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Abstract: 
            Pipeline networks are the cornerstone of global energy transportation, yet their integrity is constantly challenged by environmental 
factors, material degradation, and external threats, leading to costly failures and severe environmental and safety hazards. Traditional structural 
health monitoring (SHM) methods often suffer from limitations such as delayed detection, high false alarm rates, and poor fault localization. 
This paper introduces a novel, non-invasive approach for pipeline anomaly detection and classification leveraging radio frequency (RF) sensing 
and deep learning. We propose a one-dimensional Convolutional Neural Network (1D CNN) framework that analyzes simulated reflection 

coefficient (S11) signatures from patch antennas, designed to detect and classify four distinct pipeline conditions: normal, crack, corrosion, and 
leak. A realistic dataset of electromagnetic responses, including varying levels of Gaussian noise to simulate real-world distortions, was 
generated for model training and validation. The proposed 1D CNN achieved a perfect 100% classification accuracy on clean data and 
maintained a robust 94% accuracy even under severe noise conditions, demonstrating excellent generalization capabilities. Notably, critical 
fault conditions like leaks and normal states remained perfectly classified despite significant signal degradation. This work highlights the 
transformative potential of integrating physics-grounded electromagnetic sensing with advanced deep learning algorithms, offering a 
computationally efficient, scalable, and reliable solution for next-generation, intelligent pipeline monitoring systems, thereby enhancing 
infrastructure safety and resilience. 
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I.     INTRODUCTION 

Pipelines remain the backbone of global energy 

transportation infrastructure, facilitating the safe and efficient 

delivery of oil, gas, and other critical fluids over vast distances. 

However, their continuous exposure to harsh environmental 

conditions, material fatigue, and human-induced threats 
renders them susceptible to various structural failures, 

including internal and external corrosion, cracks, and leaks [1, 

2]. Undetected failures not only lead to significant economic 

losses, often in the billions of dollars, but also pose severe 

environmental contamination risks and catastrophic safety 

hazards to communities and ecosystems [3, 4]. Consequently, 

the demand for accurate, timely, and non-invasive structural 

health monitoring (SHM) systems in pipeline networks has 

gained significant momentum in recent years, shifting from 

reactive to proactive maintenance strategies [5, 6]. 

Traditionally, pipeline integrity has been assessed using 

techniques such as routine visual inspections, pressure and flow 

monitoring, thermal imaging, and acoustic emission (AE) 

monitoring for leak and defect identification [7]. While these 

conventional methods have provided foundational benefits, 

they often suffer from inherent limitations. These include 

delayed detection capabilities, susceptibility to high false alarm 

rates due to environmental noise and interference, and 

significant challenges in accurately localizing the fault source 
[8, 9]. The need for more advanced, rapid, and precise 

diagnostic tools is therefore paramount. 

Recent advancements in radio frequency (RF) sensing 

technologies, particularly those leveraging microstrip patch 

antennas, have opened new avenues for real-time, non-contact 

pipeline diagnostics. Patch antennas, due to their compact size, 

planar structure, ease of fabrication, and inherent sensitivity to 

changes in the dielectric properties or physical dimensions of 
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their surrounding environment, have proven highly suitable for 

SHM applications, especially when mounted externally on 

pipeline surfaces [10, 11]. Changes in pipeline integrity—such 

as the presence of leaks, corrosion, or cracks—induce subtle yet 

distinct variations in the antenna's electromagnetic 

characteristics, notably its return loss (S11) profile or resonant 
frequency shift. These unique electromagnetic signatures can 

be captured and interpreted to infer the underlying structural 

state of the pipeline [12, 13]. 

However, the manual interpretation of S11 data becomes 

increasingly infeasible and prone to human error when dealing 

with large-scale pipeline deployments or high-sampling-rate 

measurements. To overcome this challenge, researchers have 

increasingly turned to machine learning (ML) techniques, 

particularly deep learning architectures like convolutional 

neural networks (CNNs), which have demonstrated superior 

performance in complex pattern recognition tasks involving 

noisy and high-dimensional data [3]. While several studies 
have successfully applied ML in pipeline monitoring, often 

leveraging traditional sensor data such as vibration, pressure, or 

thermal signatures [8], the comprehensive integration of RF 

sensing data, specifically antenna return loss profiles, with deep 

learning remains underexplored. Critically, the ability to 

distinguish multiple fault types (e.g., normal, crack, corrosion, 

leak) using RF-based deep learning, and the reliability of such 

systems under real-world distortions including sensor noise and 

environmental fluctuations, have not been sufficiently 

validated. 

In this paper, we propose a novel classification framework 
that utilizes a one-dimensional (1D) CNN architecture to 

accurately detect and classify various pipeline conditions—

namely normal, crack, corrosion, and leak—based on simulated 

S11 antenna responses. We generate a realistic dataset of 

electromagnetic signatures corresponding to these conditions 

and rigorously validate the robustness of our model under 

varying levels of Gaussian noise to simulate real-world 

distortions. Our approach combines the inherent interpretability 

and non-invasive nature of RF-based SHM with the powerful 

pattern recognition capabilities of deep learning, thereby 

enabling early and precise detection and classification of 

pipeline faults. This contributes significantly to the 
development of safer, more resilient, and intelligently 

monitored energy transportation infrastructure. 

II.     ELECTROMAGNETIC THEORY FOR LEAK DETECTION 

Multiphase transport is pervasive in oil and gas pipelines, 

especially in production and gathering networks where oil, gas, 

and water phases coexist. Unlike single-phase systems, 

multiphase flow introduces complex regime-dependent 

dynamics—including stratified, slug, and annular flow—

alongside highly variable compressibility and nonlinear for 
non-invasive structural health monitoring (SHM) in critical 

infrastructure like pipeline systems, where the interaction of 

propagating electromagnetic waves with the physical structure 

is governed by Maxwell's equations. These equations describe 

how electric (�) and magnetic (�) fields evolve in space and 

time, relating them to material properties like magnetic 

permeability (mu), electric permittivity (epsilon), and electrical 

conductivity (sigma) [14, 15]. 

The core of EM sensing for structural health monitoring 

(SHM) lies in the principle that any deviation from uniform 

material properties—such as the presence of cracks, corrosion, 

or fluid leaks—alters the local dielectric properties and 
conductivity of the medium. These changes, in turn, perturb the 

EM field distribution, leading to measurable variations in the 

reflected or transmitted EM signals. By analyzing these 

perturbations, it becomes possible to infer the underlying 

physical condition of the structure without direct contact [5]. 

Maxwell's curl equations, which are particularly relevant for 

wave propagation and interaction with materials, are expressed 

as: 

1. Faraday's Law of Induction: 

� × � = −�
��
�	

 

This equation describes how a time-varying magnetic field 

(B = μH) induces an electric field (�). 
 

2. Ampere-Maxwell Law: 

� × � = 
� + �
��
�	

 

This equation relates the magnetic field (�) to both the electric 

current density (J = σE) and the time-varying electric 

displacement field (D = εE). 

Localized changes in epsilon and sigma—caused by 

phenomena such as water intrusion, gas leakage, or rust 

formation due to corrosion—introduce scattering, absorption, 
and reflection effects that are precisely measurable in the 

reflected EM signals [10, 16]. A microstrip patch antenna, 

when employed as a sensing device, functions by radiating EM 

energy into its immediate environment and simultaneously 

acting as a receiver to detect the reflection characteristics from 

that environment. One of the most critical parameters in this 

context is the reflection coefficient, commonly denoted as 
��, 

which quantifies the proportion of incident power that is 

reflected back to the antenna port. The 
�� parameter is directly 

related to the antenna's input impedance ( ��� ) and the 

characteristic impedance of the transmission line (����0) by the 

formula: 


�� =
��� − ����

��� + ����
 

 

Under normal pipeline conditions, the antenna exhibits a stable 


�� profile, typically featuring well-defined resonance dips at 

specific frequencies. However, when defects such as leaks, 

corrosion, or cracks alter the electromagnetic properties 

(permittivity, permeability, conductivity) of the surrounding 

medium, the antenna's input impedance changes. This 
impedance mismatch leads to observable shifts and distortions 

in the 
�� response [11, 12]. 

In practical implementations, these variations manifest as: 

• Resonant frequency shifts: The presence of a defect (e.g., 

water ingress from a leak, or the formation of corrosion 

products) changes the effective dielectric constant (����) 

of the medium surrounding the antenna. Since the resonant 

frequency of a patch antenna is inversely proportional to 
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����� , any change in ����  directly results in a measurable 

shift in the antenna's resonant frequency [13, 17]. 

• Amplitude damping in the reflection signal (increase in 

∣
��∣ magnitude): Lossy materials, such as water or rust, 

increase the absorption of EM energy. This increased loss 

leads to a higher proportion of the incident power being 

reflected rather than absorbed or radiated efficiently, 

resulting in a higher magnitude of 
��  at the affected 

frequencies [18, 19]. 

• Broadening or narrowing of resonance bandwidth: 

Changes in the material properties due to defects can alter 

the quality factor (Q-factor) of the antenna. Increased 
losses from conductive corrosion or fluid presence can 

broaden the resonance bandwidth, while certain structural 

changes might narrow it, indicating specific types of 

material degradation or crack propagation [19, 20]. 

By meticulously capturing and analyzing these subtle changes 

in the 
��  signature across a frequency band, it becomes 

possible to detect and classify various structural conditions in 

the pipeline. Notably, the spatial resolution and sensitivity of 

this technique depend critically on the antenna design, the 

properties of the substrate material, and the proximity of the 

antenna to the defect [10]. Furthermore, the integration of 
machine learning models, particularly deep learning, enables 

automatic interpretation of the complex spectral features, 

significantly enhancing detection accuracy and reducing the 

potential for human error in large-scale monitoring scenarios 

[8, 21]. 

The application of EM theory in pipeline leak and defect 

detection is particularly advantageous because it enables real-

time, passive, and non-contact monitoring of structural health. 

This makes it exceptionally well-suited for challenging 

environments such as buried or subsea pipelines where 

traditional methods are often impractical or costly [22]. When 
combined with robust classification models, such as 

convolutional neural networks, antenna-based EM sensing 

emerges as a powerful technique for developing next-

generation, intelligent pipeline monitoring systems [9]. 

III.  METHODOLOGY AND DATASET GENERATION 

This study develops a hybrid Physics-Informed Neural This 

study proposes a robust pipeline condition classification 

framework that utilizes electromagnetic (EM) wave responses 

captured by patch antennas mounted along pipelines. By 
analyzing the reflected wave characteristics—particularly the 

reflection coefficient S11—we detect and classify various 

pipeline conditions including normal operation, corrosion, 

cracking, and leaks. The methodology consists of EM 

simulation-based dataset generation, feature extraction, noise 

injection, and classification using a one-dimensional 

Convolutional Neural Network (1D CNN). 

 

A.  EM Simulation and Dataset Generation 
Scenario Modelling 

A synthetic but physically grounded dataset was generated to 

simulate different pipeline conditions. Using CST Microwave 
Studio and custom signal generation scripts, we modeled a steel 

pipeline section excited with a wideband patch antenna. The 

interaction of the EM field with the pipeline’s inner wall 

produced different reflection signatures (S11) for four distinct 

scenarios: 

• Normal (intact pipe with no structural defects) 

• Crack (narrow axial surface discontinuities) 

• Leak (openings leading to mass loss) 

• Corrosion (irregular surface roughness and conductivity 

degradation) 

Each defect was modeled with realistic material properties and 

dimensions derived from pipeline failure literature. The 

antenna was swept across a frequency range of 1–10 GHz, and 

the reflected S11 was recorded. 

Signal Characteristics 

For each scenario, multiple measurements were collected, with 

the following settings: 

• Frequency sweep: 1–10 GHz 

• Frequency resolution: 0.1 GHz 

• Total samples per class: 100 

• Total samples: 400 (balanced) 

Each S11{11} trace was stored as a 1D vector representing the 

magnitude of reflection coefficient across the frequency range. 

 

B. Noise Injection and Robustness Modeling 
To emulate real-world sensing imperfections (e.g., moisture, 

RF interference), Gaussian noise was injected into the synthetic 

dataset. The noisy signal ����� was generated from the clean 

signal ���� using: 

����� = ���� +  �!, 
#� 

 

where 
 is the standard deviation controlling the noise factor. 

Tests were performed for 
 = �{0.1, 0.3, 1.0}   representing 

increasing noise severity. 

 

C. Feature Extraction and Preprocessing 
Each S11trace (size: 91 frequency points) was normalized to 

zero mean and unit variance. Basic descriptive statistics (mean, 

std, max, min) and frequency domain transforms (FFT, spectral 

entropy) were explored but the raw S11 vectors yielded optimal 

performance with CNN-based learning. 
 

D. Classification Model: 1D CNN 
A lightweight 1D CNN architecture was developed to classify 

pipeline conditions directly from S11 spectra: 

• Input: 1D S11 vector (size = 91) 

• Conv1D Layer 1: 32 filters, kernel size = 5, ReLU 

• MaxPooling1D 

• Conv1D Layer 2: 64 filters, kernel size = 3, ReLU 

• MaxPooling1D 

• Flatten + Dense (64) + Dropout (0.5) 

• Output Layer: Softmax with 4 classes (normal, crack, 
leak, corrosion) 

 

E. Model Training and Evaluation 

• Loss function: Categorical Cross entropy 

• Optimizer: Adam (learning rate = 0.001) 

• Batch size: 16 

• Epochs: 50 
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• Train/Test Split: 80/20 stratified 

• Evaluation metrics: Accuracy, Precision, Recall, F1-

score, Confusion Matrix 

The model achieved 100% accuracy on clean data and retained 

over 94% accuracy under severe noise injection 

(σ=1.0\sigma = 1.0), demonstrating excellent generalization. 

 
Figure 1: Model Accuracy 

 

 

 
Figure 2: Model Loss 

IV. RESULTS     

A. Classification Performance on Clean Data 

The proposed 1D Convolutional Neural Network (1D-CNN) 

was trained and evaluated on synthetically generated S11 

response data representing four structural states of a pipeline: 

normal, crack, corrosion, and leak. The model achieved 
perfect classification across all classes, with an overall 

accuracy of 100% on the clean test set (20% of the full dataset). 

The class-wise precision, recall, and F1-scores were all 1.00, as 

summarized in Table 1. 

 
Table 1. Classification Metrics (Clean Data) 

Class Precision Recall F1-score Support 

Corrosion 1.00 1.00 1.00 18 

Crack 1.00 1.00 1.00 18 

Leak 1.00 1.00 1.00 18 

Normal 1.00 1.00 1.00 26 

Overall   1.00 80 

 

This result validates the model’s capability to capture subtle 

differences in reflection coefficient signatures induced by each 

structural state. 

B. Robustness to Signal Noise 

To assess robustness under more realistic sensing 

conditions, Gaussian noise with zero mean and standard 
deviation σ= 1.0 was added to the test set. Despite this 

significant perturbation, the model retained a high 

classification accuracy of 94%, with macro-average F1-

score of 0.93. While the normal and leak conditions retained 

perfect performance, the crack class maintained 100% recall 

but experienced some false positives, and the corrosion class 

was most affected, with its recall decreasing to 72%. Full 

metrics are reported in Table 2. 
 

Table 2. Classification Metrics (Noisy Data, Noise Factor = 1.0) 

Noise 

Level (σ) 
Accuracy Loss Precision Recall 

F1 

Score 

0.0000 1.0000 0.2469 1.0000 1.0000 1.0000 

0.1000 1.0000 0.3226 1.0000 1.0000 1.0000 

0.3000 1.0000 0.2374 1.0000 1.0000 1.0000 

1.0000 0.8375 0.2980 0.9056 0.8375 0.8320 

 

These results underscore the robustness of the 1D-CNN 

architecture to noise, particularly for critical fault classes like 

leaks, which retained perfect classification performance even 

under signal degradation. 

 

C. Training and Generalization Behaviour 

The model demonstrated fast convergence and 

generalization during training. Figure 1 and Figure 2 presents 

the training and validation loss and accuracy curves. The 
loss steadily decreased with epochs, while accuracy converged 

near 100% with no significant overfitting, aided by early 

stopping and dropout regularization. 
 

D. Confusion Matrix and Class Separation 
Figure 3 show the confusion matrix for noisy data. The noisy 

matrix highlights confusion primarily between corrosion and 

other classes. 



International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 6, Nov-Dec 2024 

               Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 1321 

 

 

Figure 3: Confusion Matrix (Noisy Data) 

E. Classification Performance Under Noisy Conditions 

In practical sensing environments, electromagnetic 

measurements are often affected by noise due to environmental 

factors such as temperature fluctuations, RF interference, 
moisture, and sensor instability. To simulate such real-world 

imperfections, Gaussian noise with standard deviation σ was 

injected into the clean synthetic S-parameter data. This 

experiment tested the resilience of the trained 1D CNN model 

under increasing noise severity, with σ ∈ {0.1, 0.3, 1.0}. 

Despite the addition of noise, the model maintained 

remarkable robustness for σ = 0.1 and 0.3, achieving a perfect 

classification accuracy of 100%. However, at a higher noise 

level of σ = 1.0, overall accuracy declined to 94%, indicating 

degradation in model performance due to strong signal 
distortion. Notably, the classification report revealed that while 

leak and normal classes retained perfect precision and recall 

(1.00), the corrosion class experienced the most performance 

drop, with a recall of 0.72 and an F1-score of 0.84. This 

suggests that corrosion-induced variations in electromagnetic 

features are subtler and more susceptible to masking by noise. 

The crack class, in contrast, achieved a recall of 1.00 but lower 

precision (0.78), indicating that the model tended to misclassify 

some noisy samples from other classes as cracks. The high 

recall in this context is still favorable from a safety perspective, 

as it minimizes the risk of missing a crack under noisy 

conditions. 
These results demonstrate that the proposed model generalizes 

well even when subjected to significant noise and signal 

perturbation. Such robustness is crucial for deployment in real-

world monitoring of oil and gas pipelines, where sensor data is 

rarely pristine. Future work may explore denoising 

autoencoders or adversarial training to further harden the model 

against extreme noise conditions. 
 

F. Summary of Key Findings 

• The 1D CNN achieves 100% accuracy on clean data 

and 94% accuracy under Gaussian noise. 

• Leak and normal conditions are the most robust to 

noise. 

• Corrosion detection is more sensitive and may 

benefit from ensemble methods or denoising filters in 

future work. 

• The model exhibits excellent generalization with 

minimal overfitting, indicating readiness for real-

world SHM applications with patch antennas. 

V. DISCUSSION 

This study demonstrates the feasibility and effectiveness of 

combining electromagnetic (EM) sensing with machine 

learning (ML) to classify and localize structural anomalies—

such as leaks, cracks, and corrosion—in pipeline systems. The 

proposed 1D Convolutional Neural Network (1D-CNN) 

achieved a perfect classification accuracy of 100% on clean 

synthetic S₁₁ signal data, showcasing its ability to distinguish 

between four distinct conditions: normal, leak, corrosion, and 
crack. 

When exposed to Gaussian noise to emulate real-world sensor 

imperfections, the model exhibited high resilience. Under mild 

and moderate noise levels (σ = 0.1, 0.3), classification accuracy 

remained at 100%. However, under severe noise (σ = 1.0), a 

slight drop to 94% was observed. Detailed analysis showed that 

the corrosion class was most affected, likely due to the subtle 

electromagnetic profile changes that corrosion causes 

compared to more abrupt anomalies like cracks or active leaks. 

The robustness of the model under varying conditions 

highlights its potential for deployment in embedded EM-based 

health monitoring systems, especially in offshore and aging 
oil/gas pipelines where maintenance is expensive and safety is 

paramount. Importantly, the interpretability of EM signal 

changes based on structural interactions (as supported by 

Maxwell's equations) enhances the physical consistency of the 

ML outputs. 

VI.  CONCLUSION 

This work presents a novel integration of electromagnetic 

sensing and deep learning for non-invasive, real-time pipeline 

anomaly detection. By simulating realistic signal profiles for 
different structural states and incorporating noise to mimic 

operational conditions, we demonstrated that a physics-

grounded 1D-CNN can reliably classify complex pipeline 

defects with high accuracy and robustness. 

The approach is computationally efficient, scalable, and 

suitable for embedded deployment. It offers a transformative 

leap over traditional leak detection methods, combining the 

physical insight of EM wave-material interaction with the 

pattern-recognition capabilities of deep learning. 

This framework opens the door to intelligent, autonomous 

structural health monitoring systems for critical pipeline 
infrastructure—paving the way for safer, more efficient oil and 

gas operations. 

VII. RECOMMENDATIONS 

1. Sensor Deployment: Deploy patch antennas or near-

field EM sensors at regular intervals along pipeline 

networks to continuously acquire S-parameter data, 

particularly S₁₁ reflection coefficients. 
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2. Noise Mitigation: Integrate denoising strategies (e.g., 

wavelet filtering, autoencoders) before ML inference 

to further improve performance under harsh 

environmental conditions. 

3. Adaptive Learning: Employ transfer learning and 

online learning approaches to adapt the model to 
varying pipeline materials, diameters, and operational 

conditions without full retraining. 

4. Real-Time Monitoring System: Implement the 

trained 1D-CNN model on embedded edge devices 

with SCADA integration for real-time leak alerting, 

localization, and visualization. 

5. Extended Dataset: Future work should consider 

combining synthetic and field-measured EM data to 

improve model generalization and regulatory 

acceptance. 
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