RESEARCH ARTICLE

A Survey of Behavioral Biometric Gait Recognition Current Success and Future Directions

KM Nivedita Singh M.Tech Scholar Computer Science & Engineering

Eshan College of Engineering, Mathura, India

niveditas336@gmail.com

Vyom Kulshreshtha Associate Professor Computer Science & Engineering Eshan College of Engineering, Mathura, India

Vyom19@gmail.com

Abstract-

Essential Feature Selection For A Bipedal Robot's Stability And Effective Operation, Even In Human Or Outdoor Contexts, is described in the abstract. In order to accurately simulate human walking motion, the document covers the use of statistical approaches to isolate relevant features based on gait data. Additionally, it underlines how crucial it is to group gait data according to a person's health in order to identify irregularities and classify them. The difficulties of feature selection, such as the computational complexity brought on by high-dimensional feature vectors and the limitations of conventional manually built feature selection machine learning algorithms, are underlined. The suggested method starts with feature selection and the identification of key features, then classifies the data using a variety of machine learning methods. 17 features from existing datasets are used in the feature extraction method. An ideal set of features is chosen using the ANOVA (Analysis of Variance) method and then included in the machine learning procedure. A threefold cross-validation approach is used to assess the suggested model.

Appropriatelykeywords— bipedal locomotion, gait cycle, biometric identification.

1. INTRODUCTION

A major development in computer science, the merger of bipedal robots and machine learning aims to close the gap between human and artificial intellect and behavior. Robots that can walk on two legs, or bipedal robots, aim to mimic the complex walking patterns found in the human gait cycle. Bipedal robots can undertake tasks that are hazardous, boring, or unhygienic while navigating and operating well in complicated human-built settings because to its simulation. The main objective is to protect human health and safety, as robots can successfully take the place of people in dangerous or poor working conditions. Considering human gait patterns are inherently nonlinear, it can be difficult to comprehend and research their intricate details and underlying characteristics. In particular for classification purposes, machine learning approaches present a viable route for understanding and interpreting the nonlinear elements included in human gait patterns. This thesis examines a wide range of human gait cycles in detail, focusing on anomalies and variations from the typical gait cycle. The study attempts to determine and assess the health state of individuals by contrasting these abnormalities with the average human gait cycle and assessing whether they exhibit a normal or abnormal gait pattern.

Significance and applicability of the research topic

The study of human gait behavior and its use in bipedal robotics have a wide range of practical applications. It can be helpful in the following areas:

1. Understanding the problem of amputees and developing prosthetic legscan both benefit from the study of human gait patterns.

2. Inspection of hazardous areas, such as nuclear reactors, mines below ground, and bomb disposal sites, etc.

3. To comprehend the instability of the human gait and attempt to eliminate it in the bipedal.

4. In identifying and predicting diseases based on an individual's aberrant walking pattern.

5. Because of its two-legged design, the development of bipedal robots is also valuable in the agricultural and entertainment industries. Due to its bipedal form, it may readily replace humans in agricultural settings without causing crop damage from other robot structures.

6. Create a bipedal robot that is energy-efficient for usage in outdoor environments by studying human gait because present flat-footed and bent-knee bipedal robots require more energy

II. Purpose of the literature review

A literature review's objective in this situation is Learn indepth about the current techniques and equipment for

feature selection and gait dataclassification using biometrics.Identify any gaps in the biometric gait data classification literature, particularly with regard to

featureanalysis and optimization methods.

Refine your research's emphasis by utilizing previous methodologies' insights in order to create a better feature selection method.

Understanding past successes will let you propose original solutions or use existing strategies, preventing redundancy.

Establish the efficacy of methodological decisions by citing examples from earlier research.

Integrate pertinent ideas and empirical data to create a theoretical framework, enhancing theintellectual

underpinnings of the study.

Overall, a thorough study of the literature lays the framework for developing an efficient and cutting-edge

feature selection method that will solve present constraints in the classification of biometric gait data.

i. METHODOLOGY

The suggested work adheres to a particular methodology, which is described as follows:

The methodology you have offered describes the steps taken to collect data, describe the dataset, depict joint angles graphically, and choose features utilizing the Analysis of Variance (ANOVA) method. The methodology is summarized as follows:

A. Getting the Dataset, Section: The National Institutes of Health (NIH) assembled the collection, titled " Robita Gait Data," from the Sim Toolkit website and the Open Sim model. The dataset is broken down into four groups or classes: MI, MO, SE, and Normal, which represent various gait patterns of both healthy and impegind popula. There are a total of

both healthy and impaired people .There are a total of 12person datasets for gait analysis and classification, three datasets for each class of individualsThe dataset for each participant has 18 columns with joint angle data and 100 rows every cycle of gait.

B. Graphical Joint Angles: Represented: Each class's joint angles were represented graphically. The hip, knee, and ankle joint angles are shown on these graphs for each class.

C. Features Selected: The features were examined after the database preparation process to see which ones would have the most impact on the datasets. The significance of each attribute was assessed using the statistical method ANOVA (Analysis of Variance). The probability and F-value for each feature across all classes are calculated using ANOVA.

D. The statistical technique known as analysis of variance

(ANOVA) is used to look at how group means vary and how they were calculated.

Ronald Fisher, a statistician and biologist, created it.

The t-test can be extended to compare data from more than two groups using an analysis of variance (ANOVA).

When determining the statistical significance of three or more means, it is extremely helpful.

Overall, this methodology shows a methodical approach to feature selection, analysis, and data collecting that is primarily targeted at comprehending gait patterns and irregularities in the dataset.

Hypothesis Null (H0): The means of the population are all equal.

Hypothesis B: There is a difference in at least one population mean.

The significance level is $\alpha = 0.05$.

Levels of Liberty:

a. Given k as the number of groups, df between = k - 1.

c. Given N as the total number of samples, df inside = N - k. c. df N - 1 = Total

Decision Rule: Reject the null hypothesis if the computed F-value is higher than the crucial F-value; accept the null

hypothesis otherwise. Calculating Test Statistics:

SS between them: The sum of the squares between each group SS inside: Total Squares for groups

SS Sum total: Sum of all squares combined

These are the essential elements needed to perform an F-test

in an ANOVA study for mean equality.

						 Approach: Using a
Subject	Age(years)	Height(cm)	Weight(kg)	Min KFA(deg)	Speed(m/s)	distance function, relate
MI	9.4	131.0	28.2	15.5	0.94	to prior occurrences.
MI	7.9	112.5	21.3	17.7	0.88	•Exploration of
MI	9.1	127.6	23.1	21.1	0.67	of K (3, 5, 7, and 9)
MO	12.4	133.5	78.5	35.7	0.7	were used during
MO	8.7	131.0	21.1	33.1	0.9	5-fold cross-
MO	11.0	143.0	28.7	32.6	1.2	validation is used for
SE	12.2	167.0	37.9	46,5	1.2	vanuation.
SE	13.2	144.0	35.9	60.3	0.8	

3. KNN-based Categorization:

The table below provides a description of thecrouch data set for MI, MO, and SE.

Table 1: Information About Dataset

Gait data classification \triangleright

1. ANN-based Classification:

- ? Architecture: 10 input layer neurons, 4 output layer neurons.
- ? Training Method: Back-propagation algorithm to minimize root mean squared error.
- ? Validation: 5-fold cross-validation.

2. SVM-based Classification:

 Technique: Class separation hyperplane optimization by supervised learning. · Linear, a quadratic polynomials, or radial core function are examples of kernel functions.

• Cross-validation performed five times.

DNN-oriented Grouping: 4

 Technique: To reduce over fitting and underfitting, a DNN classifiers trained them on variables is used.

- Architecture: 10 neurons per hidden layer across 5 layers.
- Cross-validation performed five times

1. Classifier Fusion:

- ? Fusion Technique: Combined results from ANN, SVM, kNN, and DNN using majority voting.
- ? Validation: 5-fold cross-validation.

Literature Review Matrix Table ≻

Author/	Theoretical/	Research	Methodology	Analysis &	Conclusions	Implications	Implications For
Year	Conceptual	Ouestion(s)/	25	Results		for Future	practice
reur	Framework	Hypotheses		results		research	practice
	Tanicwork	Trypomeses			A database of 35	research	Strengthened
1. Vijay	A couple of	What effects	Joints angle	Analyzing data	sets of gait data	Expanded	security mechanisms
Bhaskar	fundamental	does	values were	to find trends in	was used in this	datasets	by accurate
Semwal1.	theories and	incremental	employed in	biometric gait	study to construct	evaluate	classification of gait
Joyeeta	methods for	feature	ANN-based	information.	the unique gait	effectiveness.	data.Reduced
Singha2,	classifying and	analysis have	classification,	Assessment of	recognition system	improved	dangers of identity
Pinki	analyzing	on how	kNNbased	the importance	'robita_gait'.	biometrics	theft in the financial,
Kumari	biometric gait	biometric gait	classification,	of a feature:	ANOVA was used	increase	healthcare, and
Sharma3,	data. Although	data is	DININ-Dased	Classification	10 velidete e group	accuracy, real-	law enforcement
Arun	the framework's	classified?	and classifier	significance	of 10 traits that	time	sectors.Customized
Chauhan4	stated directly	Can the	fusion to identify	evaluation.	were chosen	monitoring	therapy plans for
andBasudeba	Biometric data	suggested	the various gait	Analyzing	from the body	facilitates	recuparation are
Behera	on gait:	method	stages, data	changes to	of previous	seamless	known
2017	Techniques for	increase the	gathering for	determine their	research. The	identification,	as tailored
	Feature	of eleccitring	biometric gait	impact on	IFS method was	integration	rehabilitation Gait
	Selection	biometric gait	analysis.	accuracy.	used to choose	hoosts socurity	analysis-based
	Progressive	data?	Extraction of	Optimized	the best	and athical	improved athletic
	Feature	Biometric gait	features from the	feature	features. A	handling assures	training regimens
	Analysis	data	gathered data.	selection	5fold cross-	privacy	are known as
	Optimisation	categorization	initial feature	analysis: Using	validation of the	privacy.	"sports performance
	Methodologies	accuracy is	selection using	features to pick	study's ANN,		boost Early health
	Models for	improved by	preset standards.	better classes.	SVM, KNN, and		issue detection is
	Classification	incremental	incremental	Analysis of a	DININ classifiers		crucial for accurate
	Metrics for	feature	examination of	classification	overall accuracy		diagnosis and
	Evolution	analysis.	process of feature	model:	values of		treatment.
	Evaluation	In comparison	selection	Using gait data	90.58%		Technology
		to previous	optimization.	to assess the	88.31%.		advancements
		approaches,	a classification	model	87.82%, and		include more
		the suggested	model's training.	Comparing old	92.23%,		analysis systems
		optimal	Evaluation of	and new	respectively.		and wearable
		reature	performance and	techniques	The proposed		technology for
		technique	comparison with	comparing a	classifier		better applications
		increases the	currently used	strategy to	fusion's large		and real-time
		effectiveness	techniques.	current methods	performance		feedback.
		and accuracy		to determine	advantage over		
		of biometric		where accuracy	alternatives was		
		gait data		and efficiency	proven by		1
		classification.		might be	statistical tests.		1
				improved.	The goal of the		1
					improve		1
					prediction		
					accuracy for		
					categorizing		
					both healthy and		
					sick gait states.		
					Gait integration		
					with other		
					biometric data		
					could be done in		
					the future for		
					multi-mode		
1					biometric		1
1	1			1	systems.		

2. G.C. Nandi,	The lower	Understanding	The	6 degrees of	We used a	The development	In order to further
Rupak	extremities of	human	methodology	freedom (3 on	hybrid control	of	develop and
Chakraborty,	humans are	biomechanics and	consists of	each leg) in our	system to solve	agile robotic	USeShybrid
and Shiv A.	important for	dynamics,	presenting	model, with the	steady bipedal	platforms, the	automata ta dagariba
Katiyartogether	pushing	incorporating	information	dynamics and	locomotion,	improvement of	binadal lacomation
with Vijay	recuperation and	push recovery	on human	parameters	creating a bio-	gait efficiency.	with push recovery
Bhaskar	movement	instincts.	walking as a	listed in Table	inspired	the application	with push recovery
Semwal	when confronted	integrating	general	1. Joint curves	humanoid walk	of findings to	capabilities.
2015	with significant	sensory feedback	function.	are shown in	controller that	assistive	collaboration
2010	nerturbations	for stability	using this	and	replicates the	devices the	between fields like
	appears to be the	ensuring	form to create	ourAutomata	human gait	implementation	control theory,
	focus of	adaptability to	a nonlinear	Implementation	cvcle. Our	of learning	biomechanics, and
	attention The	nerturbations and	robot	is shown in .	canonical	algorithms and	robotics for a
	effort to develop	enabling the	controller.	The correlations	equation mimics	the	variety of insights.
	a reusable	development of	using a hybrid	between	different gait	investigation of	sophisticated
	component-	agile bipedal	automata with	comparable leg	natterns.	human	robotic testing in
	based	robots for	discrete and	ioints	focusing on	biomechanics	the real world to
	framework for	complex	continuous	are represented	balance in the	for	confirm usability.
	simulating	onvironmonte ero	states to	by the	1.5-2.0 second	improvamente	User feedback is
	siniulating	the objectives of	represent the	confidence	gait cycle and	in binadal	used to
	la competiania o	ule objectives of	bipedal	intervals of	helps nuch		continuously
	locomotion is a	research on hybrid	system	invariants or	recovery	locomotion are	improve
	crucial	automata-based	the hybrid	At phase ends	comprehension	some of the	robustness and
	component of	push recovery-	system	guards set	Euturo	areas that will	adaptability.
	this work. The	capable bipedal	incorporates	thresholds with	objectives	be the focus of	Design suited to
	originality of the	motion that is	both discrete	the error	include	future research.	particular
	researchers	biologically	(stance) and	narameter K	investigating		requirements, such
	work appears to	inspired.	(stance) and	As a metric of	investigating		as assistive
	rest in their		(swing)	gait model	centulai		technology for
	singular		(swing)	error	human asit		those with
	perspective,		resemble	probability	numan gan		mobility issues.
	which saw this		human gait	gauges joint	modeling and		analysis of
	research from		dividing the	angle time	expanding the		longterm stability
	the perspective		dynamical	transition	nybrid automata		to guarantee
	of software		dynamical	overlen DU	model to		consistent
	engineering and		system mto	overlap. DI	account for		performance
	condensed it.		continuous	are shown	variouswalking		underchanging
			and hydrid	inwhile the	shapes and push		circumstances.
			systems that	inwine the	magnitudes.		Integrating moral
			nave	midstance The	Our research		principles to
			measurable	automata ia	advances the		provide secure
			outputs and	automata is	understanding		human
			are sensitive	M (O ~ ~	of bipedal		deployment and
			to	$M = (Q_{,,,,}, q_0, R_0)$	locomotion		interaction.
			outsidestimuli.	F), where Q	through the use		Outreach and
				has eight states,	of machine		education to
				is the joint	learning for		promote interest in
				angle	mistake		this
				configurations,	correction and a		technology and
				is the flow	solid theoretical		emphasize its
				functions	foundation in		advantages.
				(d()/dt), and $: Q$	automata		, i i i i i i i i i i i i i i i i i i i
				maxP(Q) with	theory. The BIP		
				P(Q) as the	framework		
				transition	continues to be		
				probability (in	crucial to our		
				stochastic	strategy.		
				vector). When	2,		
				expressed as a			
				10° polynomial			
				and its			
				derivative, f()			
				and f'() are			
				equivalent.			
				portrays			

2 C C	The outside	The		I laim a	In this work we want t	Diamatria arti	Euturo hieratuia anit
D. U.U.	adaption and a second	ine	to recognize	Using	in this work, we suggested	Biometric gait	identification
Nandi, vijay	edge approach	effectiveness	numan	accurate	a brandnew technique for	recognition	
Bhaskar	to biometric	of neural	activities, each	person	identifying gaits. The	can be	procedures can
Semwal, and	gait detection	networkbased	activity's	recognition,	accuracy of gait	considerably	contribute to better
Manish Raj	makes use of	methods for	features must	biometric gait	recognition was increased	advanced by	security, better
(2015)	artificial neural	differentiating	be determined	identification	using the suggested	improving the	nealthcare, and more
	networks with	and	using the	employing a	methodology by using	multilayer	individualized user
	a back-	categorizing	variables of a	multilayer	more precise	perceptron's	experiences while
	propagation	particular gait	human	perceptron	spatiotemporal modeling.	ability to	maintaining data
	algorithm and	patterns is	model.For	exhibits	Extensive simulations	adapt to	privacy and
	kernel-based	demonstrated	instance, the	promising	proved that this feature	various	protection by taking
	main	by the use of	consistency of	results. Its	extraction method is quite	datasets,	these consequences
	component	a multilayer	movement	ability to	reliable. The new	creating real-	into account.
	analysis in	perceptron in	across different	process non-	approach greatly increased	time	Improved
	order to extract	biometric gait	body parts in	linear gait data	the rate of classification	applications,	Security
	features.	identification.	terms of speed	and understand	and activity	incorporating	Better Healthcare
	Gait data is	The theory	and direction is	complicated	restructuring.Identification	other	Experiences That Are
	accurately	also suggests	essential when	patterns	of anomalies, illnesses,	biometric	Customized Speedy
	classified into	that	walking.	improves	and possible diseases is	parameters,	Access Technology
	four classes,	incorporating	Walking is	accuracy and	the primary goal of our	and	Advances in
	showing great	deep learning	commonly	individual	research.	investigating	Wearables
	accuracy for	techniques	described as all	identification.		longterm	Data Security
	both indoor	will improve	component	The stability		health	
	and outdoor	the accuracy	velocities	and		monitoring.	
	activities. This	and	above zero	adaptability of		Its adaptation	
	method shows	robustness of	while being	the		for security,	
	promise for	gait	below a	model allow for		while	
	gender, age,	recognition	walking	a clear		addressing	
	race, and other	systems,	threshold [34],	differentiation		issues of	
	applications.	making them	[35]. It's	between		ethics and	
	Its goal is to	a workable	significant to	normal and		privacy,	
	identify	and secure	remember that	pathologicalga		assures	
	abnormal gait	option for	the primary	it patterns.		responsible	
	patterns early,	biometric	distinction	making it		deployment	
	which may	identification	between	easier to spot		and increases	
	offer insights	and	walking and	physiological		its potential	
	into linked	authentication	running is	anomalies		for use in a	
	disorders.	needs.	-	early on.		variety of	
				Overall, this		industries.	
				strategy aids			
				in the creation			
				of trustworthy			
				biometric			
				recognition			
				evetame			
				systems.			

	4. Wanpracha	The field of control	This study	defining the	The study contrasts	Bipedal walking	Real-time learning for	Advanc
	Chaovalitwongse,	engineering has been	investigates how	scope and	machine learning and	robots using	emergency	in algor
	Robert Babuska,	using machine	machine learning	goals of the	conventional	supervised,	preparedness and	impro
	Shouyi Wang,	learning techniques	affects the	investigation.	techniques for	reinforced, and	surveillance, sensor	adapta
	2012	such as	operation of	doing a	controlling bipedal	unsupervised	fusion for navigation,	integrat
		reinforcement	bipedal robots,	thorough	robots, emphasizing	learning.	stability, and	multiple
		learning,	highlighting	literature	flexibility, stability,	Comparison	robustness for	ethi
		unsupervised	enhanced	review.	and efficiency. It	of each	material handling,	integrati
		learning, and	adaptability and	gathering	assesses performance	learning	energy-efficient	interdisc
		supervised	efficacy in	information	in demanding	strategy's	hardware for	cooperat
		learningmore and	difficult settings	from both	circumstances with a	benefits and	prolonged	taking
		more. Although	compared to	simulated	focus on immediate	drawbacks.	surveillance, ethical	account
		they are still in	conventional	and real-	flexibility. Multiple	Issues with	considerations for	consequ
		their infancy,	approaches. The	world	algorithms are	convergence,	healthcare,	bipedal
		these techniques	project seeks to	settings.	evaluated using	a lack of real-	improved human-	cont
		have showed	uncover effective	choosing the	comparative analysis,	world	robot interaction for	procedu
		promise in	algorithms and	right	which takes stability,	experience,	customer service,	the futu
		developing	suggest	machine	efficiency, and	and	multi-modal learning	advance
		adaptive control	trustworthycontrol	learning	adaptability into	complicated	for household tasks,	resulting
		systems for	systems by	techniques.	account. Through	parameter	and adaptive control	creati
		bipedal robots.	conducting a	Creating and	simulations and	configuration	strategies for	more ad
		Using chosen	thorough	optimizing	realworld tests,	are obstacles.	dynamic	and eff
		examples from the	literature review	the selected	validationencompasses	Limitations:	environments, making	robots
		literature, this	and useful	models.	energy efficiency and	Stability,	it possible to use	wider ra
		study covers	experiments. A	employing	reactivity to dynamic	robustness, and	bipedal robots in	applica
		recent	solid strategy is	pertinent	changes. Machine	adaptability	remote locations for	11
		learningalgorithms	ensured by	metrics to	learning-based control	issues in high-	environmental	
		for controlling	collaboration with	evaluate	differs from	dimensional	monitoring	
		bipedal robots. It	professionals. The	performance.	conventional	spaces.		
		also discusses	expected results	rigorously	methods in terms of	Hierarchical		
		their effects and	include a better	evaluating	statistical analysis.	learning		
		limitations. It also	comprehension of	models to	Conclusions discuss	architecture is		
		provides	the effects of	ensure their	drawbacks and suggest	suggested for		
		recommendations	machine learning	validity.	areas for additional	difficult		
		for further study in	and useful advice	collaborating	research.	control		
		this developments	for upcoming	with		problems.		
		in field	advancements	professionals		Real-time		
		in neiu.	auvancements.	to get		implementation		
				different		of hierarchical		
				viewpoints.		learning		
				Interpreting		presents		
				and		difficulties for		
				analyzing the		bipedal		
				outcomes.		walking robots.		
				creating a		C		
				thorough				
				report				
				outlining the				
ļ				research				
ļ				process'				
ļ				significance				
ļ				for current				
ļ				and future				
ļ				robotics				
ļ				research as				
ļ				well as its				
				practical				
				applications.				

5. G.C. Nandi, Prof. Vijay Bhaskar Semwal, and Aparajita Bhushan (2013)	Push recovery in humans gets better with experience and education. Individuals that are right- or left-handed exhibit opposing reactive push recovery strategies. Joint angle analysis provides information about perturbation response. Application of an inverted pendulum model is aided by data smoothing. The model's accuracy is confirmed by a successful reproduction of the push recovery in humans. Push recovery: A challenge for software engineering has ramifications for the creation of humanoid robots.	Strengthen knowledge of human push recovery through joint angle perturbation testing. In order to get knowledge about push recovery processes, examine these angle changes using a physics- based model. Using the knowledge you've gained, create humanoid recovery processes.	With the aid of aluminum rods and a potentiometer, HMCD extracts joint angle data. Depending on the state and movement of the eye, force is applied in eight different ways. During the application of force, zero correction modifies joint angle data. Digital counts are converted to angular values using the Phidget interface kit. Force is measured by the FSR 3105 using a specific conversion formula. The application of force is unidirectional and has a small sensor area. The hammer-like wooden structure that pushes everything around does it. The sensing area is increased by the rectangular FSR surface.	The ideal gait pattern consists of oscillatory movement in the hip, two acute obstacles in the ankle joint, and a pair of humps in the knee. In order to produce prosthetic limbs and enhance amputees' gait cycle pattern, the study examines the graph of a right-handed person in a particular position. The information gathered via the internal HMCD device aids in the creation of a software-based model, demonstrating the viability of handling push recovery using software.	The study stresses how crucial it is for humanoid robots to mimic human biomechanics in order to improve push recovery. The creation of more effective and efficient humanoid robots can be greatly aided by an understanding of the asymmetrical methods adopted by humans, particularly in relation to handedness. Researchers can enhance the stability, agility, and general performance of robots by incorporating these findings into their designand control, giving them the ability to navigate real- world surroundings more	Future research on humanoid push recovery can help create more resilient, adaptive, and human-like robotic systems that can carry out a variety of activities in challenging and dynamic environments by taking these implications from recent trials into account. RealWorld Deployment and Interaction, Soft Robotics and Compliance Control, Reinforcement Learning and Adaptive Control Strategies, MultiSensory Fusion and Perception, Dynamic Balance Control Mechanisms, and Learning from Human Movement	Researchers, engineers, and practitioners can advance the field of humanoid robotics by incorporating these implications into future practices. This will result in the creation of safer, more effective, and morally responsible humanoid robots that can easily fit into a variety of societal and industrial contexts. Enhanced robot safety protocols, human-robot collaboration that is optimized, autonomous navigation in unstructured environments, use of soft robotics in humanoid design, adaptive control systems for industrial applications

6. Yunhong	Biometric	Hypothesis	more reliable,	Examine	The basic gait	Enhance	Future ramifications of
Wang,	gait analysis	research	accurate, and	conference	identification	robustness	biometric gait recognition
Zhaoxiang	makes use of	emphasizes	secure biometric	materials,	methods and	under different	include increased privacy
Zhang, and	walking	the potential	authentication	consult	recent	settings using	protections,
Maodi Hu	patterns to	for identifying	systems that	research	developments	cutting-edge	individualized healthcare
	identify	people based	may be utilized	iournals	in spatial and	deep learning	and well-being
	neonle and	on their	in a variety of	evamine	temporal	models Look	monitoring better
	determine	distinctive	annliantions	examine	modoling are	into long term	human computer
	determine	uistilictive	applications,			mito iong-term	numan-computer
	their age,	waiking	including	databases You	briefly	gait analysis	connection, and the need
	gender, and	patterns while	security,	should be able	reviewed in	to spot nealth	to solve these issues.
	ethnicity. The	showcasing	healthcare, and	to access the	this work. The	problems	Further study,
	individual's	the significant	tailored	most recent	future of gait	early.	technological
	gait pattern is	developments	humancomputer	studies,	biometrics	Concentrate	development, and the
	defined by	in biometric	interface, is	analyses, and	should include	on privacy-	ethical application of
	the	gait	being aided by	findings about	more precise	preserving	rules will be necessary to
	distinctive	identification.	the ongoing	developments	modeling of	methods to	assure the technology's
	noriodia	It aims to	improvements in	in biometrie	spatial and	safeguard	general acceptance and
	periodic matian of the	highlight how	hismatria asit		spatial allu	norsonal	
	motion of the	difficult it is	biometric gait	gan	temporal data,	information	use across several
	body while		recognition The	recognition by	more robust	information.	industries.
	walking; it is	to disguise	development of	studying these	feature	To improve	
	difficult to	gait in	methods.	resources,	extraction,	security, look	
	conceal and	comparison to		giving you	and an	into	
	is visible	other		thorough	increase in the	multimodal	
	from a	biometrics		insights into	practicality of	biometric	
	distance This	while		the state of the	gait in actual	solutions	
	detailed	highlightingits		subject right	surveillance	Create real-	
	uetaneu	long-distance		subject fight	surveinance	time gait	
	survey	observability		now.	systems.	tine gan	
	demonstrates	The peper				recognition	
	how	rite paper				for wearable	
	significant	gives a				tech across a	
	developments	succinct				range of	
	in computer	overview				industries.	
	vision have	of current				Create moral	
	accelerated	advances in				and legal	
	gait analysis	computer				quidelines	
	during the	vision that are				for ethical	
	during the	relevant to				hohovior and	
	past ten	agit analysis				behavior and	
	years.	bighlighting				openness.	
		ingingining					
		the					
		importance of					
		this field in					
		biometric					
		identification.					

7. G. C. Nandi, A. Bhushan, and V. B. Semwal.	The goal of a study of humanoids push restoration utilizing experiments and a theoretical a framework of theory is to establish more efficient and dependable humanoid push recovery methods and algorithms by conducting experiments in order to gather information on push recovery strategies and by analyzing and interpreting the results using a conceptual framework.	Can increase the gait recognition systems' efficacy and accuracy, which will increase their dependability for surveillance and security applications. How can the classification precision and durability of biometric gait detection techniques be improved, taking into account variations in walking styles and ambient conditions, using an optimum feature selection technique derived from in-depth feature analysis?	Data collection, preprocessing, feature extraction, analysis, optimization, model training, evaluation, comparison, sensitivity analysis, and result discussion are frequently included in the methodology. A. A description of the analysis's dataset B. A description of the feature analysis methods used C. A thorough explanation of the feature selection optimization process D. A summary of the classification algorithms used for comparison	A. An overview of pertinent studies on the analysis of biometric gait data B. A discussion of different feature selection methods applied in related studies C. Evaluation of the shortcomings and difficulties in the earlier studies	Future studies should focus on delving further into the numerous components of human push recovery in order to create more potent techniques and interventions. It should also explore how handedness affects movement patterns and examine how this information may be used to create effective control systems for humanoid robots.	Optimize energy efficiency, prioritize human- centered design in humanoid push recovery studies, conduct biomechanical analyses, integrate advanced sensors, employ adaptive control strategies, explore the dynamics of humanrobot interaction, test in real- world applications
	conceptual framework.		algorithms used for comparison			

IV. PROPOSED MODEL

The building of a recurrent deep learning neural network model for the choice of an acceptable programming language appears to be the subject of a thorough plan that you have outlined. For addressing the uncertainty involved in Multi-Criteria Decision Making (MCDM) problems, fuzzy logic does indeed present an efficient method. It can result in a decision-making system that is reliable and accurate when combined with the strength of recurrent deep learning neural networks. You should take into account the following actions in order to apply this strategy successfully:

Define the MCDM parameters: Specify the standards by which the programming languages will be judged. These requirements could include elements like clarity, readability, effectiveness, community support, and adaptability.

Using fuzzy logic, create a system that can manage the ambiguity surrounding the MCDM parameters. The model will be able to analyze ambiguous or inaccurate data effectively thanks to fuzzy logic.

Establish the weights: Assign the proper weights to each criterion using MCDM techniques. This stage is very important because it shows the relative weights that each factor has in the decisionmaking process.

Create the deep learning recurrent network: Create a suitable architecture for the RNN model, making sure it can support the MCDM parameters and the fuzzy logic system. Based on the provided weights, this model ought should be able to learn from the data and make wise decisions.

assemble training data Create a diversified dataset with samples of different programming languages and the properties that go with them. The RNN model will be trained using machine learning algorithms using this dataset.

Create and validate the model: Utilize the dataset acquired to train the RNN model by applying the required machine learning techniques. Make that the model's functionality and generalizability are assessed using appropriate testing methodologies.

Determination the number of feature in input of our training set to train our machine model. The feature should we chosen carefully that best describe our problem's input and output relation. Number of feature should not be very large because of the curse of dimensionality.

Determination of structure of learning and corresponding learning algorithms.

Execute our learning algorithm on our data set or training set to learn the structure and relation between data according to their particular class. In this some parameter may be initialized or given by the user.

Then evaluation of the performance of our learned function on out test set data and calculate the accuracy. If we have the sufficient accuracy then we accept our model. *k-fold cross validation:*

Rotation estimation, also known as cross validation, is a technique used to confirm our model's ability to generalize statistical analysis results to independent data sets. This is typically applied when classification is the aim and the user wants to know how well his model will function in real-world scenarios. The original sample in k-fold cross validation is divided into k equal-sized subsamples. One sample is utilized for validation and the other k-1 samples are used as training data from these k subsamples. Since each of the k samples must be utilized once as validation data, this process is performed k times. One estimate can then be obtained using the k result of the k-fold cross validation. The process for

A single k-fold cross validation run is as follows:

1. Set up the practice example in a random sequence.

2. The training example should be divided into k folds.(Each sample is around m/k.)

3. For every i between 1 and k: • Utilizing every case that does not belong to I, train the classifier.

• Examine every example of i to test the classifier.

• Determine the number (ni) of incorrectly classified samples in fold I.

4. Give the classifier error back the estimated value that follows:

 $E = \frac{\sum_{i=1}^{k} n_i}{m}$

> An examination of key studies

- Complex biometric gait data requires an advanced feature selection technique.
- emphasis on carefully choosing features to increase classification accuracy.
- use of advanced feature analysis techniques to improve performance.
- the use of cutting-edge optimization techniques for effective feature selection.
- Potential repercussions for applications including biometric security and healthcare.

V. RESULT ANALYSIS

The following figure are the confusion matrix of classification of training, validation and test matrix of dataset. It gives the 85.8% accuracy on classification.

- Technique for Optimized Feature Selection: This study showed how the optimized feature selection method improved the classification of biometric gait data.
- Improved Classification Accuracy: The implementation of the suggested feature analysis approach improved classification accuracy, highlighting the significance of feature selection in precise data classification.
- Comparative Analysis: A review of the performance of several classification algorithms, including ANN, SVM, kNN, and DNN, revealed

VI.CONCLUSION

On the basis of 12 sets of gait data, a successful gait identification system for human bipeds has been developed. selection of 10 key features from a dataset that are required for categorization.Gait data is divided into three different categories (MI, MO, SE) for people who walk abnormally and "Normal" for everyone else.The necessity for a bigger acknowledges the dataset to enhance the robustness and accuracy of the developed model.recognizing the necessity of looking at that the suggested optimal feature selection method outperformed them all.

- Robust Classifier Fusion: This technique successfully fuses several classifiers, such as ANN, SVM, kNN, and DNN, with the use of majority voting. The resulting classification performance and resilience are improved.
- Potential Uses: The optimum feature selection technique may be used in biometric security, healthcare, and other industries, demonstrating its adaptability and broad ramifications.
- Future Research Directions: Research directions have been identified, including the investigation of additional feature selection procedures and the incorporation of cutting-edge machine learning methods to enhance the categorization of biometric gait data.

Implications for Practice and Policy

Integration with Existing Systems: Talk about the difficulties and factors to be taken into account when integrating the optimized feature selection technique into current biometric infrastructures and systems. Stress the importance of compatibility and seamless integration with a variety of hardware and software platforms for successful implementation and operation.

Cost-Efficiency and Scalability: Discuss the practical ramifications of implementing the method in real-world situations, concentrating on the efficiency and scalability of the procedure, and emphasizing its potential for widespread adoption across a variety of sectors and industries, including healthcare, security, and business applications.

additional characteristics or feature combinations in order to create a classification system that is more accurate

To increase the accuracy and effectiveness of the gait detection system for human bipeds, this finding both emphasizes the need for more research and development and highlights the achievements of the current work.

References

- [1] Vijay Bhaskar Semwal, Kaushik Mondal, and GC Nandi. Robust and accurate feature selection for humanoid push recovery and classification: deep learning approach. *Neural Computing and Applications*, pages 1–10, 2015.
- [2] V. B. Semwal, A. Bhushan, and G. C. Nandi. Study of humanoid push recovery based on experiments. In *Control, Automation, Robotics and Embedded Systems* (*CARE*), 2013 International Conference on, pages 1–6, Dec 2013. doi: 10.1109/ CARE.2013.6733741.
- [3] Shouyi Wang, Wanpracha Chaovalitwongse, and Robert Babuska. Machine learning algorithms in bipedal robot control. *IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)*, 42(5):728–743, 2012.
- [4] Matthew D Zeiler. Adadelta: an adaptive learning rate method. *arXiv preprint arXiv:1212.5701*, 2012.
- [5] J. Lygeros, K. H. Johansson, S. N. Simic, Jun Zhang, and S. S. Sastry. Dynamical properties of hybrid automata. *IEEE Transactions on Automatic Control*, 48(1): 2–17, Jan 2003. ISSN 0018-9286. doi: 10.1109/TAC.2002.806650.
- [6] Mingjing Yang, Huiru Zheng, Haiying Wang, Sally McClean, Jane Hall, and Nigel Harris. A machine learning approach to assessing gait patterns for complex regional pain syndrome. *Medical engineering* & physics, 34(6):740–746, 2012.
- [7] Vijay Bhaskar Semwal, Shiv A Katiyar, Rupak Chakraborty, and GC Nandi. Biologically-inspired push recovery capable bipedal locomotion modeling through hybrid automata. *Robotics and Autonomous Systems*, 70:181–190, 2015.
- [8] De Zhang, Yunhong Wang, Zhaoxiang Zhang, and Maodi Hu. Estimation of view angles for gait using a robust regression method. *Multimedia Tools and Applications*, 65(3):419–439, 2013. ISSN 1573-7721. doi: 10.1007/s11042-012-1045-9. URL http:

//dx.doi.org/10.1007/s11042-012-1045-9.

Bibliography

- [9] Aaron D Ames. Human-inspired control of bipedal walking robots. *IEEE Transactions on Automatic Control*, 59(5):1115–1130, 2014.
- [10] David Cunado, Mark S Nixon, and John N Carter. Using gait as a biometric, via phase-weighted magnitude spectra. In *International Conference on Audio-and Video-Based Biometric Person Authentication*, pages 93–102. Springer, 1997.
- [11] William EH Harcourt-Smith. 5 the origins of bipedal locomotion. In *Handbook of paleoanthropology*, pages 1483–1518. Springer, 2007.
- [12] Loudon J et al. The clinical orthopedic assessment guide. 2nd ed. kansas: Human kinetics, 2008.
- [13] Subotnick S. Sports medicine of the lower extremity. Harcourt (USA): Churchill Livingstone. Churchill Livingstone; 2nd edition, 1999.
- [14] http://www.biometricsinstitute.org/pages/types-ofbiometrics.html.
- [15] Tieniu Tan Nixon, Mark S. and Rama Chellappa. *Human identification based on gait. Vol. 4.* Springer, 2010.
- [16] Valentina Agostini, Gabriella Balestra, and Marco Knaflitz. Segmentation and classification of gait cycles. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 22(5):946–952, 2014.
- [17] Liang Wang, Tieniu Tan, Weiming Hu, and Huazhong Ning. Automatic gait recognition based on statistical shape analysis. *IEEE transactions on image processing*, 12(9):1120–1131, 2003.
- [18] https://en.wikipedia.org/wiki/Analysis of _variance.