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Abstract—Trafficsignandlightdetectionsarecorecomponentsof 
Advanced Driver Assistance Systems (ADAS) and self-
drivingvehicles. To this end, the automotive industry is widely 
exploitingcomputer vision (CV) and deep learning (DL) 
techniques. Thispaper presents a lightweight traffic sign and 
light detector byharnessing a single-stage, single-shot multi-
object detector (SSD).For accelerating the inference speed of the 
detector, its originalbackbone, VGG16 is replaced by MobileNet 
V2 that expertlymanages detection speed and network size. In 
autonomous driv-
ing,quickerdetectionperformancewithrespecttothedistanceof an 
object is of particular interest, for a comfortable 
braking.However,fartherdistancemakestheobjectstobedetectedap
pearsmaller.Unfortunately,theoriginalSSDstrugglestodetectsmall
objects.Thus,thisworkfurtheroptimizesthenumber of feature map 
layers of the SSD for the detection 
ofsmallobjectsalongwithabettertrade-
offbetweendetectionprecision and inference time. Experimental 
analysis confirms theeffectiveness of the proposed model, which 
achieves 2 times (ormore) faster detection time than the baseline 
SSD models and acompetitiveprecisionof76.7%. 

Index Terms—Computer vision, object detection, ADAS, 
deeplearning 

 

I. INTRODUCTION 

A reliable real-time detection of traffic sign and light 

oncomputationally limited platforms is an important concern 

forautonomous driving. Therefore, only the models with 

fewerparametersandlowcomputationalcomplexityareneeded.In

thisline,variousdeeplearningframeworks,two-stageand single-

stage object detectors have been proposed by theresearch 

community. For example, the Darknet [2] is a 

simplearchitecture, having fast inference speed. But it 

specificallysupports only NVIDIA CUDA for acceleration. 

Hence, thetwo-stage models, like the faster region-based 

convolutionalneuralnetworks(R-CNN)[3]andregion-

basedfullycon-volutional networks (R-FCN) [4] have better 

detection 

rate;however,theyrequireimmensecomputationalpowerthatmak

ethemunacceptableforreal-timeapplications.Ontheotherhand, 

the single-stage models bridge region proposal, clas-sification 

and regression tasks, as a single multi-task learning.For 

instance, the you only look once (YOLO) [5] and single-

shotmulti-

boxdetector(SSD)[1].Thesemodelsimprovethedetectionspeeda

ndthereforecanbeimplementedonembedded platforms. 

However, their efficiency is lower 

intermsofaccuracywhencomparedwithtwo-stagedetectors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.The proposed SSD-based traffic sign and light detection 
framework.The blue broken lines indicate the only two feature map layers 
exploited bythe proposed model out of the 6-box prediction layers in the 
original 
SSDmodelin[1].TherationaleofthismodificationisinvestigatedinSectionIII. 

 
There is another major problem with SSD that it is not good 

atdealing with small objects. Regardless of their small size, 

thetraffic signs and lights provide key contextual information 

forintelligent transportation and safety. This work address 

theseissues of SSD. The proposed detection framework 

integratesthemulti-

scalefeaturemapsobtainedbyabackbonenetwork 
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to enhance the detection performance. The original SSD 

usessix feature map layers of different scales; however, it 

strugglesinsmallobjectdetectionwhenallsixfeaturemaplayersare 

used. Through exhaustive experimental investigation wefound 

that the first two feature map layers (19×19 and 10×10.cf. Fig. 

1) exclusively provides not only better results in 

termsofsmallobjectdetectionbutalsosignificantreductionindetec

tion time. To further improve the inference speed, thebase 

network of SSD that is originally the VGG16 [6] is 

alsoreplacedbyMobileNetv2[7]architecture. 

The rest of the paper is organized as follows. Section 

IIbriefly describes the state-of-the-art models. Section III 

elabo-rates the proposed SSD-based approach and the 

improvementsmade in this work. Section IV presents a 

thorough experimen-tal analysis. Section V closes the paper 

with conclusion andfuturedirection. 

II. RELATEDWORK 

Most of the existing solutions focus on a single 

objectiveeither the detection of the traffic sign or traffic light; 

not onboth. In retrospect, each of the state-of-the-art for traffic 

signandtrafficlightdetectionisseparatedbytwoapproaches:conv

entionalmodelsanddeeplearning(DL)models. 

A. ConventionalModels 

Thesemethodssolelydependsonthefeatureextractionalgorith

ms.Letitbeaclassificationordetectionproblem,theymandatorily 

require low-level features, like color intensities,edge details, 

and shape features. For example, Kim et al. [8]and Diaz-

Cabrera et al. [9] device a traffic light 

detectionsystemusingcolorinformation,viz.RGB,hue-

saturation-intensity (HSI), and hue-saturation-value (HSV). 

On the otherhand, the researchers in [10], handle the traffic 

light detectionas a shape extraction of the traffic light. 

Similarly, Swathi etal. [11] and Supreeshet al. [12] also used 

color clues, as themain features to locate the traffic signs on 

the road scenes.Hence, Nguyen et al. [13] and Yang et al. [14] 

take advantageof shape descriptors, like Hough transform to 

extract 

classspecificfeatures,suchascircles,andrectangles.Latertheyuse 

these features to train a machine learning model to locatethe 

traffic signs on a given image. These models are 

featurespecific, and although they achieve a higher precision, 

theylackrobustnessanddonotgeneralizewellasawholesystem. 

B. DeepLearningModels 

The advanced object detection, segmentation, and classi-

fication algorithms for intelligent transportation 

applicationsexploits deep learning [15]–[17]. Thus, 

researchers have fo-cussed on building deep neural networks 

(DNNs), for 

trafficlightandsigndetection.Forinstance,Weberetal.[18]imple

mentmodel,coinedasDeepTLR.Thenetworkreturnsa pixel-

segmented image and then they apply a bounding 

boxregressor for detection of traffic lights. Similarly, 

Behrendt 

etal.[19]introduceasystemfordetection,tracking,andclassifi-

cationusingadeepconvolutionalneuralnetwork(DCNN).Byutili

zingthegeneralobjectdetector,theSSD,Mulleretal.[20] 

introduceamodelonlyfortrafficlightdetection.Followingthewor

k of [19], Yudin et al. [21] propose another traffic 

lightdetector based on fully convolutional network (FCN). 

Theyuse the FCN to get a heat-map highlighting plausible 

areas oftraffic lights, then employ a high-speed clustering 

algorithm toobtain traffic light bounding boxes. Besides being 

a transferlearning approach, it has a very low precision of 

detection ascomparedtoSSD-basedsolutions,likein[20]. 

Ontheotherhand,fortrafficsigndetection,Zhangetal.[22]usea

modifiedversionofYOLOv2[23]objectdetector.Theymanipulat

ethesizeoffilters,andthenumberof layers to obtain a balance 

between detection accuracy andspeed. Zhu et al. [24] design a 

custom-built CNN architectureto target more on the smaller 

size objects. Such target-specificimplementation also faces 

lack of generalization 

performance.Thesesolutionscanachievegoodrobustnesscompar

edtothe conventional counterparts, as they self learn the 

featurecorrespondence between the raw inputs and targets. 

However,they face the criticism for being hungry for data and 

computepower. 

III. PROPOSEDTRAFFICLIGHTANDSIGNDETECTI

ONFRAMEWORK 

A. BasicConcept 

Forobjectdetection,aCNN-basedfeatureextractor(cf.Fig. 1) 

is extended to a larger network by eradicating 

topclassificationlayersofthebasenetworkandaddingsomesucces

sive layers. The successive layers are connected to twomain 

heads: (1) a regressor to predict bounding boxes, (2) 

aclassifier to classify each of the detected boxes. Then, a non-

maximum suppression (NMS) algorithm is applied to 

discardinsignificant regions, finalizing the most probable 

boundingboxes. 

Backbone selection: The SSD in [1] was originally 

builtupontheImageNetpretrainedVGG16visualclassificationnet

work [6], whereby the VGG16 was exploited as a high-level 

feature extractor. Although VGG16 has good object rep-

resentation capability, it is quite a large network 

architecturewith 24.1 M parameters (cf. Table III). To address 

this, thiswork strategically replaces the heavy computing 

VGG16 withMobileNetv2 [7] (cf. Fig. 1). MobileNet versions 

of CNNsare lighter architectures due to the usage of depth-

wise sepa-rable convolution operations. For example, the 

MobileNet 

v1andv2havenearlya1/30ofthecomputationalcostandmodelsize

ascomparedtoVGG16. 

Multi-scale feature maps: The standard SSD model 

usesVGG16andadditionalsixfeaturemaplayersasshowninFig. 

1. They explore features from input images at multiplefield of 

view for detecting objects of various sizes. TableIshows a 

comparison of the multi-scale object handling withvarious 

backbone networks that are considered in this studyalong with 

the proposed model. In Table I, we can learn that,the SSD 

with MobileNet V2 (MB v2) uses feature maps 

withsizesof19×19,10×10,5×5,3×3,2×2and1×1,whichisdifferen

tfromVGG16-

basedSSDmodel.Thefirstfeaturemaplayerwiththesizeof38×38i

ntheVGG16isashallowand 
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TABLEI 
THENUMBEROFFEATUREMAPSUSEDWITH VARIOUSBACKBONES 

INTHISWORKFORABLATIONSTUDY. 

TruePositive 
Recall= 

TruePositive+FalseNegative 

 
. (4) 

 

 

 

 

 

 
 

notsoeffectiveinextractingkeyattributesofinputimages.Therefor

e,itismodifiedtohave19×19featuremap. 

B. ProposedFastTrafficLight&SignDetectionModel 

InSSDwithMBv2,itisempiricallyfoundthatthesixfeaturemapl

ayersfrom19×19to1×1calculatedpriorboxes 

IntersectionOverUnion(IoU)=
Apred∩Agt

, (5) 
Apred∪Agt 

where Apredand Agtstand for the area of the predicted 

boxesand ground truth boxes, respectively. An IoU threshold 

of 

0.5isusedtoclassifywhetherthepredictionisatruepositiveorafalse

positive. 

IV. EXPERIMENTALANALYSIS 

A.Dataset 

This study uses the publicly available road sign 

detectiondataset[25].Asfarasweareconcerned,currently,therear

enopeer-reviewedresultspublishedonthisnewlyemerging 

withascaleof0.1,0.2,0.375,0.55,0.725and0.9[1].Therefore, 

larger feature maps have prior boxes with 

smallerscales,sotheyareidealfordetectingsmallerobjects.Withth

is institution, we modify the standard SSD. As traffic-singsand 

traffic-lights occupy relatively a smaller fraction of theentire 

road scene, we exploit the first two prediction layers:19×19, 

and 10×10 (cf. Table I and Fig. 1), and discard theremaining 

ineffective layers. This strategic modification savesa lot of 

memory and computations, resulting in a faster 

objectdetection. 

C.ObjectiveFunctionandEvaluationMetrics 

To train the proposed model, we use a weighted sum of 

theclassification confidence loss (Lconf) and the localization 

loss(Lloc),asgiveninEq.(1). 

1 
L =

N
(Lconf+α·Lloc), (1) 

whereNisthenumberofmatchedpriorboxes,andαisaconstantsetto

1.ThelocalizationlossisthesmoothL1loss between the predicted 

and ground truth bounding 

boxes.Hence,theconfidencelossiscalculatedusingaSoftmaxacti

vationwithcategoricalcross-entropy. 

The mean average precision (mAP), which is the 

primarymetricusedforcomparingtheperformanceofobjectdetect

ors.The average precision (AP) is computed as the average 

ofmaximumprecisionvaluesatachosen11recallvalues.Hence,the

APforclasscisdefinedasinEq.(2). 

R 

dataset. It consists of 877 images of four classes: speed 

limit,stop,crosswalk,andtrafficlight.Thedatasetissplitintotraini

ngandtestsetsbytakingaratioof8:2.Thus,thetrainingandtestsetsh

ave,respectively,701sampleswith2103objects,and175samples

with525objects. 

B. ComputationalPlatformandTrainingSetup 

TheablationstudywascarriedoutontheGoogleColabPro 

computational platform with the following 

specifications.A2.20GHzIntel(R)Xeon(R)CPUwitha12GBme

mory,anda 1.59 GHz NVIDIA T4 GPU with 16 GB memory. 

The 

entireprogramwaswritteninPyTorch1.9.0+cu102withPython 

3.7.10.Themodelsweretrainedusingstochasticgradientdescent 

(SGD) optimizer with an initial learning rate of 

0.001,momentumof0.9,weightdecayof0.0005,learningratedeca

ypolicydropbyafactorof10,andbatchsizeissetto16. 

C. QuantitativeAnalysis 

To study the impact of proposed framework, four indepen-

dent investigations, Model A - D, were carried out 

consideringdifferentnumberoffeaturemaplayerswithdifferentsc

alesas listed in Table II. Where, Model A uses all the six 

featuremap layers, while Model B was created with only the 

first19×19 feature map exclusively omitting other layers. 

Hence,the Model C was built with only the fist two feature 

maplayers,19×19and10×10.ThelastModelDwasbuiltusingfist 

three feature map layers: 19×19, 10×10, and 5×5. All 

themodels were fine tuned for 10 epochs. This sanity test 

showsthat the Model C produces the best results and the mAP 

startsdeterioratingwhenthenumberoflayersisincreasedtothree. 
APc = 

1 
max(P(r)), (2) 

11 Tofurthervalidate,thesegregatedobjects’areasareanalyzed 
r 

where P (r) is the precision for one of the 11 recalls (cf. Eq. 

4),randr    0.0,   ,1.0.Hence,themAPforobjectdetectionis the 

average of the APs calculated over all the classes asshown 

in Eq. (3), where C is the total number of classes 

andAPcisAPforclasscwithIoU(cf.Eq.(5))of0.5. 

mAP=
1Σ

AP. (3) 
 

 

basedonthesizeoftheircorrespondingboundingboxeswrtthefullim

agetocalculatethepercentageofcoverage.FromFig.2,wecanseetha

t95.4%(41.9+53.46)ofobjectshavingmaximum20%ofimagedime

nsioncoverage,i.e.,majorityoftheobjectscomeundertherangeofsm

all/mediumsizecomparedtotheinputimagedimensions.Thatisther

easonforincreasedmAPoftheModelCascomparedtoModelA.Furt

herreferringtoTableII,onecanseethat,intermsof 

 thenumberoftrainableparameters,ourproposedframework 

c

Feature 
maplayer 

SSDwith 
VGG16 

SSDwith 
MobileNetV2 

Proposed model 
withMobileNetV2 

Layer1 38×38×512 19×19×96 19×19×96 
Layer2 19×19×1024 10×10×1280 10×10×1280 
Layer3 10×10×512 5×5×512 - 
Layer4 5×5×256 3×3×256 - 
Layer5 3×3×256 2×2×256 - 

Layer6 1×1×256 1×1×256 - 
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TABLEII 
PERFORMANCEOFTHESSDWITHDIFFERENTNUMBEROFFEATUREMAPLAYER

SOFTHEMOBILENETV2(WITHOUTDATAAUGMENTATION) 

 

Model 
mAP@ 
IoU0.5 

#of  Pa- 
rameters 

#  of  predic- 
tionsperclass 

ModelA:FullSSDwith 
MBv2 
ModelB:OnelayerSSDwit
hMBv2 
ModelC:Two-
layerSSDwithMBv2 
ModelD:Three-
layerSSDwithMBv2 

0.307 
 

0.391 
 

0.433 
 

0.370 

7,222,518 
 

3,536,524 
 

4,158,146 
 

6,932,088 

2,268 
 

1,444 
 

2,044 
 

2,194 

 

 

SSD with MBv2 and conduct further ablation study. In 

theseexperiments,wealsoapplyfourdataaugmentationtechnique

s:photometric distortions, expand image (zoom out), 

randomlycrop image, and horizontal flip to get better 

generalizationperformance. The models are trained with early 

stopping 

(thebestmAPisfoundat58thepoch).Theexperimentalresultsare 

tabulated in Table III, and compared in Fig. 3, and Fig. 4.The 

average detection times on CPU and GPU are comparedfor all 

the three models in Fig. 3. The results show 

noticeableimprovements even in the case of CPU. These 

results provethat the proposed framework can be deployed on 

an embeddedplatformforreal-timetrafficsignandlightdetection. 

Overall, theproposed two-layer SSDwithMobileNet 

V2isfoundtobefasterthanthebaselineSSDwithVGG16. 

20-100% 

1-20% 

0-1% 

4.61 
 

 

 
53.46 

 

41.9 

Asexpected,theSSDwithVGG16hasabettermAPduetothedeepe

rfeaturelearningarchitecture(cf.TableIII).However, the 

proposed model renders a comparable detectionperformance 

and achieves a 5% improvement in mAP whencompared to 

the full layer SSD with MBv2. As noticed 

inFig.3,intermsofdetectiontime,thebaselineSSDwith 

Fig.2.Percentagecoverageoftheobjects’groundtruthboundingboxwrtthe whole 
image dimension. The ordinates shows objects’ coverage. Based onthe % of 
area cover the bounding boxes they are grouped into 0-1% - small,1-20%-
medium,and20-100%-largeobjects. 

VGG16is63%and52%slowerwhencomparedtotheproposed 

two-layer SSD model, respectively on GPU-basedand CPU-

based implementations. In a nutshell, the proposedmodel, 

nearly 2 times faster than the baseline model with 

aminorcompromiseondetectionprecision<3%. 

 
SSD-Proposed 

SSD-

MBv2SSD-

VGG16 

 

0.92 

 
 

 

 

 

1.92 

D. QualitativeAnalysis 

Fig. 4 shows few visual results for comparing the top-

2models: the proposed two-layer SSD with MB v2 and 

thebaseline SSD with VGG16. We can clearly notice that 

theproposed model’s performance is much better as compared 

tothebaselinemodel,especiallyinimageIDs:road807,road748,ro

ad716androad213intermsofsmallobjectdetection.Itis 

Fig.3.Detectiontimeanalysisoftheproposedtwo-
layerSSDwithMobileNetV2.Thebarsshowthetiminginsecond. 

 

TABLEIII 
COMPARATIVE ANALYSISOF THE PROPOSED MODEL WITH BASELINE SSD 

MODELS (WITH DATA AUGMENTATION) 

 

Model mAP@I
oU0.5 

DetectionTime(s) #ofPara- 
-meters GPU CPU 

SSDwithVGG16 76.7 1.203 1.917 24.1M 
SSDwithMBv2 68.8 0.848 0.997 7.2M 

ProposedSSDwithtwo
-layerMBv2 

73.8 0.443 0.924 4.1M 

 

with two-layer SSD (Model C) has less number of 

parametersas compared to Model A. Less number of 

parameters means alighter architecture with less 

computational complexity. Also,the Model C involves 224 

lesser number of predictions 

perclassascomparedtotheModelAwithallthesixlayersleading to 

a smaller number of computations. All these prop-erties of the 

proposed solution make it more suitable for real-time 

detection and deployment of the model on an 

embeddedsystem. 

Using the experimental findings discussed earlier (cf. Ta-

bleII)asaproofofconcept,wefinalizethetwo-layer 

also noticeable in image ID: road821 that the proposed 

modelcandetecttwoextratrafficlightsthatthebaselinemodelisnot

abletodetect. 

V. CONCLUSION 

This works presents an efficient exploitation of the 

SSDmodelforafasttrafficsignandlightdetection.Intheproposedfr

amework,thestandardSSDarchitecture’sbackbone,VGG16is 

replaced with the lighter MobileNet v2 and only the top-

twofeaturemaplayersoftheSSDareused.Suchmodificationsarep

roved to be essential not only for small object detection 

butalso quicker detection. The proposed model achieves 2 

times(or more) lesser detection time than the baseline SSD 

modelsand a comparable detection performance of 76.7% 

mAP. Theproposed solution can be further improved by 

training on abigger dataset. Apart from the intended purpose, 

it can bebeneficial for the applications, where the detection of 

smallobjectsplaysanimportantrole. 
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