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Abstract: 

            Leak detection in multiphase pipeline systems remains a critical yet challenging task due to complex flow dynamics, transient operational 
disturbances, and the scarcity of comprehensive real-world data. Traditional physics-based models, though interpretable, often exhibit reduced 
accuracy under real-world uncertainties, while purely data-driven methods struggle with physical consistency and limited generalizability. In 
this study, we introduce a hybrid Physics-Informed Neural Network (PINN) framework designed for integrated leak detection, localization, and 

continuous quantification in multiphase (oil-gas-water) pipelines. By embedding mass and momentum conservation laws directly into the neural 
network as soft constraints, the proposed approach seamlessly combines the physical interpretability and robustness of mechanistic models with 
the adaptability and predictive power of deep learning techniques. To evaluate performance, we generated high-fidelity synthetic datasets 
covering diverse leak scenarios, including leak magnitudes ranging from 0.1% to 5% of nominal flow, various spatial locations, and multiple 
multiphase flow regimes. The PINN framework achieved a detection accuracy of 95%, with precision and recall rates of approximately 91%, 
an average localization error near 5 meters, and a leak rate estimation error close to 1%. Comparative analyses against black-box neural networks 
and Real-Time Transient Modeling (RTTM) baselines highlight the superior performance and enhanced generalization capability of the 
proposed method across both classification and regression tasks. These results underscore the potential of PINNs as reliable, physically 
consistent, and operationally actionable solutions for next-generation leak detection in complex pipeline networks, establishing a foundation for 

future large-scale field implementation and regulatory adoption. 

Keywords — Physics-Informed Neural Networks (PINN), Leak detection, Multiphase pipelines, Leak localization, Leak quantification, 
Hybrid modeling, Pipeline integrity monitoring, Conservation laws, Deep learning, Oil and gas infrastructure. 
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I.     INTRODUCTION 

Pipelines form the critical backbone of the global energy 

and chemical industries, transporting vast volumes of oil, gas, 

and multiphase fluids across continents, beneath oceans, and 

through remote terrains. Ensuring the integrity of these pipeline 

networks is of paramount importance: undetected leaks can 

result in severe environmental disasters, significant economic 

losses, and serious public safety hazards. With increasing 

regulatory scrutiny and heightened societal demands for 

environmental stewardship, there is an urgent need for leak 

detection systems (LDS) that are not only accurate and timely 

but also resilient and trustworthy under complex, real-world 
operating conditions. 

Historically, LDS strategies have relied heavily on physics-

based methodologies such as Real-Time Transient Modeling 

(RTTM), negative pressure wave analysis, and statistical 

volume balance methods. While these approaches perform 

reliably under steady-state or single-phase conditions, they 

often falter in the presence of multiphase flows, transient 

disturbances, and evolving operational events. Recent 

advancements have introduced data-driven and machine 

learning (ML) approaches—including deep neural networks, 

ensemble classifiers, and hybrid physics-ML models—that 

have demonstrated superior accuracy and adaptability in 

controlled laboratory or simulated environments [1–10]. 

Despite these advances, several critical challenges persist. 

Many existing ML-based LDS operate as "black box" systems, 

lacking physical interpretability and often exhibiting reduced 

reliability when applied to unseen multiphase flow regimes. 

Furthermore, these models tend to focus primarily on binary 

leak detection and coarse localization, largely neglecting 

continuous leak quantification and rigorous uncertainty 
estimation—both of which are vital for operational decision-

making, emergency response prioritization, and regulatory 

compliance [1–10]. 

The challenges of multiphase pipeline monitoring are 

compounded by the complexity of underlying fluid dynamics. 

The governing equations are nonlinear, highly mode-dependent, 

and sensitive to regime transitions (e.g., slug, annular, stratified 

flows), resulting in non-stationary, spatially correlated leak 

signatures that are difficult to model. Moreover, the scarcity of 
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real-world leak events severely limits the availability of labeled 

data, further impeding the development and validation of robust, 

generalizable ML models. This highlights a crucial gap in the 

current literature: the absence of unified, physically guided 

learning frameworks capable of simultaneously detecting, 

localizing, and continuously quantifying leaks in 

multiphase pipelines, while providing uncertainty estimates 

and maintaining robustness across operational complexities. 

Physics-Informed Neural Networks (PINNs) have 
recently emerged as a powerful solution to bridge this gap. By 

embedding domain knowledge in the form of partial differential 

equation (PDE) residuals and conservation laws directly into 

the learning process, PINNs integrate the strengths of first-

principles physics and data-driven modeling. This synergistic 

approach enhances generalizability, interpretability, and data 

efficiency, particularly in scenarios where purely empirical 

models struggle to extrapolate due to limited labeled data or 

unmodeled operational variations. 

In this study, we propose a hybrid PINN framework 

designed specifically for leak detection, localization, and 

continuous quantification in multiphase pipeline systems. Our 
approach directly incorporates two-fluid mass and momentum 

conservation equations as soft constraints within a deep 

learning architecture that processes spatially and temporally 

resolved sensor measurements. We rigorously evaluate this 

model on high-fidelity synthetic datasets that capture realistic 

multiphase flow behaviors and operational disturbances, 

benchmarking it against both traditional physics-based 

methods and black-box ML models. 

The key contributions of this work are: 

1. Development of a novel PINN architecture that fuses 

multiphase flow physics with data-driven learning for 
integrated leak detection, fine-grained localization, 

and continuous leak rate estimation; 

2. Comprehensive benchmarking of the proposed 

approach against conventional machine learning and 

physics-only LDS baselines on challenging synthetic 

datasets representing diverse multiphase scenarios; 

3. Demonstration of superior robustness, accuracy, and 

interpretability, laying a foundation for future field 

validation and regulatory adoption. 

By advancing beyond the limitations of purely data-driven and 

purely mechanistic methods, our work aims to bridge the 

critical gap between physical rigor and real-world operational 
performance, setting the stage for next-generation pipeline 

integrity monitoring and proactive leak management. 

II.     BACKGROUND AND RELATED WORK 

A. Multiphase Flow in Pipelines 

Multiphase transport is pervasive in oil and gas pipelines, 

especially in production and gathering networks where oil, gas, 

and water phases coexist. Unlike single-phase systems, 

multiphase flow introduces complex regime-dependent 

dynamics—including stratified, slug, and annular flow—

alongside highly variable compressibility and nonlinear 

interphase interactions. These complexities make leak 
detection and quantification substantially more challenging, as 

leaks manifest through subtle, regime-specific signatures rather 

than distinct, global anomalies. 

Transient Behavior of Multiphase Pipelines 

The transient behavior of multiphase pipelines is governed 

by the one-dimensional two-fluid model, a set of coupled 

conservation equations capturing mass and momentum 

balances for each phase. For gas (G) and liquid (L), the mass 

conservation equations are given by: 
�(�ₖ�ₖ)

�� + �(�ₖ�ₖ	ₖ)
�� = ��
����  , ��� � =  �, � 

where: 

• �ₖ is the local volume fraction of phase k. 

• �ₖ is the density of phase k. 

• 	ₖ is the velocity of phase k. 

• �ₖ, ₘₐₛₛ is a source/sink term representing leaks. 

The momentum conservation equations for each phase are: 

�(�ₖ�ₖ)
�� + �(�ₖ�ₖ	ₖ²) 

�� + �ₖ ��
�� =  �ₖ +  �ₖ, ₘₒₘₑₙₜᵤₘ 

where p denotes pressure, Fₖ accounts for interfacial drag, 

wall friction, and gravity, and �ₖ, ₘₒₘₑₙₜᵤₘ represents 

momentum losses due to leaks. 

Leaks are modeled as localized sink terms at position xₗ: 

�ₖ, ₘₐₛₛ(�, $)  =  −&{(,�}($) *(� −  �ₗ) 

where &{(,�} is the leak flow rate for phase k, and *(·) is the 

Dirac delta function. 

 

B. Classical Leak Detection Approaches 

Traditional LDS methods are predominantly physics-based, 

leveraging mechanistic simulations and analytical models. 

Real-Time Transient Models (RTTM) solve variations of the 
above conservation equations to predict dynamic pipeline 

responses. Deviations between predicted and actual sensor 

signals are then interpreted to detect and locate leaks [1,7]. 

Other physics-inspired techniques, such as negative pressure 

wave (NPW) analysis and statistical volume balance methods, 

provide rapid event-based alarms. However, these methods 

often suffer from high false alarm rates under transient 

operations, valve actuations, or regime changes in multiphase 

flow, limiting their reliability. 

While grounded in first principles, these classical methods face 

notable limitations: 

• Sensitivity to model-plant mismatches, uncertain 

boundary conditions, and unmeasured disturbances. 

• Reduced localization accuracy and substantial 

uncertainties when confronted with multiphase flow 

complexity and operational noise. 

 

C. Machine Learning Approaches for Leak Detection 

With advancements in sensing technologies and 

computational resources, machine learning (ML) and deep 

learning (DL) have become prominent alternatives for LDS 

[1–10]. Typical approaches involve extracting engineered 

features from time-series data (e.g., spectral coefficients, 
wavelets), and training classifiers (DNNs, CNNs, SVMs, 

Random Forests) to detect and localize leaks. Some efforts 

extend to coarse leak size classification (e.g., 

small/medium/large bins). 

Despite achieving high detection accuracies (often >95%) in 

controlled settings, most ML-based LDS face key limitations: 

• Predominantly “black box” architectures, lacking 

physical interpretability and hindering trust when 

extrapolated to unseen operational regimes. 
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• Limited focus on continuous leak rate estimation; 

most models address detection and coarse localization 

only. 

• Generalization challenges in true multiphase, transient 

scenarios, where flow regime shifts introduce 

complex, non-stationary signatures [3]. 

Moreover, reliance on simulated leak data—necessitated by the 

scarcity of real-world events—can exacerbate overfitting and 

shortcut learning, reducing operational robustness. 
 

D. Hybrid and Physics-Informed Learning: Next-

Generation Directions 

Recognizing the need to integrate physical consistency into 

data-driven models, recent research has shifted toward hybrid 

approaches, combining mechanistic understanding with ML 

flexibility. Key strategies include: 

• Hybrid Observers: Combining RTTM or physics-

based estimators with shallow ML classifiers to 

enhance fault robustness and reduce false alarms [7,9]. 

• Data Assimilation Techniques: Using ensemble 
Kalman filters or Bayesian updating to integrate 

measurements with physical state predictions, 

improving probabilistic leak localization [8]. 

• Physics-Informed Neural Networks (PINNs): 

Embedding conservation laws (e.g., PDE residuals) as 

soft constraints within the loss function of neural 

networks, enforcing physical plausibility while 

learning from data [Raissi et al., 2019]. 

 

PINN Loss Function 

A typical PINN loss function is formulated as: 

�-.-�/ = �0�-�   +  1234�  �234�56� 

where: 

• �0�-� represents empirical fitting loss. 

• �234�56� quantifies the residuals of governing partial 

differential equations (PDEs), usually evaluated via automatic 

differentiation. 

•  1234� controls the trade-off between data fidelity and 

physical consistency. 

To date, the application of PINNs to multiphase pipeline leak 

detection remains largely unexplored. Existing work 

predominantly addresses single-phase or simplified hybrid 

observer frameworks without full neural–physics coupling, 

continuous leak rate regression, or calibrated uncertainty 

quantification. 

 

E. Summary of Literature Gaps and Motivation 
Despite significant progress, critical gaps remain: 

• Complete Leak Assessment: Existing studies largely 

focus on detection and localization, with 

quantification typically handled via discrete severity 

classes rather than continuous estimation. 

• Multiphase Generalization: Most models fail to 

maintain accuracy in multiphase and transient 

conditions, which represent real-world operational 

challenges. 

• Uncertainty Awareness: Few models provide 

calibrated confidence intervals or explicit uncertainty 
measures, which are vital for operational trust and 

regulatory compliance. 

In summary, there is a pressing need for LDS solutions that 

are accurate, physically interpretable, and capable of robustly 

performing end-to-end detection, fine-grained localization, and 

continuous quantification—under realistic multiphase 

conditions and with explicit uncertainty awareness. This gap 

motivates the hybrid PINN framework proposed and evaluated 

in this work. 

III.     METHODS 

A. Problem Formulation and Simulation Setup 

This study develops a hybrid Physics-Informed Neural 

Network (PINN) framework for simultaneous leak detection, 

localization, and quantification in multiphase (oil-gas-water) 

pipelines. We focus on a horizontal pipeline segment equipped 

with distributed pressure and flow sensors at the inlet and 

outlet. 

Due to the rarity of real-world leak data and safety constraints, 

high-fidelity synthetic datasets were generated to emulate 

realistic operating conditions: 

• Leak locations: Uniformly distributed along the 

pipeline length xₗ ∈ [0, L]. 

• Leak rates: From 0.1% to 5% of nominal flow rate. 

• Flow regimes: Stratified, slug, and annular. 

• Operational disturbances: Gaussian noise added to 

emulate sensor uncertainties and transient events. 

Time-series data of pressure PP and flow rate QQ at different 

positions were collected for each scenario to train and validate 

the model. 

 

B. Multiphase Flow Governing Physics 

The transient behavior of multiphase flows is described by 

the one-dimensional, isothermal two-fluid model, consisting 
of mass and momentum conservation for each phase kk (gas 

GG, liquid LL). 

1. Mass Conservation 
∂(Aαₖρₖ)

∂t + ∂(Aαₖρₖuₖ)
∂x = S@
ABCC 

where: 

• AA = cross-sectional area, 

• αₖ = local volume fraction, 

• ρₖ = phase density, 

• uₖ = phase velocity, 

• S@
ABCC = leak-induced mass sink: 

Sₖ, ₘₐₛₛ(x, t)  =  −Q{E,@}(t) δ(x −  xG) 

δ(⋅) is the Dirac delta function representing localized leakage 

at position  xG. 
 

2. Momentum Conservation 

∂(Aαₖρₖ)
∂x + ∂(Aαₖρₖuₖ²) 

∂x + Aαₖ ∂p
∂x =  Fₖ +  Sₖ, ₘₒₘₑₙₜᵤₘ 

where: 

• p = pressure, 

• Fₖ = combined forces (interfacial drag, friction, 

gravity), 

• Sₖ, ₘₒₘₑₙₜᵤₘ = momentum loss at leak points. 

 

C.  PINN Architecture 

1.  Network Structure 

A feedforward multilayer perceptron (MLP) with tanh 

activations is used. 
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• Inputs: Sensor-derived features (location xx, 

measured PP, QQ). 

• Outputs: 

o Leak probability yLMNONPO (classification). 

o Leak location xLG  (regression). 

o Leak rate QQG (regression). 

 

2. Physics-Informed Loss Function 

The total loss function combines empirical and physics-based 

terms: 

LOSOBG = LMBOB   +  λUVWC LUVWCXPC 

 Empirical Loss ( LMBOB) 

LMBOB  =  LYZ[(yLMNONPO, yO\]N)  +  L^_[(xLG, xG`abc) 
+   L ^_[(QQG, QEO\]N) 

• LYZ[: Binary cross-entropy for leak detection. 

• L^_[: Mean squared error for localization and 

quantification. 

 

Physics residuals are enforced at randomly sampled 

collocation points dxP,tPe: 

LUVWC = f gRABCC,@dxP,tPegi
i + gRASAANjO]A,@dxP,tPegi

i

@kl,G
 

with: 

RABCC,@ = ∂(Aαₖρₖ)
∂t + ∂(Aαₖρₖuₖ)

∂x − S@
ABCC 

RASAANjO]A,@ = ∂(Aαₖρₖ)
∂x + ∂(Aαₖρₖuₖ²) 

∂x + Aαₖ ∂p
∂x −  Fₖ

−  Sₖ, ₘₒₘₑₙₜᵤₘ 

 

Here, automatic differentiation is used to compute spatial and 

temporal derivatives, enforcing physical consistency in the 

model's learned outputs. 

 λUVWC  is a hyperparameter controlling the trade-off between 

empirical fitting and physical fidelity. 

 

D. Training and Validation 

• Data normalization: Inputs and outputs scaled to 

improve stability. 

• Event-based data splitting: Disjoint sets for training, 

validation, and testing. 

• Optimization: Adam optimizer with tuned learning 

rate and batch size. 

• Baseline comparisons: Against a black-box neural 
network (without physics loss) and a physics-only 

RTTM approach. 

 

E. Evaluation Metrics 

• Detection: Accuracy, precision, recall, ROC-AUC. 

• Localization: Mean absolute error (MAE) in 

predicted leak positions. 

• Quantification: Mean absolute percentage error 

(MAPE) in leak rate predictions. 

• Robustness: Consistency under different flow 

regimes and noise conditions. 
 

F. Implementation 

Models were implemented in TensorFlow 2.x, leveraging 

automatic differentiation for residual computation. Training 

was performed on a GPU-enabled workstation, with code and 

synthetic datasets available upon request. 

IV. OVERVIEW OF MODEL PERFORMANCE     

The hybrid Physics-Informed Neural Network (PINN) was 

evaluated on a held-out test set comprising both leak and non-
leak events, spanning diverse leak magnitudes, locations, and 

multiphase flow regimes. The quantitative metrics 

summarizing the performance of the final model are provided 

in Table 1. 

Table 1: Model Performance 

Metric Value Interpretation 

Accuracy 0.95 
Proportion of correctly classified leak 

and non-leak events 

Precision 0.91 
Fraction of predicted leaks that were 

true leaks (low false positives) 

Recall 0.91 
Fraction of actual leaks correctly 

detected (low false negatives) 

Location Error (m) ~5 
Mean absolute error in leak 

localization 

Leak Rate Error (%) ~1 
Mean absolute percentage error in 

estimated leak magnitude 

 

Detection and Classification 
 

 
Figure 1: Confusion Matrix 

 

• The confusion matrix in Figure 1 illustrates a strong 

performance in distinguishing leak and no-leak 

scenarios, supporting the achieved 95% accuracy. 

• The precision of ~91% confirms that false alarms are 

minimal, an essential feature to prevent unnecessary 

operational interventions. 

• The recall of ~91% ensures that nearly all true leaks 

are correctly identified, addressing safety and 

environmental concerns. 

 
Leak Localization 

• The scatter plot of predicted versus true leak locations 

(Figure 2) demonstrates a close clustering along the 

ideal diagonal, with an average localization error 

around 5 meters. 

• This precision significantly exceeds common industry 

benchmarks (often 50–100 m), providing operators 

with actionable and high-resolution localization data. 
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Figure 2: Scatter Plot of Predicted Versus True Leak Location 

 

Leak Rate Quantification 

• The plot comparing true and predicted leak rates 

(Figure 3) shows strong agreement, with most points 

tightly aligned around the identity line. 

• The average error in quantifying leak rate is 

approximately 1%, allowing not just detection and 
localization but also precise estimation of leak 

severity, crucial for prioritizing maintenance actions. 

 

 

 
Figure 3: Scatter Plot of Predicted Versus True Leak Rates 

 

A. Comparative Perspective 

PINN performance was compared to two benchmark 

approaches — a black-box machine learning (ML) model 

without physics constraints, and a traditional Real-Time 

Transient Model (RTTM). As summarized in Table 2, the 

hybrid PINN substantially reduced errors while maintaining 
superior detection metrics. 

 
Table 2: COMPARATIVE ANALYSIS 

Model Accuracy Precision Recall 
Loc. 

Error (m) 

Rate 

Error 

(%) 

PINN 

(Ours) 
0.95 0.91 0.91 ~5 ~1 

Black-

box ML 
0.93 0.89 0.87 ~11 ~1.5 

RTTM 0.88 0.81 0.79 ~20 ~2.4 

 

These results validate the benefit of integrating physical 
constraints into the learning process, reducing both localization 

and rate estimation errors, and enhancing generalization. 

 

V. DISCUSSION 

The results presented in this study demonstrate that hybrid 

Physics-Informed Neural Networks (PINNs) can deliver high-

precision, physically consistent, and operationally 
actionable solutions for multiphase pipeline leak detection, 

localization, and quantification. By embedding first-principles 

physics directly into the learning framework, the model 

effectively bridges the gap between purely data-driven black-

box approaches and traditional simulation-based techniques. 

 

A. Integrated Performance  

The hybrid PINN achieved an overall accuracy of 95%, 

with precision and recall both around 91% (see Figures 1 and 

2), underscoring its robust capability to correctly identify 

leak events while minimizing false alarms. Such reliability 
is critical for real-world deployment, where unnecessary 

false-positive responses lead to significant operational and 

economic costs. 

The average localization error of approximately 5 

meters (Figure 3) significantly outperforms industry standards, 

which often tolerate errors up to tens of meters. This high 

localization fidelity empowers maintenance teams to act 

quickly and with targeted precision, greatly reducing 

excavation areas and downtime. Compared to previous works 

that focus on coarse leak section classification or approximate 

segment-level localization [1,2,3,4,7,8,9,10], this precise 

regression-based approach demonstrates a major advancement 
in actionable pipeline monitoring. 

Furthermore, the model's mean absolute error for leak 

rate estimation is approximately 1% (Figure 4), enabling 

operators not only to detect and locate leaks but also to assess 

their severity with high confidence. This continuous and 

physically plausible quantification capability is rarely 

addressed in existing studies, which often limit themselves to 

discrete severity classes or detection-only tasks. Fine-grained 

quantification supports better prioritization, risk assessment, 

and informed regulatory reporting. 

 
B. Physical Consistency, Interpretability, and Robustness 

The explicit incorporation of mass and momentum 

conservation losses into the PINN’s objective function ensures 

strong physical consistency and enhances interpretability. This 

approach mitigates the risk of "shortcut learning," where purely 

data-driven models might exploit spurious correlations rather 

than meaningful flow dynamics, a risk particularly acute in 

rare-event settings like leak detection. 

Robustness was validated across a wide range of leak 

magnitudes (0.1–5% of nominal flow), various flow regimes 

(stratified, slug, and annular), and under synthetic sensor noise 
and operational transients (see Figure 5). The model’s ability to 

maintain consistently low errors across these different 

operating conditions establishes a strong foundation for its 

generalization to real-world pipeline environments. 

 

C. Comparison with Existing Methods and Literature 

When benchmarked against baseline models—such as black-

box neural networks without physics loss and classical real-

time transient modeling (RTTM)—the hybrid PINN 

consistently outperformed on all key metrics, including 

localization and quantification errors (see comparative Table 

4.2). These results empirically validate the hypothesis widely 
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suggested in recent literature that integrating physics 

constraints into machine learning models yields substantial 

gains in physically complex, data-sparse diagnostic tasks. 

While these results are promising, several limitations must be 

acknowledged. The current validation relies on high-fidelity 

synthetic data; although operational disturbances and realistic 

noise levels were simulated, in-field validation with actual 

multiphase flow data and diverse sensor types remains crucial. 

Additionally, although the PINN framework supports 
uncertainty quantification (e.g., using deep ensembles or Monte 

Carlo dropout), this aspect was not fully explored in the present 

study and represents an important direction for future work, 

particularly to support risk-informed operational decision-

making. 

 

D. Practical and Research Implications 

These findings showcase the readiness of PINN-based 

approaches to transform leak detection and localization systems 

(LDS) for complex pipeline networks. For practical 

deployment, further field validation under uncontrolled, real-

world conditions and expanded sensor configurations—
including fiber-optic sensing and distributed acoustic 

monitoring—will be essential. Integration with existing 

SCADA systems and operational workflows will also be a 

critical step toward widespread adoption. 

From a research perspective, this work opens several exciting 

directions: (a) implementing event-based cross-validation 

protocols to rigorously characterize uncertainty; (b) developing 

regime-adaptive PINN architectures or mixture-of-experts 

models to handle highly heterogeneous flows; and (c) designing 

lightweight, real-time deployable PINN variants for edge 

instrumentation. 

VI.  CONCLUSION 

This study presents a comprehensive framework leveraging 

hybrid Physics-Informed Neural Networks (PINNs) for 

simultaneous leak detection, localization, and quantification in 

multiphase pipeline systems. By explicitly integrating physical 

principles—specifically mass and momentum conservation—

into the learning process, the proposed approach effectively 
combines the strengths of traditional first-principles models 

with the flexibility and pattern-recognition capabilities of deep 

learning. 

The results confirm that the PINN achieved a high detection 

accuracy of 95%, with precision and recall both around 

91%, demonstrating robust discrimination between leak and 

non-leak events under varying operational conditions. 

Furthermore, the model delivered an average localization 

error of only ~5 meters, and a leak rate estimation error of 

approximately 1%, outperforming both black-box machine 

learning and classical real-time transient modeling (RTTM) 
baselines. 

These performance levels significantly exceed typical industry 

standards and address critical operational needs by enabling 

rapid, precise, and reliable leak mitigation. In addition to 

detection, the ability to accurately localize and quantify leaks 

provides operators with actionable insights, enhancing safety, 

reducing environmental risk, and minimizing operational 

disruptions. 

The study also underscores the interpretability and robustness 

advantages of physics-informed learning frameworks. The 

model maintained strong performance across diverse flow 

regimes, leak magnitudes, and in the presence of sensor noise 

and transients, suggesting strong potential for generalization to 

real-world conditions. 

Future work will focus on field validation using real multiphase 

pipeline data, further exploration of uncertainty quantification 

techniques to support risk-informed decision-making, and 

integration with advanced sensing technologies and operational 

SCADA systems. Additionally, developing real-time and edge-
deployable versions of the PINN will be key for enabling 

widespread, on-site implementation. 

In summary, this work highlights the transformative potential 

of hybrid PINNs as a next-generation solution for intelligent 

pipeline monitoring and diagnostics, bridging the gap between 

data-driven analytics and physically grounded modeling to 

advance the safety, efficiency, and sustainability of pipeline 

operations. 
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