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Abstract: 
At the Dalat Nuclear Research Reactor (DNRR) in Vietnam, some calculations and experiments of the 

Boron Neutron Capture Therapy (BNCT) method have been performed at horizontal channel No. 2 of the 

DNRR using a phantom. This research used the Monte Carlo N-Particle version 5 (MCNP5) code to 

simulate and calculate the distribution of absorbed dose components of the BNCT method. The collimator 

of horizontal neutron channel No. 2 of the DNRR was changed from cylindrical to conical to increase the 

flux of the neutron beam. Simultaneously, neutron crystal filters corresponding to 20 cm Si and 3 cm Bi 

are also employed to produce high-purity thermal neutron beams. The thermal neutron flux and absorbed 

dose components have been computed in a water phantom. The gamma dose from the reactor core of the 

DNRR can be omitted when calculating the total absorbed dose in the BNCT method. 

 

Keywords —BNCT, water phantom, absorbed dose,MCNP, collimator 

-------------------------------------------------************************-------------------------------------------------- 

1. INTRODUCTION 

Boron Neutron Capture Therapy (BNCT) will 

selectively damage cancer cells that are difficult to 

achieve with other treatments. Therefore, BNCT 

was suggested as a possibility to treat brain tumors 

in 1951 [1-3]. So far, the neutron sources for BNCT 

are a thermal nuclear research reactor or an 

accelerator [4–5]. For example, the HANARO 

reactor in Korea [3] used a combination of single-

crystal Si and Bi filters to generate a thermal 

neutron beam for BNCT research because single-

crystal Si and Bi have a relatively small total cross-

section for thermal neutrons. Furthermore, single-

crystal Bi reduces gamma rays mixed in the neutron 

beam from the reactor core as well as secondary 

gamma rays created by the single-crystal Si filter. 

As a result, they are often used to generate pure 

thermal neutron beams.Before conducting clinical 

trials, preclinical studies are often simulated and 

tested on models (phantoms). Two types of 

materials commonly used to design phantoms for 

BNCT research are water and polyethylene because 

the densities of these two materials are almost 

similar to that of tissue. Water phantom has been 

used experimentally at the Tehran research reactor 

(TRR) in Iran[6].  For the last ten years, simulation 

calculations and experiments related to the 

absorbed dose of the BNCT method have been 

performed at horizontal channel No. 2 of the DNRR 

in Vietnam. However, the gamma dose (including 

the dose of gamma rays from the reactor and 

gamma rays produced by the reaction of the 

phantom material with neutrons) has not been 

calculated in detail. This study provides 

information about assessing the absorbed dose 

components of the BNCT method using the 

MCNP5 code. These include improvements in the 

shape of the collimator to increase the thermal 

neutron flux and detailed calculations of component 

gamma doses. 
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2. MATERIALS AND METHODS 

2.1. Confirm the simulated values for cylindrical 
collimator by experiments 

The DNRR is a 500 kW pool-type research reactor 

with four horizontal neutron channels. Three of the 

neutron channels (Nos. 1, 2, and 4) are oriented 

radially toward the reactor core's center, whereas 

channel No. 3 is tangential to the reactor core's 

outer edge [7-8]. 

Currently, the horizontal channel No.2 design 

includes a cylindrical collimator with a total length 

of 240.3 cm made upof two parts. The first part is 

150.3 cm long and 9 cm in diameter. It installs 

neutron filters made of Si and Bi crystals with 

thicknesses of 20 cm and 3 cm, respectively. The 

second part is 90 cm long with an outer diameter of 

20.1 cm and a inner diameter of 3cm. The current 

configuration of horizontal channel No. 2 is seen in 

Figure 1. 

An aluminum plate is used to stop water leaks, 

while the lining layers around the collimators are 

composed of Pb and WWX-277 (a neutron 

shielding material from the Shieldwerx company) 

as gamma and neutron absorption materials, 

respectively [9].  
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Fig.1. Structure of horizontal channel No.2 with the cylindrical collimator 

As shown in Figure 1, a thermal neutron beam will 

be generated after passing through a single-crystal 

filter assembly made up of 20 cm Si and 3 cm Bi, 

which will be used for a variety of applications 

such as nuclear data measurement, neutron 

activation analysis, and BNCT research. 

First, the MCNP5 code is used to simulate the 

structure of horizontal channel No. 2 in Figure 1, 

and then the thermal neutron flux and gamma dose 

rate in the water phantom were calculated using 

tally F4 with the DE4/DF4 cards of MCNP5. The 

following equations [10] are used to compute these 

values: 

∫
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where φthis the thermal neutron flux, and ϕn(E)is the 

neutron flux. In this paper, the energy range of 

thermal neutrons (0.025 eV) is calculated from 

1.0×10
-3

 eV to 0.5 eV, γD
&

is the gamma dose rate 

and R(E) is the conversion factor of neutron flux to 

gamma dose rate. 

Second, we used the activation foils and 

Thermoluminescent Dosimeters to measure thermal 

neutron flux and gamma, respectively, to validate 

the above-simulated and computed values. The 

results showed that there was a good agreement 

between experimental and simulation results for the 

thermal neutron flux and gamma dose rate, as 

reported by us [11]. 

2.2. Change the shape of the collimator to increase 
the neutron flux 

Finally, we utilized the MCNP5 code to simulate 

modifying the form of the neutron collimator to 

increase the flux of the neutron beam, which also 

increases the total absorbed dose of the BNCT 

method, as shown in Eq. (3). The conical collimator 

design of horizontal channel No. 2, which was 
simulated to increase the neutron flux and calculate 

the total absorbed dose for the BNCT application, is 

seen in Figure 2. The simulated result of thermal 

neutron flux at 2 cm depth in the phantom supplied 

by the conical collimator may be enhanced by a 

factor of 8.35, as shown in Table 1. 
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Fig.2. Structure of horizontal channel No.2 with the new collimator (conical shape) 

 

Table 1. Simulated results of the thermal neutron flux and 
gamma dose rate forthe cylindrical and conical collimators 

Type of 

collimator 

Thermal 

neutron flux φth 

(n.cm2.s-1) 

Gamma dose 

rate γD
&

 

(Gy.h-1) 

Filters 

(cm) 

Si Bi 

Cylinderical 

collimator (A) 
1.12×107 1.89×10-3 20 3 

Conical 

collimator (B) 
9.35×107 1.90×10-2 20 3 

Ratio B/A 8.35 10.05   

2.3. Calculation of absorbed dose components 

There are four absorbed dose components that are 

often studied in BNCT: (i) boron dose, (ii) thermal 

neutron dose, (iii) gamma dose, and (iv) fast 

neutron dose [12-15]. However, with the current 

configuration of horizontal channel No. 2, the fast 

neutron dose is extremely low and may be 

negligible. Consequently, the following estimate of 

the total absorbed dose in BNCT is [13-14]: 

γ
+Φ××−×+×−×=

γ
++=

D
th

)
N

C141078.6
B

C141043.7(   

D
N

D
B

D  D

(3) 

where D is the total absorbed dose; DB is the boron 

dose; DN is the thermal neutron dose; Dγ is the 
gamma dose, including gamma from the reactor 

coreand gamma generated by the interaction of 

thermal neutrons with the hydrogen of the water 

phantom; CB is the concentration of 
10

B (the value 

chosen in this calculation is 30 ppm); CN is the 

concentration of 
14

N (chosen to be 2%)[14], and Φth 

is the thermal neutron fluence (n.cm
-2

). When 

calculating dose in BNCT, the concept of thermal 

neutron fluence (Φth) is often used instead of the 

concept of thermal neutron flux (φth). The 

relationship between these two quantities is 

calculated as follow: 

t
thth

×φ=Φ    (4) 

where t is the time in seconds. 

3. Results and Discussion 

3.1. Neutron fluxes and gamma doses for the 
conical collimator 

According to Table 1, when both the shape and the 

solid angle of the collimator are changed, the 

thermal neutron flux and gamma dose rate increase 

approximately 8.35 times and 10.05 times, 

respectively. Simulation results for the distribution 

of thermal neutron flux and gamma dose in the 

water phantom are presented in Tables 2 and 3, 

respectively. 

Table 2. Thermal simulated neutron flux along the central axis 
of the phantom by MCNP5 

 

No. 
Position 

(cm) 

φth (n.cm-2.s-1) 

Mean Error (%) 

1 0 1.46×108 1 

2 0.5 1.78×108 1 

3 1 1.49×108 1 

4 2 9.35×107 1 

5 3 5.69×107 1 

6 4 3.53×107 1 

7 5 2.20×107 1 

8 6 1.42×107 1 

9 7 9.32×106 1 

10 8 6.15×106 2 

11 9 4.05×106 2 

12 10 2.70×106 2 

Table 3. Gamma dose along the central axis of the phantom 
simulated by MCNP5 
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No. 

Positi

on 

(cm) 

 

Dγ (Gy)  Dγ (Gy) 

Mean 
Error 

(%) 
 Mean 

Error 

(%) 

from reactor, with 

phantom 
 

from reactor, without 

phantom 

1 0 5.99×10-6 1  4.56×10-8 7 

2 0.5 8.11×10-6 1  4.64×10-8 7 

3 1 8.02×10-6 1  4.93×10-8 7 

4 2 6.88×10-6 1  4.47×10-8 7 

5 3 5.27×10-6 1  4.36×10-8 7 

6 4 4.00×10-6 1  4.47×10-8 7 

No. 

Positi

on 

(cm) 

 

Dγ (Gy)  Dγ (Gy) 

Mean 
Error 

(%) 
 Mean 

Error 

(%) 

from reactor, with 

phantom 
 

from reactor, without 

phantom 

7 5 3.06×10-6 1  4.43×10-8 7 

8 6 2.39×10-6 2  4.21×10-8 7 

9 7 1.79×10-6 2  4.41×10-8 8 

10 8 1.38×10-6 2  4.23×10-8 8 

11 9 1.14×10-6 2  3.98×10-8 8 

12 10 8.74×10-7 2  4.22×10-8 8 

Table 2 and Figure 3 show that the maximum value 

of thermal neutron flux is 1.78×10
8
 n.cm

-2
.s

-1
 at 0.5 

cm depth and then decreases to 5.69×10
7
 n.cm

-2
.s

-1
 

at 3 cm depth in the water phantom. 
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Fig. 3. Thermal neutron flux distribution in the phantom 

Figure 4 displays the two-dimensional distribution 

of the thermal neutron flux in the phantom. The 

neutron flux area accounts for approximately 87% 

(with a value of 1.25×10
8
 n.cm

-2
.s

-1
) of the total 

neutron flux, which is dispersed mostly from the 

phantom surface to a depth of about 3 cm and 

drastically decreases at depths higher than 5 cm in 

the phantom.  
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Fig. 4. 2-D thermal neutron flux distribution in the phantom 

3.2. Absorbed dose components of BNCT method 

After obtaining the simulated values of thermal 

neutron flux and gamma dose, as indicated in 

Tables 2 and 3, respectively, the total absorbed dose 

of the BNCT method has been calculated by 

applying Eqs. (3) and (4). The results of these 

calculations are reported in Table 4. 

Table 4. Calculated results of the total absorbed dose in the water phantom for the conical collimatior  

No. 
Position 

(cm) 

Dose (Gy) 

Boron dose  

DB 

Thermal neutron 
dose 

DN 

Gamma dose 

Dγ (with 
phantom) 

Gamma dose 

Dγ (without 
phantom) 

Total absorbed 
dose 

D 

1 0 3.25×10-4 1.98×10-5 5.99×10-6 4.56×10-8 3.51×10-4 

2 0.5 3.97×10-4 2.41×10-5 8.11×10-6 4.64×10-8 4.29×10-4 

3 1 3.32×10-4 2.02×10-5 8.02×10-6 4.93×10-8 3.60×10-4 

4 2 2.08×10-4 1.27×10-5 6.88×10-6 4.47×10-8 2.28×10-4 
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No. 
Position 

(cm) 

Dose (Gy) 

Boron dose  

DB 

Thermal neutron 
dose 

DN 

Gamma dose 

Dγ (with 
phantom) 

Gamma dose 

Dγ (without 
phantom) 

Total absorbed 
dose 

D 

5 3 1.27×10
-4

 7.72×10
-6

 5.27×10
-6

 4.36×10
-8

 1.40×10
-4

 

6 4 7.87×10
-5

 4.79×10
-6

 4.00×10
-6

 4.47×10
-8

 8.75×10
-5

 

7 5 4.90×10
-5

 2.98×10
-6

 3.06×10
-6

 4.43×10
-8

 5.51×10
-5

 

8 6 3.17×10
-5

 1.93×10
-6

 2.39×10
-6

 4.21×10
-8

 3.60×10
-5

 

9 7 2.08×10
-5

 1.26×10
-6

 1.79×10
-6

 4.41×10
-8

 2.39×10
-5

 

10 8 1.37×10
-5

 8.34×10
-7

 1.38×10
-6

 4.23×10
-8

 1.60×10
-5

 

11 9 9.03×10
-6

 5.49×10
-7

 1.14×10
-6

 3.98×10
-8

 1.08×10
-5

 

12 10 6.02×10
-6

 3.66×10
-7

 8.74×10
-7

 4.22×10
-8

 7.30×10
-6

 

Note: The concentrations of boron (CB) and nitrogen (CN) used are 30 ppm and 2%, respectively. 

The reactions captured thermal neutrons from 

hydrogen in the water phantom Hγ)H(n,
21 , which 

mainly contributed to the gamma dose in the water 

phantom, as shown in Table 3 and Figure 5.  
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Fig. 5. Gamma dose distribution by in the phantom 

The gamma radiation at the phantom's surface is 

enhanced approximately 130 times compared to 

that without the phantom (from 4.56×10
-8

 Gy to 

5.99×10
-6

 Gy) but about three times lower than the 
thermal neutron dose, as presented in Figure 

6.Furthermore, Figures 3 and 5 indicate that the 

curves of thermal neutron flux and gamma dose 

have the same shape, which means the thermal 

neutron capture reaction of hydrogen mainly 

contributed to the gamma dose.The MCNP5 

calculation also revealed that the thermal neutron 

dose was approximately three times greater than the 

gamma dose (Figure 6). Our results also indicate 

that the gamma dose is the most significant 

difference when using the horizontal channel or the 

thermal column of the reactor for BNCT research. 

It is smaller than the thermal neutron dose for the 

horizontal channel at DNRR in Figure 7(a), but not 

for the thermal column of a reactor at TRR in 

Figure 7(b). 
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Fig. 6. Gamma and thermal neutron doses distribution in 
phantom 

The absorbed dose components along the central 

axis of the water phantom at the DNRR are shown 

in Figure 7(a). The total absorbed dose, reaching a 

maximum of 4.24×10
-4

 Gy at 0.5 cm depth and 

rapidly decreasing to 1.36×10
-4

 Gy at 3 cm depth in 

the phantom, is mainly due to the boron and 

thermal neutron doses. Our results also show a 

relative agreement between the shapes of absorbed 

dose components in the phantom simulated at the 

DNRR and the results measured in the phantom at 

the TRR in Iran in Figure 7(b). 
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Fig. 7. Distribution of absorbed dose components in the phantom: (a) at DNRR; (b) at TRR 

4. Conclusion 

The MCNP5 code was used to assess the 

contribution of absorbed dose components in a 

water phantom of BNCT research at the DNRR. 

The total absorbed dose depends mainly on the 

boron and thermal neutron doses. The gamma dose 

from the reactor core of the DNRR contributes very 

little compared to the gamma dose generated from 

the phantom material, and it can be omitted when 

calculating the total absorbed dose in the BNCT 

method. 
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