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Abstract: 
            In this paper, we introduce one new function by using �� -sets and study their properties in a 

generalized topological space. Also, we prove every (µ, η)-continuous map is a (µ, η)-��
∗ -map if (Y, η) is 

a generalized submaximal space. Finally, we give the relations between some functions with respect to 

different types of GT. 
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I.     INTRODUCTION 

The notion of a generalized topological space 

was introduced by Császár  in [3]. Let X be any 

non-null set. A family µ ⊆ exp(X) is a generalized 

topology [6] in X if ∅ ∈ µ and ⋃ ���∈
 ∈ � 

whenever {Gt | t ∈ T} ⊆ µ where exp(X) is a power 

set of X. We call the pair (X, µ) as a generalized 

topological space (GTS) [6]. If X ∈ µ, then the pair 

(X, µ) is called a strong generalized topological 

space (sGTS) [6]. Let Y be a subset of X. Then the 

subspace generalized topology [2] is defined by, 

�� = �� ∩ �	|	� ∈ �} and the pair (Y, ��) is called 

as the subspace generalized topological space [2].  

 

Let (X, µ) be a GTS and A be a subset of X. The 

interior of A [6] denoted by iA, is the union of all  

µ-open sets contained in A and the closure of A [6] 

denoted by cA, is the intersection of all µ-closed 

sets containing A when no confusion can arise. The 

elements in µ are called the µ-open sets, the 

complement of a µ-open set is called the µ-closed 

set and the complement of µ is denoted by 	�� . 

Denote {U ∈ µ | U ≠ ∅} by ��  [5] and denote       

{U ∈ µ | x ∈ U} by µ(x) [5].  

Throughout this paper, ℝ	denote the set of all 

real numbers. The notations X3, X4 and X5 are 

means that the sets {a, b, c}, {a, b, c, d} and {a, b, 

c, d, e}, respectively. 

II.    PRELIMINARIES 

In this section, we remember some basic 

definitions and lemmas which will be useful in the 

development of the next sections. 

A subset A of a GTS (X, µ) is said to be a         

µ-nowhere dense [5] (resp. µ-dense [6], µ-codense 

[6]) set if ic(A) = ∅ (resp. cA = X, c(X - A) = X). A is 

said to be a µ-strongly nowhere dense set [5] if for 

every � ∈ ��  there is � ∈ ��  such that U ⊆ V and      

U ∩ � = ∅. Then A is said to be a µ-meager (or     

µ-first category) (resp. µ-s-meager (or µ-s-first 

category)) set [5] if � = ⋃ ���∈ℕ where An is a              

µ-nowhere dense (resp. µ-strongly nowhere dense) 

set for all � ∈ ℕ,  ℕ is the set of all Natural numbers. 

 

In a GTS, every subset of a µ-strongly nowhere 

dense set is a µ-nowhere dense set and every subset 

of a µ-meager (resp. µ-s-meager) set is µ-meager 

(resp. µ-s-meager) [5].  
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Let (X, µ) be a GTS and A be a subset of X. 

Then A is said to be a µ-second category (µ-II 

category) (resp. µ-s-second category (µ-s-II 

category)) set [5] if A is not a µ-meager (resp. µ-s-

meager) set. A is a µ-residual (resp. µ-s-residual) [5] 

set if X - A is a µ-meager (resp. µ-s-meager) set. 

 

A GTS (X, µ) is said to be µ-II category (resp.       

µ-s-II category) if X is µ-II category (resp. µ-s-II 

category) as a subset. A space X is called a Baire 

space (BS for short) (resp. weak Baire space (for 

short, wBS)) [5] if each � ∈ �� is of µ-II category 

(resp. µ-s-II category) in X. A space (X, µ) is a 

strong Baire space, in short sBS [5] if                 

�! ∩ �" ∩ …	��  is of µ-II category set for all 

�!, �", … , �� ∈ � such that �! ∩ �" ∩ …	�� ≠ ∅. 

 

Also, every sBS is a BS and every BS is a wBS 

[5]. Equivalently, (X, µ) is called a Baire space [6] 

if for any sequence ���}�∈ℕ  consisting of µ-open 

and µ-dense subsets of X, ⋂ ���∈ℕ 	is a µ-dense set 

in X. 

 

Define �⋆ = '⋃ (�!
� ∩ �"

� ∩ … ∩ ��)
� *� +	�!

�, �"
�, …, 

��)
� ∈ �}	 and 	�⋆⋆ = �� ⊂ -	|�  is of µ-II category 

set} ∪ �∅} [5]. Then � ⊂ �⋆	and � ⊂ �⋆⋆	if (X, µ) is 

a Baire space [5]. Also, �⋆ ⊂ �⋆⋆	if (X, µ) is a sBS 

[9].   

 

In a GTS, define �/ = �∅} ∪ �� ⊂ -|	�	is of µ-

s-II category set} [12]. Then 	�⋆⋆ ⊂ �/ , � ⊂ �/  if     

(X, µ) is a wBS and �⋆ ⊂ �/ 	if (X, µ) is a sBS [12]. 

 

A space (X, µ) is called hyperconnected [4] if 

every non-null µ-open subset of X is µ-dense in X. 

Let (X, µ) be a GTS. X is said to be a generalized 

submaximal space [4] if every µ-dense subset of X 

is a µ-open set in X.  

 

 

The following lemmas will be useful in the 

sequel. 

 

Lemma 2.1. [6, Lemma 3.2] Let (X, µ) be a GTS 

and let A, U ⊆ X. If � ∈ �� and U ∩ A = ∅, then           

U ∩ cA = ∅.  

 

Lemma 2.2 [6, Theorem 5.3] Let (X, µ) be a GTS. 

The following are equivalent. 

(a) X is Baire. 

(b) If A ≠ ∅ is µ-residual in X, then A is µ-dense in 

X. 

(c) If B ≠ X is µ-meager in X, then B is µ-codense 

in X. 

(d) Every U ∈	��  is µ-second category in X. 

(e) iF = ∅, for every F is a µ-meager set in X. 

(f) For every µ-closed set Fn with 01� = ∅,
02⋃ 1��∈ℕ 3 = ∅.  

 

Lemma 2.3 [9, Theorem 4.3] Let (X, µ) be a 

hyperconnected space. If X is of µ-II category, then 

(X, µ) is a BS.  

 

III.   NATURE OF 56
⋆-MAP 

In this section, we introduce one new map 

namely, ��
⋆-map and analyze the nature of this map 

in a generalized topological space.  

 

First, we recall some basic definitions defined in 

a generalized topological space for improvement of 

this section.  

 

A subset A of a generalized topological space  

(X, µ) is said to be a µ- �� -set [1] if � =
⋂ ���∈ℕ	 	where each An is a µ-open set. A subset B 

of a generalized topological space (X, µ) is said to 

be a µ-17-set [1] if 8 = ⋃ 8��∈ℕ 	where each Bn is a 

µ-closed set.  

 

A GTS (X, µ) is said to be a generalized �� -

submaximal space [1] if every µ-dense subset of X 

is a µ-��-set in X.  
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Now we define a new map namely, ��
⋆-map in a 

GTS as in the following way; 

  

Definition 3.1. Let (X, µ), (Y, η) be two generalized 

topological spaces and 9: - → �	be a map. Then f is 

said to be a (µ, η)- ��
⋆ -map if 9<!2�3	 is a                

µ-��-set whenever V is a η-dense set.   

 

The existence of a ��
⋆ -map in a generalized 

topological space as shown by the following 

Example 3.2. 

 

Example 3.2. Consider the generalized topological 

spaces (X4, µ) and (X5, η) where µ = {∅, {a, b}, {a, 

b, c}, {a, b, d}, {a, c, d}, {b, c, d}, X}, η = {∅, {a, 

b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}}. 

Define a map 9: 2-=, �3 → 2->, ?3 by f(a) = b; f(b) = 

c; f(c) = d; f(d)= a. Here 9<!2�3 is a µ-��-set in X4 

whenever V is a η-dense set in X5. Thus, f is a        

(µ, η)-��
⋆-map.   

 

Theorem 3.3. Let (X, µ), (Y, η) be two generalized 

topological spaces and 9: - → � be a map. Then the 

following are equivalent.  

(a) f is a (µ, η)-	��
⋆-map. 

(b) If U is a η-codense set in Y, then f
 −1

(U) is a     

µ-17-set in X. 

 

Proof. (a) ⇒ (b). Let U be a η-codense set in Y. 

Then Y - U is a η-dense set in Y and so 9<!2� − �3 

is a µ-��-set in X, by (a). Since 9<!2� − �3 = - − 

9<!2�3 we have - − 9<!2�3  is a µ- �� -set in X 

which implies that 9<!2�3	is a µ-17-set in X.  

 

(b) ⇒ (a). Let B be a η-dense set in Y. Then            

Y - B is a η-codense set in Y and so 9<!2� − 83 is a 

µ-17-set in X, by (b). This implies - − 9<!283	is a 

µ-17-set in X which implies that 9<!283 is a µ-��-

set in X. Therefore, f is a (µ, η)-	��
⋆-map. 

   

Corollary 3.4.  Let (X, µ), (Y, η) be two generalized 

topological spaces and 9: - → � be a map. If f is a 

(µ, η)-	��
⋆-map, then the following hold.  

(a) If A is a η-nowhere dense set in Y, then 

9<!2�3	is a µ-17-set in X. 

(b) If B is a η-strongly nowhere dense set in Y, then 

9<!283 is a µ-17-set in X.   

 
Proof. We will present the detailed proof only for 

(a). Let A be a η-nowhere dense set in Y. Then 

0ABA� = ∅  and so BA2� − �3 = � which implies 

that A is a η-codense set in Y. By hypothesis and 

Theorem 3.3, 9<!2�3	a µ-17-set in X.  

 

Corollary 3.5.  Let (X, µ) be a GTS, (Y, η) be a BS 

and 9: - → � be a map. If f is a (µ, η)-��
⋆-map, then 

the following hold.  

(a) If A is a η-residual set in Y, then 9<!2�3	is a     

µ-��-set in X. 

(b) If B is a η-meager set in Y, then 9<!283	is a     

µ-17-set in X.   

 

Theorem 3.6.  Let (X, µ) be a GTS, (Y, η) be a 

hyperconnecded space and 9: - → � be a map. If Y 

is of η-II category and if f is a (µ, η)-��
⋆-mapping, 

then for any η-��-set A ⊆ Y, 9<!2�3 is a µ-��-set.   

 

Proof. Let A be a η- �� -subset of Y. Then � =
⋂ ���∈ℕ	  where each An is a η-open set in Y and so 

An is a η-dense set in Y for all � ∈ ℕ, by hypothesis. 

Since (Y, η) is a hyperconnecded, η-II category 

space we have (Y, η) is a BS, by Lemma 2.3. 

Therefore, A is a η-dense set in Y. Hence 9<!2�3	is 

a µ-��-set in X, since f is a (µ, η)-��
⋆-map. 

 

Theorem 3.7. Let (X, µ) be a hyperconnecded space, 

(Y, η) be a GTS and 9: - → � be a map. If X is of  

µ-II category and if f is a (µ, η)- ��
⋆ -map, then 

9<!2�3  is a µ-dense set in X whenever A is a         

η-dense subset of Y.   

 

Proof. By hypothesis and Lemma 2.3, (X, µ) is a BS. 

Let A be a η-dense subset of Y. Then 9<!2�3 is a   

µ- �� -set in X, by hypothesis and so 9<!2�3 =
⋂ ���∈ℕ	 	where each An is a non-null µ-open set in 

X. By hypothesis, An is a µ-dense set in X for all 
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� ∈ ℕ which implies that 9<!2�3 is a µ-dense set in 

X, since (X, µ) is a BS.   

 

Theorem 3.8. Let (X, µ) be a GTS, (Y, η) be a 

generalized �� -submaximal space and 9: - → �	be 

a map. If 9<!2�3	is a µ-��-set whenever A is a η-�� 

-subset of Y, then f is a (µ, η)-	��
⋆-map. 

 

Theorem 3.9. Let (X, η), (Y, µ) be two GTSs and 

9: 2-, ?3 → 2�, �3  be a map. If ( �, �⋆⋆3  is a 

generalized �� -submaximal, Baire space and the 

complement of a �⋆⋆-��-set is not a �⋆⋆-��-set, then 

the following are equivalent.  

 (a) f is a (η,	�⋆⋆)-��
⋆-map.  

(b) For any �⋆⋆-��- set A in Y, 9<!2�3 is a η-��-set.   

 

Proof. Suppose f is a (η,	�⋆⋆)-��
⋆-map. Let A be a  

�⋆⋆-��-subset of Y. Then � = ⋂ ���∈ℕ	  where each 

An is a �⋆⋆-open set and so Y - A = ⋃ 2� − ��3�∈ℕ  

where each Y - An is a �⋆⋆-closed subset of Y. Now 

we prove A is a �⋆⋆ -residual set in Y. Suppose 

0C⋆⋆2� − ��3 ≠  ∅ for some n. Then there exists 

� ∈ ��⋆⋆such that G ⊆ Y - An. Thus, G is of µ-II 

category so that Y - An is of µ-II category, since 

subset a meager set is a meager set. Therefore,        

Y - An	∈ ��⋆⋆ so that � − � ∈ ��⋆⋆  Thus, Y - A is a 

�⋆⋆-��-set which is a contradiction to the hypothesis 

so that 0C⋆⋆2� − ��3 = ∅ for all n. Therefore, each     

Y - An is a �⋆⋆-nowhere dense set. Hence Y - A is a 

�⋆⋆ -meager set implies that A is a �⋆⋆ -residual 

subset of Y. By hypothesis and Lemma 2.2, A is a 

�⋆⋆-dense subset of Y. By assumption, 9<!2�3 is a 

η-��-set. Converse follows from Theorem 3.8.           

 

The condition ``the complement of a �⋆⋆-��-set 

is not a �⋆⋆-��-set" cannot be dropped in Theorem 

3.9 as shown by the following Example 3.10. 

 

Example 3.10. Consider the generalized topological 

spaces (X3, η) and (X4, µ) where η = {∅, {a, b}, {a, 

c}, X3}, µ = {∅, {a, b}, {a, b, c}, {a, b, d}, X4}. 

Then �⋆⋆ = {∅} ∪ {{a}, {b}, {a, b}, {a, c}, {a, d}, 

{b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, 

X4} and so (X4, �⋆⋆3 is a generalized ��-submaximal, 

BS. But, there exist U ⊆ X4 which is a �⋆⋆-��-set 

where U = {c, d} and also X4 - U is a �⋆⋆-��-set. 

Define a map 9: 2-D, ?3 → 2-=, �3	 by f(a) = b;     

f(b) = c; f(c) = d. Here 9<!2�3 is a η-��-set in X3 

whenever V is a �⋆⋆-dense set in X4. Thus, f is a 

(η,	�⋆⋆)-��
⋆-map. Let B = {c} be a subset of X4. 

Then B is a �⋆⋆-��-set. Here 9<!283 = {b}. But {b} 

is not a η-��-set in X3. Thus, there exist B ⊆ X4 

which is a �⋆⋆-��-set set but 9<!283 is not a η-��-

set in X3.   

 

Theorem 3.11. Let X be a non-null set and µ, η be 

two generalized topologies defined in X such that   

µ ⊆ η. If f is either a (µ, η)-	��
⋆-map or (η, µ)-	��

⋆-

map, then f is a (η, η)-	��
⋆-map.  

 

Proof. Suppose f is a (µ, η)-	��
⋆-map. Let A be a    

η-dense set in X. Then 9<!2�3 is a µ-��-set and so 

9<!2�3 is a η-��-set in X, since µ ⊆ η. Thus, f is a 

(η, η)-	��
⋆-map.  

Assume that, (η, µ )-	��
⋆-map. Let A be a η-dense 

set in X. Since µ ⊆ η, η-dense is µ-dense. Thus, A is 

a µ-dense set in X. By assumption, 9<!2�3  is a      

η-��-set in X. Therefore, f is a (η, η)-��
⋆-map.  

 

Observation 3.12. Let (X, µ) be a BS. If f is either a 

2�, �⋆⋆3-	��
⋆-map or 2�⋆⋆, �3-	��

⋆-map, then f is a 

2�⋆⋆, �⋆⋆3-	��
⋆-map.  

 

Proof. This observation follows from the fact that 

� ⊆ �⋆⋆if (X, µ) is a BS and the similar arguments 

in Theorem 3.11 so the proof is omitted.  

 

The following Observation 3.13 follows from 

the fact that � ⊆ �/ if (X, µ) is a wBS.  

 

Observation 3.13. Let (X, µ) be a wBS. If f is either 

a 2�, �/3-	��
⋆-map or 2�/ , �3-	��

⋆-map, then f is a 

2�/, �/3-	��
⋆-map. 

 

Observation 3.14. Let (X, µ) be a sBS. Then the 

following hold. 
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(a) If f is either a 2�⋆, �⋆⋆3-	��
⋆-map or 2�⋆⋆, �⋆3-

	��
⋆-map, then f is a 2�⋆⋆, �⋆⋆3-	��

⋆-map.  

(b) If f is either a 2�⋆, �/3-	��
⋆-map or 2�/, �⋆3-

	��
⋆-map, then f is a 2�/ , �/3-	��

⋆-map.  

 

Proof. Suppose (X, µ) is a sBS. Then �⋆ ⊆ 	 �⋆⋆ and 

�⋆ ⊆ 	 �/.  By similar Considerations in Theorem 

3.11, wet get the proof.  

 

Remark 3.15. Let (X,µ) be a generalized 

topological space. Then the following hold.  

(a) Every (µ, µ)-��
⋆-map is a (µ, �⋆3-	��

⋆-map. 

(b) In a BS, every (µ, µ)-��
⋆-map is a (µ, �⋆⋆3-	��

⋆-

map. 

(c) In a wBS, (µ, µ)-��
⋆-map is a (µ, �/3-	��

⋆-map. 

(d) Every 2�⋆⋆, �⋆⋆3- 	��
⋆ -map is a 2�⋆⋆, �/3- 	��

⋆ -

map. 

 (e) In a sBS, 2�⋆, �⋆3-	��
⋆-map is a 2�⋆, �/3-	��

⋆-

map and hence 2�/ , �/3-	��
⋆-map.     

 

Let (X, µ) and (Y, η) be two generalized 

topological spaces. Then the following diagrams are 

always true. 

 

    (µ, η)-��
⋆-map            (�⋆, η)-��

⋆-map 

1. 

 

(µ, ?⋆)-��
⋆-map            (�⋆, ?⋆)-��

⋆-map  

 

 

	2�⋆⋆, ?⋆⋆3-	��
⋆-map            2�/, ?⋆⋆3-	��

⋆-map 

2. 

 

 2�⋆⋆, ?/3-	��
⋆-map            2�/, ?/3-	��

⋆-map 

 

 

Theorem 3.16. Let (X, µ) be a GTS, (Y, η) be a BS 

and 9: 2-, �3 → 2�, ?3 be a map. If f is a (µ, η)-��
⋆-

map, then the following hold. 

(a) f is a 2�, ?⋆⋆3-	��
⋆-map. 

(b) f is a 2�, ?/3-	��
⋆-map. 

(c) f is a 2�⋆, ?⋆⋆3-	��
⋆-map. 

(d) f is a 2�⋆, ?/3-	��
⋆-map.  

Proof. It is a direct consequence of the Definition 

3.1 and using the facts that ? ⊆ ?⋆⋆, ? ⊆ ?/ . 
 

In Theorem 3.16, we replace the condition     

``(Y, η) be a BS" by ``(Y, η) be a wBS", then (b) 

and (d) are holds, only.    

 

Theorem 3.17. Let (X, µ) be a GTS, (Y, η) be a sBS 

and 9: 2-, �3 → 2�, ?3 be a map. If f is a 2�, ?⋆3-��
⋆-

map, then the following hold. 

(a) f is a 2�, ?/3-	��
⋆-map. 

(b) f is a 2�, ?⋆⋆3-	��
⋆-map. 

(c) f is a 2�⋆, ?/3-	��
⋆-map. 

(d) f is a 2�⋆, ?⋆⋆3-	��
⋆-map. 

 

Theorem 3.18. Let (X, µ) be a sBS, (Y, η) be a GTS 

and 9: 2-, �3 → 2�, ?3 be a map. If f is a 2�⋆, ?3-��
⋆-

map, then the following hold. 

(a) f is a 	2�⋆⋆, ?3-	��
⋆-map. 

(b) f is a 	2�/ , ?3-	��
⋆-map. 

(c) f is a 2�⋆⋆, ?⋆3-	��
⋆-map. 

(d) f is a 2�/ , ?⋆3-	��
⋆-map 

 

A generalized topology µ on X is said to satisfy 

the I-property [8] whenever F!, F", … , F� ∈ � 

with F! ∩ F" ∩ … ∩ F� ≠ ∅, 0C2F! ∩ F" ∩ … ∩
F�3 ≠ ∅.  

 

Theorem 3. 19. Let (X, µ) be a GTS and µ has the  

I-property. Then the following hold.  

(a) Every µ-dense subset of X is a �⋆-dense set in X. 

(b) Every µ-codense subset of X is a �⋆-codense set 

in X. 

(c) Every µ-nowhere dense subset of X is a           

�⋆-codense set in X. 

(d) Every µ-strongly nowhere dense subset of X is a 

�⋆-codense set in X. 

(e) If (X, µ) is a hyperconnected space, then (X, �⋆) 

is a hyperconnected space.  

 
Proof. It is enough to prove (a) and (e), only . 

(a). Let A be a µ-dense subset of X and	� ∈ ��⋆ .  

Then � = ⋃ 2�!
� ∩ �"

� ∩ … ∩ ��)
� 3�  where �!

� , �"
� , …,	 
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��)
� ∈ �. Take �G = �!

G ∩ �"
G ∩ …	∩ ��H

G where 

�!
G , �"

G , … , ��H
G ∈ �  with �G ≠ ∅ for some k. By 

hypothesis, 0C�G ≠ ∅	which implies that 0C�G ∈ ��  

which turn implies that 0C�G ∩ � ≠ ∅. Thus, 

� ∩ � ≠ ∅. Therefore, A is a �⋆-dense set in X. 

 

(e). Suppose (X, µ) is a hyperconnected space. Let 

8 ∈ ��⋆. Then 8 = ⋃ 28!
� ∩ 8"

� ∩ … ∩ 8�)
� 3�  where 

8!
�, 8"

� , … , 8�)
� ∈ � . Take 8G = 8!

G ∩ 8"
G ∩ …	∩ 8�H

G  

where 8!
G, 8"

G, … , 8�H
G ∈ � with 8G ≠∅ for some k. 

By hypothesis, 0C8G ≠ ∅  which implies that 

0C8G ∈ ��	 which turn implies that 0C8G is a µ-dense 

set. By (a), 0C8G is a �⋆-dense set in X implies that 

8G is a �⋆-dense set in X. Therefore, B is a �⋆-dense 

set. Hence (X, �⋆3is a hyperconnected space.     

 

Corollary 3.20. Let (X, µ), (Y, η) be a two GTSs 

and η has the I-property. If 9: 2-, �3 → 2�, ?3 is a 

2�, ?⋆3-��
⋆-map, then the following hold.  

(a) f is a 2�, ?3-��
⋆-map. 

(b) f is a 2�⋆, ?3-��
⋆-map.  

 

Proof. This is direct consequence of Theorem 3.19 

(a).     

 

Corollary 3.21. Let (X, µ) be a BS, (Y, η) be a GTS 

and η has the I-property. If 9: 2-, �3 → 2�, ?3 is a 

2�, ?⋆3-��
⋆-map, then the following hold.  

(a) f is a 2�⋆⋆, ?3-��
⋆-map. 

(b) f is a 2�/ , ?3-��
⋆-map.  

 

Lemma 3.22. [10, Theorem 4.9.] Let (X, µ) be a 

generalized submaximal space. Then every µ-dense 

subset of X is a �⋆⋆-dense set in X.  

 

Theorem 3.23.  Let (X, µ) be a generalized 

submaximal space. Then every µ-codense subset of 

X is a �⋆⋆-codense set in X.   

 

Proof. This proof directly follows from Lemma 

3.22 so the proof is omitted. 

The following Example 3.24 (a) shows that the 

condition ``(X, µ) be a generalized submaximal 

space" cannot be dropped in Lemma 3.22 and 

Theorem 3.23. The reverse implication of Lemma 

3.22 and Theorem 3.23 is need not be true as shown 

by the following Example 3.24 (b).  

 

Example 3.24. (a) Consider the generalized 

topological spaces (X4, µ) where µ = {∅, {a, b}, {b, 

c}, {a, b, c}}. Then (X4, µ) is not a generalized 

submaximal space. For, {b} is µ-dense but which is 

not µ-open. Here �⋆⋆ = {∅} ∪ {A | b ∈ A}.  

 

1. Take B = {a, c}. Then B is µ-dense but B is not 

�⋆⋆-dense. For, BC⋆⋆8 = B ≠ X4. 

 

2. Let A = {b}. Then A is µ-codense but A is not 

�⋆⋆-codense. For, BC⋆⋆2X4 - A) = BC⋆⋆ ({a, c, d}) = {a, 

c, d} ≠ X4. 

 

 (b) Consider the generalized topological spaces   

(X4, µ) where µ = {∅, {a}, {a, b}, {b, c}, {a, c}, {a, 

b, c}, {a, c, d}, {a, b, d}, X4}. Then (X4, µ) is a 

generalized submaximal space. Then �⋆⋆ = {∅} ∪ 

{A | a ∈ A}.  

 

1. Let G = {a}. Then G is �⋆⋆-dense but G is not µ-

dense. For, BCG = {a, d} ≠ X4. 

 

2. Let H = {b, c}. Then H is �⋆⋆-codense but H is 

not µ-codense. For, BC(X4 - H) = BC({a, d}) = {a, d} 

≠ X4.  

 

Corollary 3.25. Let (X, µ) be a generalized 

submaximal space. Then the following hold.  

(a) Every µ-nowhere dense subset of X is a         

�⋆⋆-codense set in X. 

(b) Every µ-strongly nowhere dense subset of X is a 

�⋆⋆-codense set in X. 

 

Proof. This is a direct consequence of Theorem 

3.23 so the proof is neglated.  
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Let (X, µ) be a GTS and (Y, η) be a generalized 

submaximal space. Then by Lemma 3.22 the 

following diagram is true.  

 

(µ,	?⋆⋆)-	��
⋆-map                 (µ,	?)-	��

⋆-map 

 

                                           (�⋆, ?)-	��
⋆-map 

 

Corollary 3.26. Let (X, µ) be a BS and (Y, η) be a 

generalized submaximal space. If 9: 2-, �3 → 2�, ?3  

is a (µ,	?⋆⋆)-	��
⋆-map, then the following hold.  

(a)} f is a 2�⋆⋆, ?)-	��
⋆-map. 

(b) f is a 2�/ , ?)-	��
⋆-map 

 

Proof. This proof directly follows from Lemma 

3.22 so the proof is omitted. 

   

IV.  FUNCTIONS ON GTSs 
In this section, we give the relations between 

��
⋆-map and continuous map, feebly open map in a 

GTS. Also, we analyze the nature of four types of 

functions in a generalized topological space. 

 

First of all, we remember some basic definitions 

for the development of this section. 

  

Let (X, µ) and (Y, η) be two GTSs. A function 

9: 2-, �3 → 2�, ?3 is called feebly (µ, η)-continuous 

[7] (resp. (µ, η)-continuous [6]) if 0C(9<!283* ≠∅ 

for every B ⊆ Y with 0A8 ≠∅ (resp. 9<!2�3 ∈ � for 

each U ∈ η). Then f is called a (µ, η)-open (resp. 

feebly (µ, η)-open) map if f(U) ∈ η for each U ∈ µ 

[6] (resp. 0A(92�3* ≠∅ for each 0C� ≠∅ [7]).   

 

Lemma 4.1 [10, Theorem 3.4] Let (X, µ) be a GTS. 

If X is of µ-II category, then the following hold. 

(a) Every µ-meager subset of X is not a µ-residual 

set in X.  

(b) Every µ-residual subset of X is a µ-II category 

set in X. 

(c) Complement of a µ-nowhere dense set is a µ-II 

category set in X. 

 

Lemma 4.2. [11, Theorem 4.6] Let (X, µ), (Y, η) be 

two GTSs and 9: 2-, �3 → 2�, ?3 be a feebly (µ, η)-

open map. If A is η-codense, then 9<!2�3  is          

µ-codense.  

 

Theorem 4.3. Let (X, µ) be a generalized �� -

submaximal space and (Y, η) be a GTS. If 

9: 2-, �3 → 2�, ?3 is a feebly (µ, η)-open map, then 

f is a (µ, η)-��
⋆-map.  

 

Proof.  Let A be a η-dense set in Y. Then Y - A is a 

η-codense set in Y and so 9<!(Y - A) is µ-codense in 

X, by Lemma 4.2. Thus, X - 9<!(A) is a µ-codense 

set in X so that 9<! (A) is µ-dense in X. By 

hypothesis, 9<!(A) is a µ-��-set in X. Hence f is a 

(µ, η)-��
⋆-map. 

  

In Example 4.4, (a) proves that the condition 

``(X, µ) be a generalized ��-submaximal space" can 

not be dropped in Theorem 4.3 and (b) shows that 

the reverse implication of Theorem 4.3 is need not 

be true. 

 

Example 4.4. (a). Consider the generalized 

topological spaces (X4, µ) and (X5, η) where µ = {∅, 

{a, b, c}, {a, c, d}, X4}, η = {∅, {a, b}, {b, c}, {a, b, 

c}, {a, b, d}, {a, b, c, d}}. Then (X4, µ) is not a 

generalized ��-submaximal space. For, let A = {c}. 

Then A is a µ-dense set. But A is not a µ-��-set in 

X4. Define a map 9: 2-=, �3 → 2->, ?3 by f(a) = b; 

f(b) = c; f(c) = a; f(d) = d. Here 0A(92�3* ≠∅ for 

each	0C� ≠∅. Thus, f is a feebly (µ, η)-open map. 

Let   U = {b} be a subset of X5. Then U is a η-dense 

set. But 9<!2�3 = {a} is not a µ-��-set in X4. Thus, 

f is not a (µ, η)-��
⋆-map.  

 

(b). Consider the generalized topological spaces    

(X4, µ) and (X5, η) where µ = {∅, {a, b}, {b, c}, {a, 

b, c}, {a, b, d}, {a, c, d}, {b, c, d}, X4}, η = {∅, {a, 

d}, {b, c}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}}. 

Then (X4, µ) is a generalized ��-submaxi-mal space.  

Define a map 9: 2-=, �3 → 2->, ?3	by f(a) = b; f(b) 

= a; f(c) = d; f(d) = c. Here 9<!2�3	is a µ-��-set in 
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X4 whenever V is a η-dense set in X5. Thus, f is a        

(µ, η)-��
⋆ -map. Choose U = {a, b} ⊆ X4. Then 

0C� ≠∅. But 0A92�3= 0A({a, b}) = ∅. Thus, f is not 

a feebly (µ, η)-open mapping. 

  

Theorem 4.5.  Let (X, µ) be a GTS and (Y, η) be a 

generalized submaximal space. If 9: 2-, �3 → 2�, ?3 

is a (µ, η)-continuous map, then f is a (µ, η)-��
⋆-

map.  

 

Proof.  Let A be a η-dense set in Y. By hypothesis, 

A is η-open so that 9<! (A) is a µ-open set in X, 

since f is a (µ, η)-continuous map. Thus, 9<!(A) is a 

µ-��-set in X. Hence f is a (µ, η)-��
⋆-map.  

 

Example 4.6 (a) proves that the condition ``(Y, η) 

be a generalized submaximal space" cannot be 

dropped in Theorem 4.5 and the converse part of 

Theorem 4.5 is need not be true as shown in 

Example 4.6 (b). 

 

Example 4.6. (a). Consider the generalized 

topological spaces (X3, µ) and (X4, η) where µ = {∅, 

{a, c}, {b, c}, X3}, η = {∅, {b, c}, {b, d}, {b, c, d}}. 

Then (X4, η) is not a generalized submaximal space. 

For, let A = {a, b}. Then A is a η-dense set. But A is 

not a η-open set in X4. Define a map 9: 2-D, �3 →
2-=, ?3 by f(a) = c; f(b) = d; f(c) = b. Here 9<!(U) ∈ 

µ for each U ∈ η. Thus, f is a (µ, η)-continuous map. 

Let U = {c, d} be a subset of X4. Then U is η-dense. 

But 9<!(U) = {a, b} is not a µ-��-set in X3. Thus, f 

is not a (µ, η)-��
⋆-map.  

  

(b) Consider the set X4 with two generalized 

topologies µ, η where µ = {∅, {a, b}, {a, c}, {a, d}, 

{b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, 

X4}, η = {∅, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, 

{a, c, d}, {b, c, d}, X4}. Then (X4, η) is a 

generalized submaximal space. Define a map 

9: 2-=, �3 → 2-=, ?3 by f(a) = d; f(b) = c; f(c) = b; 

f(d) = a. Here 9<!(V) is a µ-��-set in X4 whenever V 

is a η-dense set in X4. Thus, f is a (µ, η)-��
⋆-map. 

Choose U = {d} ⊆ X4. Then U ∈ η. But	9<!2�3 ∉ �. 

Thus,  f is not a (µ, η)-continuous map.  

 
Theorem 4.7. Inverse image of a generalized 

submaximal space is a generalized ��-submaximal 

space whenever the function is (µ, η)-continuous 

and an injective.  

 

Proof.  Let (X, µ) be a GTS and (Y, η) be a 

generalized submaximal space. Suppose 9: 2-, �3 →
2�, ?3 is a (µ, η)-continuous, injective map. Then f 

is a (µ, η)-��
⋆ -map, by Theorem 4.5. Let A be a      

µ-dense subset of X. Then f(A) is a η-dense subset 

of Y, since f is (µ, η)-continuous and so 9<!(f(A)) is 

a µ- �� -set in X, by hypothesis. Since f is an 

injective map, A is a µ-��-set in X. Hence (X, µ) is a 

generalized ��-submaximal space.  

 

Corollary 4.8.  Let (X, µ) be a GTS and (Y, η) be a 

generalized submaximal space. If 9: 2-, �3 → 2�, ?3 

is a (µ, η)-continuous, injective map, then (X, �⋆) is 

a generalized ��-submaximal space.  

 

Theorem 4.9. Inverse image of a hyperconnected 

space is hyperconnected under the feebly (µ, η)-

open, injective map.  

 

Proof. Let (X, µ) be a GTS and (Y, η) be a 

hyperconnected space. Suppose 9: 2-, �3 → 2�, ?3 

is a feebly (µ, η)-open, injective map. Let � ∈ �� . 

By hypothesis, 0A (f(G)) ≠ ∅. Since (Y, η) is a 

hyperconnected space, 0A(f(G)) is a η-dense set and 

so f(G) is a η-dense set. Thus, Y - f(G) is a η-

codense set so that 9<!(Y - f(G)) is a µ-codense set 

in X, by Lemma 4.2. Then X - 9<! (f(G)) is a µ-

codense set and so 9<!(f(G)) is a µ-dense set in X. 

Since f is an injective map, G is a µ-dense set in X. 

Hence (X, µ) is a hyperconnected space.  

 

Theorem 4.10. Let (X, µ) be a GTS, (Y, η) be a 

hyperconnected space and 9: 2-, �3 → 2�, ?3 be a 

feebly (µ, η)-open, injective map. If X is of µ-II 

category and if f is a (µ, η)-��
⋆ -map, then f is a 
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2�⋆⋆, ?3-continuous map and hence 2�/ , ?3-continuous map.  

 

Proof. Let G be a η-open set in Y. Suppose G = ∅. Then 9<!(G) = ∅ and so 9<!(G) ∈ �⋆⋆. Assume that, G 

≠ ∅. By hypothesis, G is a η-dense set in Y. Then 9<!(G) is a µ-��-set, since f is a (µ, η)-��
⋆-map. Suppose 

9<!(G) = ∅. Then there is nothing to prove. Assume that, 9<!(G) is a non-null µ-��-set. Then 9<!2�3 =
⋂ ���∈ℕ where each �� ∈ ��. By hypothesis and Theorem 4.9, (X, µ) is a hyperconnected space so that each 

Gn is a µ-dense set. By hypothesis and Lemma 2.3, (X, µ) is a BS so that 9<!(G) is a µ-dense set in X. Thus, 

9<!(G) is a µ-dense, µ-��-set in X. Here each Gn is a µ-dense set so that 0C(X - Gn) = ∅. Also, X – Gn is a 

µ-closed set in X for each � ∈ ℕ, since each �� ∈ ��. Therefore, each X - Gn is a µ-nowhere dense set. 

Hence X - 9<!(G) is a µ-meager set so that 9<!(G) is a µ-residual set in X. By hypothesis and Lemma 4.1, 

9<!(G) is of µ-II category in X. Thus, 9<!2�3 ∈ �⋆⋆. Therefore, f is a 2�⋆⋆, ?3 -continuous map. Since 

�⋆⋆ ⊆ �/ ,  f is a 2�/ , ?3-continuous map. 

  

Let (X, µ) and (Y, η) be two GTSs. Then the following diagrams are always true. 

 

feebly (�⋆, ?3-open map                      feebly (�, ?3-open map 

 

  1. 

   feebly (�, ?⋆3-open map                       feebly (�⋆, ?⋆3-open map 

 

  

feebly (�/, ?3-open map         feebly (�⋆⋆, ?3-open map 

 

 2. 

feebly (�⋆⋆, ?⋆3-open map                    feebly (�/ , ?⋆3-open map 

 

 

                        (�⋆, ?)-open map                  (�, ?)-open map 

 

3. 

                              (�, ?⋆)-open map             (�⋆, ?⋆)-open map 

 

 

                        (�/ , ?3 -open map                    (�⋆⋆, ?3-open map 

 

        4.  

                                (�⋆⋆, ?⋆3-open map        (�/, ?⋆3-open map 

   

 

         feebly (�, ?⋆)-continuous map                   feebly (�, ?)-continuous map 

 

5.  

        feebly (�⋆, ?)-continuous map       feebly (�⋆, ?⋆)-continuous map    
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       feebly (�, ?/)-continuous map                   feebly (�, ?⋆⋆)-continuous map 

 

 6. 

               feebly (�⋆, ?⋆⋆)-continuous map                   feebly (�⋆, ?/)-continuous map 

 

In the rest of this section, we give some 

properties for cliquish functions in GTSs.   

 

First of all, we remember the definition for 

cliquish function in a GTS. 

 

Here, we will denote the set of µ-continuity 

(resp. µ-discontinuity) points of f, by JC293 

(resp.	KC293) where	9: - → ℝ.  

 

A function 9 ∶ -	 → ℝ is (µ, η)-cliquish if the 

set JA293 is µ-dense [5]. If (X, µ) is a BS and KA293 

is a µ-meager set, then f is (µ, η)-cliquish [5].  

 

Theorem 4.11. Let (X, µ) be a GTS and 9 ∶ -	 → ℝ 

be a map. If µ has the I-property and if f is (µ, η)-

cliquish, then f is a (�⋆, ?)-cliquish function on X 

where η is any GT on X.  

 

Proof. Suppose f is a (µ, η)-cliquish function on X. 

Then JA293 is µ-dense and so JA293 is µ⋆-dense, by 

hypothesis and Theorem 3.19 (a). Hence f is a 

(�⋆, ?)-cliquish function on X. 

 

Theorem 4.12. Let (X, µ) be a generalized 

submaximal space and 9 ∶ -	 → ℝ be a map. If f is 

(µ, η)-cliquish, then f is a (�⋆⋆, ?)-cliquish function 

on X where η is any GT on X.  

 

Theorem 4.13. Let (X, µ) be a weak Baire space 

and 9 ∶ -	 → ℝ be a map. If f is (�/ , ? )-cliquish, 

then f is a (µ, η)-cliquish function on X where η is 

any GT on X.  

 

Theorem 4.14. Let (X, µ) be a generalized 

topological space and 9 ∶ -	 → ℝ  be a map. If 

�⋆⋆ ≠ �∅} and if f is (�/ , ?)-cliquish, then f is a 

(�⋆⋆, ?)-cliquish function on X where η is any GT 

on X. 

 

V. CONCLUSION  

This paper provides the basic analysis for 

carrying out ��
⋆-map in a GTS. We have given a 

special kind of relationship between various types 

of functions in a GTS. 
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