International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 3, May-June 2024 Available at <u>www.ijsred.com</u>

RESEARCH ARTICLE

OPEN ACCESS

Ensemble Bagged Trees for Epilepsy Classification

Generaldo D. Maylem, MDFPNA*, Isaac Angelo M. Dioses**, Genica Lynne C Maylem, MDFPNA ***, Jesusimo L. Dioses Jr.***, Danielle Bagaforo Meer**** *MAPUA University, School of Information Technology, Makati Campus, Philippines Email: iamdioses@mymail.mapua.edu.ph) ** Isabela State University, College of Medicine, San Fabian Echague Isabela. Email:gdmaylem@yahoo.com) *** Isabela State University, College of Medicine, San Fabian Echague Isabela. Email:gcmaylem@yahoo.com) **** Isabela State University, College of Computing Studies, Information and Communication Technologies, San Fabian Echague Isabela. Email:jdiosesjr@gmail.com *****MAPUA University, School of Information Technology, Makati Campus, Philippines Email:debbiemeer30@gmail.com

Abstract:

Epilepsy is a persistent non-communicable brain condition. Epilepsy can be hereditary or result from an acquired brain injury, such as a stroke or trauma. In addition to strange actions, symptoms, and sensations, a person experiencing a seizure may possibly lose consciousness. According to estimates from the World Health Organization (WHO), 50 million people worldwide experience epileptic seizures; most of these cases are asymptomatic. The EEG signals are deconstructed using multiscale principal analysis, empirical mode decomposition, and feature extraction and selection methods that need statistical characteristics. Numerous industries use artificial intelligence, including aquaculture, agriculture, and medicine. Artificial intelligence approaches have enabled tackling the problem by introducing new technologies. Using Ensembled Bagged Trees, we can create a model that can classify epileptic seizures with 83.7% Accuracy, AUC of 89% indicates a surprising result using MATLAB's Ensembled Bagged Trees.

Keywords — EEG, Machine Learning, Trees, Bagged Trees, Confusion Matrix, Epilepsy

I. INTRODUCTION

A chronic, non-communicable brain disorder is epilepsy. Epilepsy can be brought on by an acquired brain problem, such as a stroke or trauma, or it can be inherited. When someone is having a seizure, they may even lose consciousness in addition to displaying odd behaviours, symptoms, and sensations. The World Health Organization (WHO) estimated that 50 million people worldwide suffer from epileptic seizures; most of them are asymptomatic. This is based on the organization's most recent evaluation.A "seizure" is a paroxysmal disruption of brain activity brought on by an excessive, hypersynchronous neuronal firing. "Epileptic seizure" is a term used to differentiate

between a seizure brought on by aberrant firing of neurons and a non-epileptic event, like a Recurrent, spontaneous psychogenic seizure. seizures is called "epilepsy" [1].Recurrent, spontaneous seizures is called "epilepsy." There are several causes of epilepsy, and they are all related to underlying brain dysfunction [2]. An epileptic seizure (ES) is caused by a transitory aberrant electrical discharge that occurs in the cerebral networks and lasts for less than a few minutes. ES attacks are not only hard to predict in terms of duration and strength, but they are also unpredictable [3].Not all cases of epilepsy are irreversible because many people with the condition improve to the point where they are no longer in need of medicines. Medication can manage seizures

in more than 70% of instances [4].Later, in 1929, Hans Berger placed electrodes connected to a galvanometer on the skull to demonstrate EEG impulses' existence [18]. In addition to feature extraction and selection techniques that need statistical features, multiscale principal analysis and empirical mode decomposition are employed to break down the EEG signals [12].Artificial intelligence is applied in many industries, including medicine, agriculture, and aquaculture. With the advent of new technology, that problem can be solved using artificial intelligence techniques.

II. RELATED LITERATURE

A survey of scalable technology for predictive analysis and early screening for diseases associated with a lifestyle is conducted. Investigates several types of AI using massive amounts of data in medical technology [5-6]. Recent research has examined how machine learning and deep learning approaches can be effectively applied to improve medical breakthroughs such as predicting Skin Cancer Diseases, breast cancer and malignant cells etc. The research by Usman et al. [11] suggested a method for extracting characteristics from EEG signals that uses empirical mode decomposition (EMD) and extracted time and frequency domain information. Here, the CHB-MIT dataset is employed. The average forecast time on the scalp for every individual in the sample is 23.60 minutes, and the model has yielded a higher true-positive rate of 92.23%. Potapov's research has shown that signal preprocessing can remove information that is essential for classification while still extracting useful features and suppressing noise. Original data must be considered for the signal classification classification approach since the accuracy influences the original data [13]. To distinguish between epileptic signals and those that are not, the authors of this work [14] used fuzzy logic in conjunction with a genetic algorithm. To determine the precise risk for seizure detection, they devised several techniques and binary genetic algorithms to quantify the risk component.

A study conducted by Raghu Et. Al [15], the authors employed CNN and transfer learning to classify seven types of seizures with non-seizure EEG using a corpus of EEG data from Temple

University Hospital. The purpose of this study is to perform a multiclass categorization. The signal was first converted into a spectrogram before being sent as input to CNN. Numerous DL pre-trained networks were used to select the optimal network for the investigation. The two best models for categorization accuracy employed in this study were 88.30% (Inceptionv3) and 82.85% (Googlenet).

EEG data were classified into ictal and interictal categories in a different investigation. When trying to comprehend brain output, the main issue here is the non-stationary and non-linear nature of the EEG signal. To develop a method for epileptic seizure identification on the CHB-MIT dataset that combines fuzzy-based and traditional machine learning approaches, the focus is on feature extraction from seizure EEG recordings [16].

Another study detects epilepsy by manually observing EEG data, which makes the transition to an automated diagnosis system both challenging and straightforward. Utilized is the Bonn EEG Dataset. With a 94.7% accuracy rate, the authors suggested using a least squares support vector machine (LSSVM) as a superior method for solving linear equations [17].

Ensemble Tree

A collection of classifiers built using a specific algorithm is called an ensemble. The predictions of each classifier in the ensemble are combined to classify each new example. According to Breiman, these predictions can be combined by adopting more complicated combinations or by taking the majority vote (for classification tasks) or the average (for regression tasks) [26,27,28]. Decision trees and related ensembles are a common set of techniques for classifying medical data in decision support systems. They are continuously being created by scholars [30]. Tree-based ensemble learning methods perform better than other ML techniques, according to Merghadi et al. [29].

III. METHODOLOGY

The datasets used in this study came from Kaggle; it will be cross validated for findings integrity by one of our Neurologist writers and comprises 2217 datasets and recordings of various EEG

readings.The Image Processing Toolbox in MATLAB provides a wide range of industrystandard graphical tools and methods for processing, analyzing, creating algorithms, and visualizing medical images [31].In recent years, the MathWorks software MATLAB has become more and more well-liked as a quick development tool. Its many Toolboxes, sturdy design, and userfriendliness make it a popular tool in many domains, including medical image processing. MATLAB R2024a will be used in this work to facilitate machine learning.

A. Dataset Importation

ΥH	YI	YJ	YK	YL	YM	YN	YO	YP	YQ	YR
_STD_D3	T5_STD_D4	T5_STD_D5	T5_STD_D6	T6_STD_D1	T6_STD_D2	T6_STD_D3	T6_STD_D4	T6_STD_D5	T6_STD_D6	epileptic_
nber 🔻	Number 🔻	Number 🔹	Number 🔻	Number 🔹	Number 🔹	Number 🔹	Number 🔻	Number 🔹	Number 🔻	Number 🔹
STD_D3	T5_STD_D4	T5_STD_D5	T5_STD_D6	T6_STD_D1	T6_STD_D2	T6_STD_D3	T6_STD_D4	T6_STD_D5	T6_STD_D6	epileptic_
252807	31.4279183	29.6994127	32.0135457	3.58355940	12.5295276	45.8311315	61.8908134	34.7834536	33.2459064	1
509530	24.8227197	47.1859183	93.6191948	14.1584891	15.2178861	30.9274068	77.3243224	153.442359	213.780950	1
397815	21.7082221	47.4123754	85.7296449	9.49363876	11.8245686	24.5557715	59.2291868	112.406305	171.618207	1
437067	26.3195061	39.6288944	51.4732021	1.87251514	5.39263851	17.2967798	35.8245859	44.8928993	79.6134603	1
150961	26.1110484	39.1775374	52.9256762	1.40829125	4.55699696	12.7335494	25.6768012	44.4066174	94.7705806	1
879524	24.4954188	36.8424868	46.7867999	2.28151046	6.39616824	22.8890037	45.6404462	36.4210124	59.4820828	1
741781	24.2647917	35.1797845	45.1935008	4.79160449	9.69144497	30.3163182	54.8107276	42.2669782	56.8473569	1
936101	23.0115337	33.5469411	48.1437574	3.75532863	7.91010744	29.3400155	64.4005218	46.8322973	74.2838175	1
203268	23.9699532	35.9397257	51.1934221	3.27013909	8.21502891	30.0575214	60.9140347	46.9747789	76.4400251	1
731931	24.0608945	37.2163786	52.6522432	1.53446448	4.73165136	12.7365608	25.3605133	43.9296396	84.0597944	1
002610	23.3307620	33.4738055	40.6830666	3.73090910	8.08802170	29.0970657	59.2815118	44.1553481	50.9951316	1
998253	19.5758057	30.6669114	42.8589452	1.73172374	4.85014965	12.8172637	22.4828362	31.7822876	56.3160805	1
624360	23.4125789	32.8531013	42.8239860	5.31330477	9.17823200	29.9013323	58.9284671	45.4582881	61.7688148	1
136496	32.0993414	49.4163954	77.3679048	7.19019221	9.98254345	23.5986821	35.5805138	42.0796135	56.8009137	1
857525	34.9401437	49.3587048	64.0216355	5.53063414	9.26786963	26.3062520	38.8718912	43.9447683	64.4985572	1
281627	37.6984567	56.5395348	72.1881261	5.62274874	9.17955978	27.5858321	46.6406809	54.6095367	61.8579029	1
281717	33.7522770	50.0004180	76.6138313	8.94800152	10.7863746	25.1415481	34.7405202	43.6712787	59.9620934	1
603333	30.5097130	47.0115514	67.1857179	8.31760080	10.2665443	26.7085716	34.5567970	39.6840759	56.1584663	1
675110	37.7168258	55.5294101	80.2626711	3.93015280	8.00741438	26.7726570	46.6918124	51.6579822	76.0102870	1
923792	18.9027864	29.5442028	40.4937892	2.56468518	5.76620047	17.1451889	38.6912622	55.7377261	103.668082	1
449655	565.640215	890.193775	1425.55330	86.5261267	172.595850	323.103793	551.428418	883.146488	1416.36137	1
057825	19.4516722	31.7787993	39.2927783	2.24319813	5.73322091	17.3799207	37.6506829	57.1200445	112.796158	1
699825	18.6391121	24.5449396	32.2573660	2.83168456	6.42760505	19.2375914	38.9262064	58.2775769	102.916354	1
206772	21.8444384	30.2637466	35.8539677	2.15663986	6.16465971	19.0094146	41.9420466	63.5464286	114.728600	1
482851	20.5382560	31.0068731	39.1918442	2.30543777	5.95015799	17.9480156	39.8574132	60.4281785	109.227709	1
925534	21.8066808	30.6528017	39.5061990	7.63777998	9.36584245	21.0490196	42.3823236	63.7091853	106.639284	1
559747	21.0294245	34.0164395	44.7531287	3.05244706	6.44219798	17.0659376	38.7082760	68.9737974	115.397941	1
737338	20.9082009	33.7169072	41.8119297	1.97509029	5.81953704	17.6506215	39.0283654	63.6504069	109.722117	1
695546	16.8103378	43.4739982	82.1004507	14.1563607	13.1778258	23.4842000	41.8921465	70.0210898	124.214157	1
639325	13.8310656	14.6926971	20.8878082	5.48856244	7.85849791	12.5122210	14.8604239	16.0227154	22.1565873	1
749296	10.1541760	21.6828416	55.2302024	18.2144707	7.20677336	10.0642533	12.5536688	25.4864515	63.4024495	1
610130	9.27304037	10.8937541	17.9195307	25.1755653	5.02369821	9.15643794	15.0728856	15.9190686	24.4356760	1

Figure 1. EEG Dataset Importation using MATLAB.

Figure 1 shows that the EEG Dataset was imported, and it has 667 manual features extracted that help to classify whether that patient has epilepsy or not.

B. Classification Learner

ala :	set			validation	_
Data	Set Variable			Validation Scheme	
eeg	datacleaned1				
Kest	oonse			Recommended for large data sets. The a	pp
	rom workspace			selects a percentage of the data to use as	sa
eni	lentic		double 01 🔻	Valuation Set.	
				Percent held out 25	A
~	FP1_power_delta	double	0.0259452 859896	Test	
	Name	Туре	Range		
✓	FP1_power_delta	double	0.0259452 859896	lest	
1	FP1_power_theta	double	0.012101 350651	Set aside a test data set	
•		double	0.00040004 402047		
 Image: A start of the start of	FP1_power_alpha	double	0.00940661405917		
 ✓ ✓ 	FP1_power_alpha FP1_power_beta	double	0.00782762 291059	Percent set aside 10	Å
 ✓ ✓ ✓ 	FP1_power_alpha FP1_power_beta FP1_power_gamma	double double	0.00940881405917 0.00782762291059 0.00841209285574	Percent set aside 10	A V
 <	FP1_power_alpha FP1_power_beta FP1_power_gamma FP2_power_delta	double double double	0.00940881403917 0.00782762291059 0.00841209285574 0.0261743604374	Percent set aside 10 Use a test set to evaluate model performa after tuning and training models. To impor	¢ ance rt a
	FP1_power_alpha FP1_power_beta FP1_power_gamma FP2_power_delta	double double double Bemove All	0.00940881403917 0.00782762291059 0.00841209285574 0.0261743604374	Percent set aside 10 Use a test set to evaluate model perform after funing and training models. To impor separate test set instead of partitioning th	ance rt a ne
	FP1_power_alpha FP1_power_beta FP1_power_gamma FP2_power_delta Add All	double double double Remove All	0.0094088 403917 0.00782762 291059 0.00841209 285574 0.0261743 604374	Percent set aside 10 Use a test set to evaluate model perform after tuning and training modes. To impo separate test est entisted of partitioning th current data set, use the Test Data button starting an ap session.	ance rt a ne n afte
	FP1_power_alpha FP1_power_beta FP1_power_gamma FP2_power_delta Add All	double double double Remove All	0.0094060 403917 0.00782752291059 0.00841209285574 0.0261743604374	Percent set aside 10 Use a test set to evaluate model perform after tuning and training models. To impo separate test est instead of partitioning th current data set, use the Test Data button starting an app session.	ance rt a ne n afte
	FP1_power_alpha FP1_power_beta FP1_power_gamma FP2_power_delta Add All to prepare_data	double double double Remove All	0.0094063 403917 0.00782762291059 0.00841209285574 0.0261743604374	Percent set aside 10 Use a test set to evaluate model perform after tuning and training modes. To impo- separate test est instead of partitioning th current data set, use the Test Data button starting an app session. Read about test data	¢ ance rt a ne n afte
	FP1_power_alpha FP1_power_beta FP1_power_gamma FP2_power_deta Add All to prepare_data	double double double Remove All	0.0094003 403917 0.00782762291059 0.00841209285574 0.0281743604374	Percent set aside 10 Use a test set to evaluate model perform after funing and training models. To impor separate test el instead of partitioning th current data set, use the Test Data button starting an app session. Read about test data	¢ ance rt a ne n afte

Figure 2. Classification Learner Session preprocessing.

Figure 2 shows that the holdout validation was 25% and 75% for training with 2217 samples, and it shows the first 6 predictor features.

IV. RESULTS AND DISCUSSION

After importing and preprocessing the datasets, we trained them using the Ensemble Bagged Trees Algorithm. The model achieved an accuracy of 83.7%, as shown in Figure 3, processing 3300 observations per second during training, which took 35.7 seconds. The model utilized a maximum of 2207 splits and included 30 learners in the ensemble.As illustrated in Figure 5, the confusion matrix of the trained model is quite promising. It shows the following results: True Positives (TP): 252, False Positives (FP): 45, False Negatives (FN): 45, True Negatives (TN): 210. These values indicate that the model correctly identified 252 positive cases and 210 negative cases, while it incorrectly identified 45 positive cases as negative and 45 negative cases as positive

In Figure 6, the ROC curve of the model is depicted, demonstrating its performance across different threshold values. The Area Under the ROC Curve (AUC) is a crucial metric for evaluating the model's ability to distinguish between classes. Our model

achieved an AUC of 0.89, which signifies a high level of performance, as the AUC value ranges from 0.5 (no discrimination) to 1 (perfect discrimination). Table 1 provides a detailed breakdown of how the accuracy metrics were calculated. It shows the contributions of true positives, false positives, true negatives, and false negatives to the overall accuracy, reflecting the model's performance in various aspects. The accuracy, confusion matrix, and AUC collectively demonstrate the Ensemble Bagged Trees Algorithm's robustness and effectiveness in this application.

V.CONCLUSIONS

Using our pre-processed datasets, we trained and evaluated the Ensemble Bagged Trees Algorithm in this study. The results we obtained are impressive and show the algorithm's effectiveness and dependability. Our efforts have yielded several important conclusions that highlight the advantages possibilities of our machine learning and methodology.First, the model performed admirably, with an accuracy of 83.7%. This high degree of precision indicates that the Ensemble Bagged Trees Algorithm successfully identified the underlying patterns in the data, allowing it to provide accurate predictions. In addition, the model trained quite quickly, analyzing 3300 observations per second and finishing the training in just 35.7 seconds. This algorithm's efficiency demonstrates the applicability for large-scale applications where time is crucial and highlights its computational efficacy. The ROC curve study further validated the model's robustness, which showed an Area Under the Curve (AUC) of 0.89. The model's excellent discriminative capacity is demonstrated by its high AUC value, which also shows how well it can discriminate between positive and negative classes at various threshold values. AUC is a crucial measure of model performance and getting a number near 0.9 here emphasizes how well the Ensemble Bagged Trees Algorithm works in this situation.As a result of research study, we have concluded that the Ensemble Bagged Trees Algorithm is a very reliable and accurate model. The robustness and practical deployment possibilities of the model are demonstrated by the

high AUC value and favorable results obtained from the confusion matrix. This work demonstrates the great potential of ensemble approaches in machine learning and opens up new avenues for investigation and improvement in further studies.

REFERENCES

- C. E. Stafstrom and L. Carmant, "Seizures and Epilepsy: An overview for neuroscientists," Cold Spring Harbor Perspectives in Medicine, vol. 5, no. 6, p. a022426, Jun. 2015, doi: 10.1101/cshperspect.a022426.
- [2] V. S. S. Wong, "The causes of epilepsy: common and uncommon causes in adults and children," JAMA, vol. 307, no. 18, p. 1979, May 2012, doi: 10.1001/jama.2012.4478.
- [3] K. Rasheed et al., "Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A review," IEEE Reviews in Biomedical Engineering, vol. 14, pp. 139–155, Jan. 2021, doi: 10.1109/rbme.2020.3008792.
- [4] M. J. Eadie, "Shortcomings in the current treatment of epilepsy," Expert Review of Neurotherapeutics, vol. 12, no. 12, pp. 1419–1427, Dec. 2012, doi: 10.1586/ern.12.129.
- [5] P. R. Kunekar, M. Gupta, and B. Agarwal, "Detection and Analysis of Life Style based Diseases in Early Phase of Life: A Survey," in Communications in computer and information science, 2019, pp. 55– 69. doi: 10.1007/978-981-13-8300-7_6.
- [6] P. Kunekar, "The effects of artificial intelligence and medical technology on the life of human," Mumbaiunivercity, Jul. 2022, [Online]. Available: https://www.academia.edu/63348031/The_Effects_of_Artificial_Intelli gence_and_Medical_Technology_on_the_Life_of_Human
- [7] Recent research has examined how machine learning and deep learning approaches can be effectively applied to improve medical breakthroughs.
- [8] B. Arora, P. Jadhav, R. B. Sulaiman, A. Kareem, P. Kunekar, and B. Pant, "Integrating artificial intelligence and deep learning for enhanced medical innovation," IC3I, Dec. 2022, doi: 10.1109/ic3i56241.2022.10073054.
- [9] P. Kunekar, R. Vaishnav, E. Kalaivani, D. Gangodkar, C. Kaur, and J. A. Dhanraj, "Applications of Machine Learning Techniques in Detecting Skin Cancer," IC3I, Dec. 2022, doi: 10.1109/ic3i56241.2022.10072834.
- [10] I. S. Chakrapani, N. Tyagi, S. Tyagi, P. Kunekar, D. L. Padmaja, and K. Pant, "Applications of deep learning (DL) techniques in detecting breast cancer and malignant cells," IC3I, Dec. 2022, doi: 10.1109/ic3i56241.2022.10072720.
- [11] S. M. Usman, M. Usman, and S. Fong, "Epileptic seizures prediction using machine learning methods," Computational and Mathematical Methods in Medicine, vol. 2017, pp. 1–10, Jan. 2017, doi: 10.1155/2017/9074759.
- [12] M. Li, W. Chen, and T. Zhang, "Automatic epilepsy detection using wavelet-based nonlinear analysis and optimized SVM," Biocybernetics and Biomedical Engineering, vol. 36, no. 4, pp. 708–718, Jan. 2016, doi: 10.1016/j.bbe.2016.07.004.
- [13] P. Potapov, "On the loss of information in PCA of spectrum-images," Ultramicroscopy, vol. 182, pp. 191–194, Nov. 2017, doi: 10.1016/j.ultramic.2017.06.023.
- [14] R. Harikumar and B. S. Narayanan, "Fuzzy techniques for classification of epilepsy risk level from EEG signals," IEEE, Jun. 2004, doi: 10.1109/tencon.2003.1273316.
- [15] S. Raghu, N. Sriraam, Y. Temel, S. V. Rao, and P. L. Kubben, "EEG based multi-class seizure type classification using convolutional neural network and transfer learning," Neural Networks, vol. 124, pp. 202–212, Apr. 2020, doi: 10.1016/j.neunet.2020.01.017.
- [16] N. Aayesha, M. B. Qureshi, M. Afzaal, M. S. Qureshi, and M. Fayaz, "Machine learning-based EEG signals classification model for epileptic seizure detection," Multimedia Tools and Applications, vol. 80, no. 12, pp. 17849–17877, Feb. 2021, doi: 10.1007/s11042-021-10597-6.
- [17] D. A. Torse and R. Khanai, "Classification of epileptic seizures using ensemble empirical mode decomposition and least squares support

vector machine," IEEE, Jan. 2021, doi: 10.1109/iccci50826.2021.9402307.

- [18] H. Berger, "Über das Elektrenkephalogramm des Menschen," Archiv Für Psychiatrie Und Nervenkrankheiten, vol. 87, no. 1, pp. 527– 570, Dec. 1929, doi: 10.1007/bf01797193.
- [19] N. Srivastava, "A logistic regression model for predicting the occurrence of intense geomagnetic storms," Annales Geophysicae, vol. 23, no. 9, pp. 2969–2974, Nov. 2005, doi: 10.5194/angeo-23-2969-2005.
- [20] P. Reed and Y. Wu, "Logistic regression for risk factor modelling in stuttering research," Journal of Fluency Disorders, vol. 38, no. 2, pp. 88–101, Jun. 2013, doi: 10.1016/j.jfludis.2012.09.003.
- [21] J. L. Dioses, R. P. Medina, A. C. Fajardo, and A. A. Hernandez, "Performance of Classification Models in Japanese Quail Egg Sexing," IEEE, Mar. 2021, doi: 10.1109/cspa52141.2021.9377275.
- [22] M. A. A. Ozaeta, A. C. Fajardo, F. P. Brazas, and J. A. M. Cantal, "Deep Learning Approach for Seagrass Species Classification," IEEE, Jan. 2024, doi: 10.1109/gecost60902.2024.10474987.
- [23] S. M. Rasdas, A. C. Fajardo, and J. S. Limbago, "Predicting Abundance of Fish Species Populations in Manila Bay, Philippines Based on Ensemble Learning Approach," IEEE, Jun. 2023, doi: 10.1109/jcsse58229.2023.10201953.
- [24] E. R. Arboleda, A. C. Fajardo, and R. P. Medina, "Classification of coffee bean species using image processing, artificial neural network and K nearest neighbors," IEEE, May 2018, doi: 10.1109/icird.2018.8376326.
- [25] E. R. Arboleda, A. C. Fajardo, and R. P. Medina, "An image processing technique for coffee black beans identification," IEEE, May 2018, doi: 10.1109/icird.2018.8376325.
- [26] L. Breiman, "Bagging predictors," Machine Learning, vol. 24, no. 2, pp. 123–140, Aug. 1996, doi: 10.1007/bf00058655.
- [27] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, "On combining classifiers," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 3, pp. 226–239, Mar. 1998, doi: 10.1109/34.667881.
- [28] N. T. K. Ho, J. J. Hull, and S. N. Srihari, "Decision combination in multiple classifier systems," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 1, pp. 66–75, Jan. 1994, doi: 10.1109/34.273716.
- [29] A. Merghadi et al., "Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance," Earth-science Reviews, vol. 207, p. 103225, Aug. 2020, doi: 10.1016/j.earscirev.2020.103225.
- [30] M. Budnik and B. Krawczyk, "On optimal settings of classification tree ensembles for medical decision support," Health Informatics Journal, vol. 19, no. 1, pp. 3–15, Mar. 2013, doi: 10.1177/1460458212446096.
- [31] "Medical Image Processing in MATLAB", International Journal of Emerging Technologies and Innovative Research (www.jetir.org), ISSN:2349-5162, Vol.4, Issue 11, page no.547-552, November-2017, Available :http://www.jetir.org/papers/JETIR1711093.pdf