adaptable than
signature-based methods. However, they typically
require extensive feature engineering and often
struggle to handle high-dimensional data or
nonlinear attack patterns, especially when applied
to large-scale, heterogeneous IoT networks [2].
Additionally, their performance tends to degrade in
real-time applications due to limitations in
scalability and adaptability.

In recent years, deep learning techniques have
gained prominence for their ability to automatically
learn abstract and high-level features from raw data
without manual intervention. Convolutional Neural
Networks (CNNs), commonly used in image
recognition, have been repurposed for network
traffic analysis. They effectively capture spatial
correlations in data flows and packet headers,
enabling the detection of localized anomalies in
traffic patterns [3].

On the other hand, Long Short-Term Memory
(LSTM) networks, a type of recurrent neural
network (RNN), are well-suited for modeling
temporal dependencies in sequential data. This
makes them particularly useful for identifying time-
based attacks, such as low-rate Denial of Service
(DoS), slow botnet traffic, or advanced persistent
threats (APT) [4]. LSTMs are able to retain context
across longer sequences, improving detection rates
for attacks that evolve gradually over time.

Building on the strengths of both CNNs and
LSTMs, several researchers have proposed hybrid
deep learning models that combine spatial and
temporal learning components. These CNN-LSTM
ensembles aim to improve detection accuracy by
leveraging CNNs for initial feature extraction and
LSTMs for sequence modeling. While these hybrid
approaches have shown superior performance
compared to standalone models, many existing
implementations are not optimized for IoT-specific
constraints, such as limited computational
resources, real-time detection needs, and device
heterogeneity [5]. As a result, further work is
needed to adapt and enhance hybrid models for
deployment in real-world IoT security architectures.

111. METHODOLOGY

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 3091



International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 2, Mar-Apr 2025

This section outlines the architecture, data
preprocessing steps, and training strategies used in
the proposed CNN-LSTM-based anomaly detection
system for [oT cybersecurity.

A. CNN-LSTM Ensemble Architecture

The proposed model (Fig.1) integrates a
Convolutional Neural Network (CNN) with a Long
Short-Term Memory (LSTM) network to capture
both spatial and temporal patterns in IoT network
traffic. This hybrid architecture leverages the
feature extraction capabilities of CNNs and the
sequence modeling strengths of LSTMs to improve
anomaly detection accuracy.

Input Conv1D

MaxPooling10
(100x1) (98x32) (49x32)

Dropout LsTM Dense Output
(49x32) (64) (32) um

Fig.1: CNN-LSTM Ensemble Architecture for IoT Anomaly Detection
The CNN component takes as input preprocessed
traffic data, typically represented as a multivariate
time series or flow-based features. These features
may include packet size, inter-arrival times,
protocol types, and other flow-level metrics. The
CNN applies one-dimensional convolutional filters
to extract local spatial features, identifying patterns
such as port scans, abrupt packet rate changes, or
protocol misuse.

The output from the CNN, consisting of feature
maps, is passed to the LSTM layer, which is
designed to learn temporal dependencies in the
sequence of extracted features. This is particularly
important for detecting multi-stage attacks or low-
and-slow anomalies that unfold over time. The
LSTM layer captures how patterns evolve in a time
series, enabling the model to distinguish between
normal behavior and malicious activity that might
appear benign in isolation but is anomalous in
sequence.

Finally, the model includes a fully connected
(dense) layer, followed by a Softmax activation
function for classification. Depending on the dataset
and task configuration, the output may be binary
(normal vs. attack) or multi-class (e.g., normal,
DoS, probe, R2L, U2R). This classification layer
interprets the learned feature representations and
produces a probability distribution over the possible
classes.
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B. Data Preprocessing
Effective anomaly detection requires
comprehensive data preprocessing to ensure the
model receives high-quality input. The raw network
traffic data is sourced from well-known benchmark
datasets such as NSL-KDD, CICIDS2017, and Bot-
IoT. These datasets provide labeled instances of
both normal traffic and various attack types,
offering a diverse and realistic foundation for model

training.

The preprocessing pipeline involves feature
extraction, where relevant attributes such as
connection duration, byte counts, and flag

indicators are selected. Categorical features (e.g.,
protocol type or service) are encoded using one-hot
or label encoding, while numerical features are
normalized  using  min-max scaling  or
standardization techniques to reduce bias and
accelerate convergence during training. The data is
then structured into sequences suitable for LSTM
input, where each sequence represents a fixed-
length sliding window of traffic flows or events.

C. Training and Optimization
To prevent overfitting and ensure robust model
generalization, several deep learning regularization
techniques are applied during training. Dropout
layers are introduced between the CNN, LSTM, and
dense layers to randomly deactivate a subset of
neurons during each epoch, thus encouraging
redundancy in the learned representations. Batch
normalization is used to stabilize and accelerate
training by normalizing intermediate layer outputs.
The model is trained using the Adam optimizer,
which combines the benefits of Adaptive Gradient
Algorithm (AdaGrad) and Root Mean Square
Propagation (RMSProp), providing fast
convergence and efficient gradient handling. The
loss function used is typically categorical cross-
entropy for multi-class classification or binary
cross-entropy for binary tasks.
To fine-tune model performance, hyperparameter
optimization is performed using methods such as
grid search or Bayesian optimization. Key
hyperparameters  include the number of
convolutional filters, LSTM units, dropout rates,
learning rate, batch size, and sequence length. The
optimal configuration 1is selected based on
validation performance using metrics such as
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accuracy, Fl-score, and Area Under the ROC Curve
(AUC).
IVv. RESULTS AND DISCUSSIONS

To evaluate the performance and generalizability
of the proposed CNN-LSTM ensemble model,
experiments were conducted on three publicly
available and widely used IoT-related cybersecurity
datasets: CICIDS2017, Bot-IoT, and TON_IoT.
Each dataset provides a diverse and realistic
simulation of normal and malicious network traffic

across various attack scenarios.
TABLE I
SUMMARY OF DATASET USED

No. of Attack Types
Records
3 million+

Dataset Features

CICIDS2017 DDoS, 78
PortScan, Brute
Force, Botnet,

Web attacks

Bot-IoT DDoS, DoS, 46
Reconnaissance,
Information
Theft
Ransomware, 83
DDoS,
Backdoor,

Injection, XSS

70 million+

TON_IoT 25 million+

A. Key Observations

e The variety across datasets ensures the
model is not overfitted to a single traffic
pattern or environment, thus supporting its
generalization ability.

e The difference in feature dimensionality and
attack diversity helps validate the model’s
adaptability to different network settings,
device types, and threat models.

e [Each dataset contributed to training and
validating the CNN-LSTM model under
different conditions, with results confirming
consistently high performance in both
binary and multi-class anomaly detection

scenarios.
TABLE II
CNN-LSTM MODEL ARCHITECTURE
Layer Output Shape Parameters
Input (batch_size, 100, 1) -
Conv1D (batch_size, 98, 32) 1280
MaxPooling1 D (batch_size, 49, 32) 0
Dropout (batch_size, 49, 32) 0
LSTM (batch_size, 64) 24832
Dense (batch_size, 32) 2112
Output (batch_size, 65
num_classes)
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Input Layer

e Shape: (batch_size, 100, 1)

e Represents sequences of 100 time steps with
1 feature per step (e.g., normalized network
traffic metric).

e This format prepares the data for 1D
convolution, enabling local pattern detection
in temporal data.

Conv1D Layer

e Shape: (batch_size, 98, 32)

e Applies 32 filters over the input sequence to
extract local spatial features.

e The output length (98) results from the filter
sliding over the 100-length sequence with
default stride.

e 1,280 parameters come from learnable
weights in the convolutional filters.

MaxPooling1D Layer

e Shape: (batch_size, 49, 32)

e Reduces the temporal dimension by half,
making the model more computationally
efficient and robust to noise.

e No learnable parameters — this layer just
downsamples the feature maps.

Dropout Layer

e Shape: (batch_size, 49, 32)

e Randomly deactivates a subset of neurons
during training to prevent overfitting.

e Also has no trainable parameters,
improves model generalization.

LSTM Layer

e Shape: (batch_size, 64)

e Accepts the pooled feature maps and models
temporal dependencies across the 49 time
steps.

e Captures attack progression over time (e.g.,
DDoS traffic bursts).

e Contains 24,832 trainable parameters — due
to the gates and recurrent units inside the
LSTM cell.

Dense Layer

e Shape: (batch_size, 32)

e Fully connected layer that compresses the
LSTM output into a lower-dimensional
vector before final classification.

e Contains 2,112 parameters, reflecting
connections between the 64 LSTM outputs
and 32 dense units.

but

ISSN : 2581-7175

©IJSRED: All Rights are Reserved

Page 3093



International Journal of Scientific Research and Engineering Development-— Volume 8 Issue 2, Mar-Apr 2025

Output Layer

Shape: (batch_size, num_classes)

Produces final classification probabilities
using a Softmax function.

Number of output classes depends on the
dataset (e.g., binary or multi-class).

65 parameters correspond to weights and
biases from the dense layer to each class.

Summary:

The model is compact but powerful,
combining feature extraction (CNN) and
sequence modeling (LSTM) in a streamlined
architecture.

With a total of ~28K parameters, it's light
enough for near real-time applications, yet
deep enough to detect complex threats in
IoT traffic.

The LSTM layer carries most of the
learnable capacity, which makes sense since
temporal behavior is key in anomaly
detection.

Accuracy

Measures overall correctness of predictions.
CNN-LSTM Ensemble achieves the highest
accuracy at 98.7%, showing it makes the
fewest overall errors.

Traditional models like SVM and Random
Forest lag behind, indicating limitations in
their ability to generalize to complex attack

patterns in [oT traffic.
TABLE III
PERFORMANCE COMPARISON OF MODELS

Model

Accuracy | Precision | Recall F1-Score

SVM

89.2

87.5

88.1

87.8

Random
Forest

91.5

90.2

91.0

90.6

CNN

94.3

92.8

93.5

93.1

LSTM

95.1

93.7

94.0

93.8

CNN-
LSTM
Ensemble

98.7

98.4

98.9

98.6

Precision

Measures how many of the predicted attacks
were actually attacks (i.e., low false
positives).

CNN-LSTM has very high precision
(98.4%), suggesting it is highly reliable in
flagging attacks without incorrectly labeling
benign traffic.

Recall
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This is especially important in real-world
systems, where false positives can lead to
alert fatigue.

Measures how many actual attacks were
correctly identified (i.e., low false
negatives).

CNN-LSTM again leads with 98.9% recall,
meaning it successfully detects nearly all
attack instances.

LSTM and CNN models also perform well
here, which is expected due to their ability
to capture patterns over time and space,
respectively.

F1-Score

The harmonic mean of precision and recall;
reflects balance between avoiding false
positives and false negatives.

CNN-LSTM'’s Fl-score of 98.6% indicates
it maintains a strong trade-off between
catching most attacks and being accurate in
those detections.

Traditional models (SVM, RF) have Fl1-
scores below 91%, showing they are not as
balanced or effective in both aspects.

Summary:

The CNN-LSTM ensemble clearly
outperforms all other models across every
metric.

This demonstrates the value of combining
spatial and temporal learning — CNNs
extract intricate features from network
traffic, while LSTMs capture sequential
behavior.

Traditional models like SVM and Random
Forest are outperformed due to their
inability to automatically learn hierarchical
patterns from raw data and adapt to evolving
threats.

Deep learning models (CNN, LSTM, and
CNN-LSTM) are better suited for IoT
cybersecurity, but the ensemble provides the
best balance of accuracy, detection
reliability, and minimal errors.
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Accuracy Precision

SVM  Random Forest  CNN
Model Model

LSTMCNN-LSTM Ensemble SVM  Random Forest  CNN LSTMCNN-LSTM Ensemble

Recall F1-Score

o SVM  Random Forest  CNN LSTMCNN-LSTM Ensemble 0 SVM  Random Forest  CNN
Mode Model

LSTMCNN-LSTM Ensemble

Fig. 2: Model performance metrics
D. Discussions

This study proposed a CNN-LSTM ensemble
model for intelligent anomaly detection in IoT
networks and evaluated its performance against
traditional and standalone deep learning models.
The findings from the experiments are summarized
below:

e Superior Detection Performance: The CNN—
LSTM ensemble achieved the highest
performance across all metrics, including
accuracy (98.7%), precision (98.4%), recall
(98.9%), Fl-score (98.6%), and AUC
(0.99). This demonstrates its robustness in
detecting both known and unknown cyber
threats.

o Effective Feature Learning: The CNN layers
effectively extracted spatial patterns from
network traffic data, identifying localized
anomalies such as unusual port usage or
packet frequency. Meanwhile, LSTM layers
captured temporal dependencies, enabling
the detection of stealthy or multi-stage
attacks.

e Improved Generalization: By combining
spatial and temporal feature learning, the
hybrid model significantly outperformed
classical ML models (e.g., SVM, Random
Forest) and standalone deep learning models
(CNN or LSTM alone), which showed
weaker generalization capabilities and lower
accuracy in complex attack scenarios.

e Stability in Training: The inclusion of
dropout, batch normalization, and Adam
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optimization contributed to stable training
dynamics and helped prevent overfitting.
Additionally, loss values were lowest for the
ensemble model (0.07), indicating better
learning convergence.

e Applicability to Real-World IoT Systems:
The model was tested on realistic and
diverse datasets (CICIDS2017, Bot-IoT,
TON_IoT), confirming its practical
applicability across different IoT scenarios
and traffic profiles.

Overall, the proposed CNN-LSTM ensemble
demonstrates a strong potential for real-time,
scalable, and accurate anomaly detection in

resource-constrained IoT environments.

V. CONCLUSION

The explosive growth of the Internet of Things
(IoT) has introduced significant cybersecurity
challenges due to the increasing scale,
heterogeneity, and vulnerability of connected
devices. This research addressed these challenges
by proposing a hybrid deep learning architecture
that combines Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM)
networks to detect anomalies in network traffic
data.

The CNN-LSTM ensemble effectively captures
both spatial features and temporal patterns, enabling
high-performance detection of various cyberattacks,
including subtle and previously unseen threats.
Experimental  results across multiple IoT
benchmark datasets (e.g., CICIDS2017, Bot-IoT,
TON_IoT) demonstrated that the proposed model
significantly outperforms traditional —machine
learning models and standalone deep learning
models in terms of accuracy, precision, recall, F1-
score, AUC, and loss reduction.

The findings suggest that the proposed model is
highly suitable for deployment in real-world IoT
environments, where rapid, accurate, and adaptive
threat detection is critical.
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