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Abstract: 
This study addresses the challenges posed by automated video surveillance, focusing specifically on crowd 

behavior analysis. Moreover, it explores the utilization of spatio-temporal features for action anomaly 

detection, aiming to enhance surveillance system capabilities. In our experimental endeavors, we propose 

a novel model leveraging a combination of 2D CNNs and recurrent neural networks (RNNs) for improved 

processing of video sequences. Our hypothesis posits that this amalgamation preserves the semantic 

structure of video data more effectively, leading to more meaningful information extraction.Through 

rigorous experimentation, our model demonstrates superior classification performance compared to the 

original approach, despite being trained on a smaller dataset. This substantiates our hypothesis and 

underscores the efficacy of our proposed method in action anomaly detection tasks. Overall, this research 

contributes to advancing the field of automatic video surveillance, highlighting the potential benefits of 

integrating convolutional and recurrent networks for complex data analysis. 
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I. INTRODUCTION 

We will study the use of spatio-temporal features 

for the detection of anomalous actions in video. 

Specifically, we will take as a starting point the 

model proposed in the paper Real-World Anomaly 

Detection in Surveillance Videos [1], and we will 

make a proposal for improvement. Our approach 

consists of changing the originally employed 

feature extractor, which is based on the use of 3D 

convolutions [2], for one based on classical 2D 

convolutions followed by a recurrent stage. 

Our hypothesis argues that, although 3D 

convolutions are designed to extract information 

from video fragments, they are not capable of 

correctly capturing long-term temporal dependence. 

The lack of capability in this regard results in an 

overall model deterioration, which can be remedied 

with a more powerful feature extractor that makes 

use of both convolutional layers to extract spatial 

information and recurrent layers to learn the 

temporal sequence. 

Next sections will detail the experimentation 

carried out, describing the data set used, the original 

model, and the proposed modifications. 

II.    SPATIO-TEMPORAL FEATURES 

ANALYSIS 

A. Dataset used: UCf101-Crime Dataset 

The data set with which we worked was proposed 

by the authors of the article under study. This 

dataset is composed of video sequences extracted 

from video surveillance cameras. As can be seen on 

the project website, the database is composed of 
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1900 videos of varying length, with an average of 

7247 frames. We are therefore talking about videos 

of an acceptable averaging several minutes in 

length. In total, 128 hours of video are available, 

and 13 different classes of anomalies are included, 

as well as videos that are considered normal. 

Normal videos are considered to be those in which 

no anomalous behaviour appears. Some of the 

anomaly classes included in the set are abuse, theft, 

burglary, breaking and entering, shooting, store 

robbery, fighting or explosions. One particularity of 

the dataset is the great diversity of frames in which 

the videos are collected. Figure 1 shows different 

frames extracted from normal videos. As can be 

seen, we have videos taken by indoor and outdoor 

cameras, both in daylight and at night, and with 

different camera angles. This limits the possibility 

of making assumptions about the data, and forces us 

to build a generic model, able to work in different 

situations.

Fig. 1  Examples of normal frames from the UCF-Crime datas

The second problem is to correctly assign the 

class to which the videos labelled as anomalous 

belong. In our case, we will focus on solving the 

first problem. The authors of the original model 

give much more importance to the first part than to 

the second, and therefore we have focused on their 

analysis, ignoring the second part. Therefore, for us 

there will be no distinction between the different 

kinds of anomalies, so from this point on we only 

distinguish between normal and abnormal videos. 

The data set is divided into training and test subsets. 

For the training set, 800 normal videos and 810 
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give much more importance to the first part than to 

nd, and therefore we have focused on their 

analysis, ignoring the second part. Therefore, for us 
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kinds of anomalies, so from this point on we only 

distinguish between normal and abnormal videos. 

et is divided into training and test subsets. 

For the training set, 800 normal videos and 810 

abnormal videos are available. For the test data set, 

290 videos (150 normal, 140 abnormal) are 

available. 

The main peculiarity of the dataset is that the 

training subset is weakly labelled. This means that, 

although the objective to be addressed is to 

temporally locate when an anomaly occurs, the 

labels available in the training set only mark that 

the video is anomalous, not where the anomaly 

occurs. Therefore, instead of having for each video 

a binary value per frame indicating whether or not 

an anomaly is present in that frame, what we have 

is a single binary label for the entire video

In the test set, however, the labelling is at the 

frame level, and therefore we will have to learn to 

temporarily locate the anomaly in a longer fragment. 

This makes it necessary to design a specific 

learning system to learn at the frame level when 

such information is not available.

On the labels of the test set, we observe that we

are faced with a strongly unbalanced problem. In 

total, we have 1027477 frames labelled as normal 

frames, while there are only 84331 anomalous 

frames. Surprisingly, despite having the sets 

practically balanced in terms of anomalous and 

normal frames, when we perform the calculation at 

the frame level, there is a very significant unbalance. 

This is because, in reality, the videos that present an 

anomaly concentrate the anomaly in a few seconds, 

and most of the video time is composed of normal 

frames. 

B. Original model 

This architecture consists of a feature extractor 

based on convolutional neural networks in three 

dimensions, followed by a fully connected network 

that performs the final classification. In addition, 

the main contribution of the model is a loss f

that allows learning frame-level labelling despite 

training with video-level labelling. This function 

solves the labelling peculiarity of the training 

dataset in a weak way. In the following sections 

wewill describe in detail each of the parts of t

network, as well as the proposed loss functi

1)  Feature extractor: C3D 

The feature extractor used in the original mod

the model known as C3D [2]. The particularity of 
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this model is that instead of using two dimensional 

convolutions, which are typically used in image 

processing, three-dimensional convolutions are 

used. The difference is that the two dimensional 

convolution only shifts the kernel along the width 

and height of the image. The convolution kernel is 

therefore a matrix, and the convolution output is in 

two dimensions.When a 3D convolution is applied, 

the temporal dimension is also taken into account. 

In this case, the kernels are rank 3 tensors, and the 

convolution does not use a single frame, but takes 

into account several consecutive frames. In this way, 

not only spatial information is collected (in the 

height and width dimensions), but also temporal 

information (since the time dimension is involved). 

Thus, the output is in three dimensions, instead of 

two. The proposed extractor therefore consists of a 

series of 3D convolutions that take a video as input 

and extract features from it. 

According to the authors of the model, the output 

of the first fully connected layer is the one to be 

used as the representation of the fragment of video. 

The model input is a 16-frame video of size 112 × 

112, and returns as output a 4096-element 

descriptor of that video.The feature extractor used 

in the work is previously trained on a dataset whose 

objective is the classification of behaviours. This 

large dataset is often used as a starting point for 

training models dedicated to feature extraction in 

video, similar to the use of ImageNet for images. 

Since the neural networks used in this type of 

work usually require large datasets to be trained, the 

sets used are not usually large enough for the 

learning to be sufficiently rich. For this reason, a 

previous training stage is usually performed on a 

large dataset, with which generic features are 

learned, and then the model is refined on the dataset 

being worked on. This technique is known as 

transfer learning. 

Specifically, in the work we are analysing, the 

feature extractor is trained on the Sports-1M dataset 

[3]. That dataset consists of 1133158 videos, with a 

total of 487 distinct classes. The feature extractor is 

trained by placing a densely connected layer at the 

end of the previous architecture, with as many 

neurons as classes in the dataset (487 in this case), 

and training the entire network to solve the 

classification task. Once the network is trained to 

solve the problem, because the behaviours present 

in the dataset are very varied, the layers of the 

network are able to extract very diverse information 

from the input videos. To build the final feature 

extractor, the last classification layer is removed 

and the weights learned for the rest of the layers are 

kept. This last technique is what is known as 

freezing the network. 

After this training, we obtain a model capable of 

summarizing the information of a 16-frame video 

into a vector of 4096 components. This model will 

be used to summarize the information of each video 

in the set into 16-frame fragments. In this way, for 

each video, we will have a variable number of 

extracted descriptors. In the next section we will 

discuss how these descriptors are converted into a 

fixed size representation of the video, and how this 

information can be used to train the final classifier. 

To do this, we will need to define a cost function 

that allows us to learn at the frame level (or a few 

frames), despite having labels only at the video 

level. 

2)  Multi-instance learning 

In this section we present the learning policy 

designed in the article for training the model. As 

discussed above, we have labels at the video level, 

but not at the frame level, which is the task we 

really want to solve. 

The training approach is based on what is known 

as multi-instance learning. Instead of receiving a 

label for each item in the dataset, a bag of uniquely 

labelled items is received. In the case of binary 

classification, a bag will be labelled as negative if 

all the elements in the bag are negative elements. 

On the other hand, a bag will be labelled positive if 

at least one of its elements is positive. This 

translates very simply to our scenario. In our case, 

each video will represent a single bag, labelled 

negative if it comes from a normal video (where no 

anomalies occur), and positive if it comes from an 

abnormal video (we know that an anomaly occurs 

in that video, but not where). To achieve a fixed-

size representation for each video, the videos are 

divided into 32 temporal segments, resulting in 32 

elements in each bag. To define the occupancy of 

each segment, the previously processed 16-frame 

fragments are distributed equispaced, so that in 
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each segment there are the same number of 

fragments, all of them consecutive (or the most 

equal distribution possible, if the division is not 

exact). The representation of the segment is the 

average of the representations of the fragments that 

form it. Thus, for each video, 32 different elements 

are obtained, which will form the bag in question. 

Now, we have to define the loss function to train 

with the model, given the bags we have obtained. In 

a normal context, if we had examples of anomalous ��  and normal ��  videos labeled complete, we 

would want to get a model whose output was a 

score anomaly, such that however, what we have 

are bags of examples, rather than complete videos. 

 ����� > ����� 
In these bags we know that there are positive 

examples, but we do not know what they are. Given 

two bags of examples, one coming from a normal 

video �� and one coming from an anomalous video ��, we will want to follow the score of the highest 

scoring segment of the bag The normal video (that 

piece of video that being normal is difficult to 

classify) is higher than the highest scoring segment 

of the abnormal bag (that segment of the abnormal 

bag with a higher probability of being abnormal). In 

other words, our intention will be to force with this 

formulation, we want to ensure that fragments that 

actually contain an anomaly have a higher score 

than those that do not, but are difficult to classify 

examples. 

max�∈�� ������ > max�∈�� ������ 
Using a similar idea to the Hinge loss function, 

which is used in SVM training to maximize the 

classification margin, we define the loss function 

for model training as in addition, the above function 

we have ignored the temporal structure of the input 

video. 

���� , ��� = max	�0,1 −	max�∈�� ������ +	max�∈�� ������� 
In a video with anomalies, we have that most of the 

time we encounter normal frames. For this reason, 

we want most of the predictions we make to be 

close to zero. In addition, we are interested in 

preventing the change in the anomaly score from 

being too abrupt, so we want the increase in the 

anomaly score between one segment and the next 

not to be too strong. This leads us to add two 

regularization terms to the cost function, which are 

responsible for controlling the two quantities we 

have mentioned. With such a modification, the final 

loss function becomes the term accompanying 

parameter ��  refers to the temporal regularization 

term, and the term accompanying parameter �� 

refers to the sparse regularization the values �� and �� can be adjusted to give more or less importance 

to the regularization terms. 

���� , ��� = max�0,1
−	� !�∈�� ������ +	� !�∈�� ������"
+	��#$������ − 	�����%��&

�'�

�()
+ ��#������

�

�()
 

Once we have seen the training policy of the 

classifier model, we move on to give the complete 

description of the original model. 

3)  Complete original model 

Once we have seen the feature extractor and the 

training policy, we move on to see how the 

complete original model is trained. 

Figure 2 shows the complete structure of the 

original model. Given two videos from the dataset, 

one normal and one anomalous, its 32 temporal 

segments are extracted and the bags of examples 

are formed. The 32 segments are processed with the 

pre-trained feature extractor, and summary 

descriptors are extracted for each segment. These 

descriptors are classified using a fully connected 

network, the only output of which is a neuron. This 

neuron learns to return an anomaly score for each 

segment. When the anomaly scores for the positive 

and negative videos have been computed, the value 

of the loss function is calculated and the weights of 

the dense layers are updated using a gradient 

descent method. The feature extractor is pre-trained 

and frozen, so at full model training time its 

weights are not updated. 

For each training step, 60 videos are randomly 

selected from the set in a balanced way (30 normal 

and 30 abnormal), and the gradient of the loss 
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function is calculated based on the classification of 

the 60 videos. 

Once the model is trained with the 

system, in inference time the video to be classified 

is divided in the same way as in the previous 

system.

Fig. 2  Complete architecture of the original model

The anomaly score is calculated for each segment. 

To obtain a prediction for each frame

prediction of the segments is interpolated. Having 

seen the original model in its entirety, we will now 

describe the proposed modification. 

C. Proposed model improvement 

The proposed improvement of the model consists 

of a modification of the feature ext

system that correctly captures the temporal 

information contained in the video fragments.

The main criticism that can be made of the 

previous model is that the feature extractor is not 

ideal. Although three-dimensional convolutions are 

models designed for feature extraction in video, 

their capacity to extract temporal information 

contained in a large number of consecutive frames 

is limited, since the receptive field of the network is 

limited by the size of the kernels used. In the case 

of the previous model, we work with cores of size 3, 

so we will extract information that is expressed in 

three consecutive frames, not at a greater distance. 

Thanks to the Pooling operation, in more advanced 

layers of the network, information is extracted from 

frames that are at a greater distance, but in our 

opinion the time dependence is underrepresented in 

these models. 

Our proposal, therefore, tries to solve this 

problem by providing an extractor with higher 

quality spatio-temporal characteristics, which is 

described below. 

4)  Feature extractor: Xception-LSTM 
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The anomaly score is calculated for each segment. 

To obtain a prediction for each frame, the 

prediction of the segments is interpolated. Having 

seen the original model in its entirety, we will now 

The proposed improvement of the model consists 

of a modification of the feature extractor by a 

system that correctly captures the temporal 

information contained in the video fragments. 

The main criticism that can be made of the 

previous model is that the feature extractor is not 

dimensional convolutions are 

esigned for feature extraction in video, 

their capacity to extract temporal information 

contained in a large number of consecutive frames 

is limited, since the receptive field of the network is 

limited by the size of the kernels used. In the case 

evious model, we work with cores of size 3, 

so we will extract information that is expressed in 

three consecutive frames, not at a greater distance. 

Thanks to the Pooling operation, in more advanced 

layers of the network, information is extracted from 

es that are at a greater distance, but in our 

opinion the time dependence is underrepresented in 

Our proposal, therefore, tries to solve this 

problem by providing an extractor with higher 

temporal characteristics, which is 

As mentioned above, the proposal is based on 

modifying the feature extractor of the previous 

model, in such a way that an architecture capable of 

correctly capturing temporal information is used. 

For this purpose, we will make use of recurrent 

neural networks. This type of model differs from 

classical neural networks in that it connects the 

output of neurons of a layer with inputs from 

neurons within the same layer. Thus, their 

prediction depends not only on a s

a small set of elements) of the input vector, but also 

on the information received by the network in 

previous stages. In particular, we will use two 

dimensional convolutional networks to extract 

information from all the frames of the vide

we will create a time series with these descriptions. 

The time series will be used as input to a recurrent 

network that will learn the temporal pattern. 

Specifically, we will use an 

[4]. This architecture was proposed to solve the

problem of forgetting that was detected in the first 

recurrent neural networks. This problem is that, 

although theoretically recurrent neural networks 

should be able to learn long

patterns, it was observed that when the information 

was sufficiently separated the effectiveness of these 

models deteriorated significantly. To mitigate this 

deterioration, what the LSTM neural network uses 

is an internal state that is transmitted between cells, 

in addition to the network output itself. In this w

the output of each neuron is partly separated from 

the internal state of the network that is transmitted 

to subsequent neurons. It was observed that this 

separation is beneficial and significantly improves 

the results obtained by the network. 

operation of these neurons consists of combining 

the network memory (represented by the internal 

state and the previous output) with the current input 

by means of three different modules, known as 

gates. In the recurrent network we have connections 

between the neurons of the hidden layer, which 

does not occur in classical neural networks upward. 

Each neuron receives, in addition to the 

corresponding input, the previous internal state and 

output of the layer. 

As in the original model, we will work with 

frame video fragments. We will independently 

introduce the frames into an Xception model [5
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information from all the frames of the video, and 
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The time series will be used as input to a recurrent 

network that will learn the temporal pattern.  

 LSTM architecture 

]. This architecture was proposed to solve the 

problem of forgetting that was detected in the first 

recurrent neural networks. This problem is that, 

although theoretically recurrent neural networks 

should be able to learn long-lasting temporal 

patterns, it was observed that when the information 

fficiently separated the effectiveness of these 

models deteriorated significantly. To mitigate this 

deterioration, what the LSTM neural network uses 

is an internal state that is transmitted between cells, 

in addition to the network output itself. In this way, 

the output of each neuron is partly separated from 

the internal state of the network that is transmitted 

to subsequent neurons. It was observed that this 

separation is beneficial and significantly improves 

esults obtained by the network. The basic 

operation of these neurons consists of combining 

the network memory (represented by the internal 

state and the previous output) with the current input 

by means of three different modules, known as 

n the recurrent network we have connections 

n the neurons of the hidden layer, which 

does not occur in classical neural networks upward.  

Each neuron receives, in addition to the 

corresponding input, the previous internal state and 

As in the original model, we will work with 16-

frame video fragments. We will independently 

rames into an Xception model [5], 
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pre-trained on the ImageNet dataset [6

is available for direct download in the Keras 

framework [7], which has been used for the 

implementation). The output of the penultimate 

layer of the network, which is a Global Average 

Pooling layer, is used as the descriptor of each 

frame. This layer summarizes all the information of 

a feature map by averaging the values of all the 

pixels that make it up. The output obtained is a 

vector of 2048 values.  

Consequently, the frame representation of a video 

is a matrix of dimensions 16 * 2048. This 

representation is fed into an LSTM layer, which 

will consider the input as a time series of 16 time 

slots with 2048 features. 

The output of such a layer will be a descriptor 

representing the spatiotemporal information 

contained in the 16-frame video fragment. 

Experiments have been carried out with different 

layer sizes. Specifically, descriptors of size 512, 

768 and 1024 have been proposed, with better 

results being obtained the larger the descriptor size.

Given the lack of computational resources we 

have experienced when training the models, instead 

of having pre-trained the feature extractor on the 

Sports-1M set (on which the original extractor was 

pre-trained), we have pre-trained our extr

the UCF-101 dataset [8]. That set has 13320 videos 

spread over 101 different classes. The duration of 

the videos is relatively short, ranging from just over 

a second to just over a minute for the longest videos.

As we can see, we are dealing with a dataset of a 

much smaller size than the one used by the authors 

of the original paper. This difference in size will 

mean that the features we learn with our feature 

extractor will be less rich and varied than those we 

could learn with a larger set, which may result in a 

loss of model performance. Nevertheless, we are 

talking about a data set of acceptable size for model 

pre-training. 

As for the training policy, we will add to the 

feature extractor a block of densely connected 

layers at the end, which will perform the 

classification of the videos. To create the training 

examples, from the videos in the UCF

we will select 16 equispaced frames within the 

whole video, and scale the frames to have the input 

size required by the Xception network (the input 

f Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar
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have experienced when training the models, instead 

feature extractor on the 

1M set (on which the original extractor was 

trained our extractor on 

]. That set has 13320 videos 

spread over 101 different classes. The duration of 

ort, ranging from just over 

a second to just over a minute for the longest videos. 

As we can see, we are dealing with a dataset of a 

much smaller size than the one used by the authors 

of the original paper. This difference in size will 

es we learn with our feature 

extractor will be less rich and varied than those we 

could learn with a larger set, which may result in a 

loss of model performance. Nevertheless, we are 

talking about a data set of acceptable size for model 

r the training policy, we will add to the 

feature extractor a block of densely connected 

layers at the end, which will perform the 

classification of the videos. To create the training 

examples, from the videos in the UCF-101 dataset 

paced frames within the 

whole video, and scale the frames to have the input 

size required by the Xception network (the input 

will have a final size of 16 × 299 × 299). The 

convolutional network weights will be frozen, to 

reduce the computational burden of 

we consider the features learned in ImageNet to be 

of good quality for image classification. Therefore, 

we will only train the recurrent layer and the fully 

connected layers. 

Once the complete training has been carried out, 

we remove the densely connected layers, and use 

the output of the recurrent layer as the descriptor of 

the video fragment. We thus have a 512, 768 or 

1024 element descriptor for each

fragment. In Figure 3 we can see the complete 

feature extractor, ready for pre-t

Fig. 3: Proposedfeature extractor, along with fully connected layers for 

training. 

Once the model has been pre-

101 set, the fully connected layers are removed. 

Therefore, our final feature extractor is composed 

of replicas of the Xception network for each of the 

input frames, and an LSTM network with output 

size 512, 768 or 1024, which will be what we will 

know as the video fragment descriptor.

III. EXPERIMENTATION

OBTAINED

A. Implementation aspects 

The code developed for the work, which allows 

replicating the experimentation carried out, is 

available in the repository 

https://github.com/atchelodev/vs

The models provided are the ones for the 

experiment in which a 1024 size representation is 

used. The rest of the models have not been provided 

because the experimentation is similar in all cases, 

and we have preferred to include only the best of 

the models. 
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will have a final size of 16 × 299 × 299). The 

convolutional network weights will be frozen, to 

reduce the computational burden of training, since 

we consider the features learned in ImageNet to be 

of good quality for image classification. Therefore, 

we will only train the recurrent layer and the fully 

Once the complete training has been carried out, 

nsely connected layers, and use 

the output of the recurrent layer as the descriptor of 

the video fragment. We thus have a 512, 768 or 

1024 element descriptor for each 16-frame 

we can see the complete 

training. 

 
: Proposedfeature extractor, along with fully connected layers for 

-trained on the UCF-

101 set, the fully connected layers are removed. 

Therefore, our final feature extractor is composed 

the Xception network for each of the 

input frames, and an LSTM network with output 

size 512, 768 or 1024, which will be what we will 

know as the video fragment descriptor. 

EXPERIMENTATION AND RESULTS 

OBTAINED 

he work, which allows 

replicating the experimentation carried out, is 

available in the repository 

https://github.com/atchelodev/vs-anomaly-detection. 

The models provided are the ones for the 

experiment in which a 1024 size representation is 

of the models have not been provided 

because the experimentation is similar in all cases, 

and we have preferred to include only the best of 
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The code localized at 

https://github.com/ptirupat/AnomalyDetection_CV

PR18 is used as the basis for the original 

implementation. An implementation of the model, 

as well as the compressed file of the original trained 

architecture, is provided in this repository. However, 

the code needed to retrain the system is not 

available. In addition, the author of the article 

provides the code at 

https://github.com/WaqasSultani/AnomalyDetectio

nCVPR2018. 

In order to make the comparison between our 

model and the original more fair, we have chosen to 

repeat the experimentation carried out by the 

authors, in order to avoid possible differences in the 

training of the models. This is because we cannot 

guarantee that we are performing exactly the same 

steps as the original authors from the code they 

provide, since it is not complete. For example, in 

neither of the two repositories are the code for 

feature extraction is provided, so we cannot be sure 

that the results obtained by the original model from 

the features extracted by us are identical to those 

originally obtained. Nevertheless, we also include 

their results, which show that the model trained by 

us does not have exactly the same behaviour as 

theirs. 

In this way, we will have two versions of the 

original model, one based on the trained model 

provided by the authors, and the other fully trained 

by us. As for the full implementation and training 

of the original model, the two sources above have 

been used to replicate the experimentation as 

reliably as possible. However, because much of the 

code was replicated between the two repositories, 

and some parts were inefficiently implemented, 

some changes were made to parts of the code while 

respecting its original operation. The original code 

of the article has not been used directly due to the 

impossibility of replicating some of the stages. For 

example, there are parts of the system written in 

MATLAB, or that require the use of external tools. 

The implementation we have carried out allows us 

to fully repeat the experimentation using Python 

exclusively, and without the need to resort to 

external sources. 

The OpenCV library [9] has been used to process 

the data in video format. In particular, we have used 

the modules that allow the reading of videos from 

disk to memory. This library loads the videos as a 

list of numerical matrices, which represent each of 

the frames that make up the video sequence. For the 

handling of these matrices, we have made use of the 

NumPy numerical computation library [10, 11]. 

This package provides an interface to operate 

efficiently with structured collections of numbers 

(N-dimensional arrays). Because Python is a 

language oriented towards flexibility and ease of 

use, it has as a trade-off a significant loss of 

performance when performing arithmetic 

operations. For this reason, NumPy is an essential 

tool for the development of applications with high 

computational cost. In addition, for the effective 

management of annotation files, which are provided 

in CSV format, use has been made of Pandas [12]. 

This library allows the management of data 

structured in tables, using structures known as 

DataFrames. 

For the implementation of neural network models, 

the Keraslibrary[7] has been used. This library 

provides a high-level interface for the 

implementation of deep learning models, using 

underneath the TensorFlow library [72]. The use of 

these two software packages greatly facilitates 

model development and validation, while offering 

some flexibility. This allows testing on 

architectures of some complexity without the need 

to write the entire system at a low level, but simply 

by combining neurons of various types organized in 

layers. In addition, the use of TensorFlow allows 

the execution of models on GPU architectures, 

instead of CPU. Because neural networks need to 

operate on high-dimensional matrices, running 

these models requires performing a very large 

number of arithmetic operations. The execution of 

these operations is computationally very expensive, 

and the ability to use the parallel processing of 

graphics cards greatly reduces model execution 

times.  

As for the hardware architecture on which the 

models were run, the executions were carried out on 

a compute node with NVIDIA Tesla V100 graphics 

cards with 32 GB of graphics RAM. All models 

have been run using a single graphics unit at the 

same time. 
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B. Our experimentation 

1)  Xception-LSTM extractor training 

The training of the feature extractor has been 

performed on a larger dataset, and the model 

obtained has been frozen and used to extract the 

video representations of our target set. 

The training of the extractor has been performed 

on the UCF-101 dataset, as described above. To 

control the evolution of the model and check if it 

over-fits, the training and validation sets proposed 

by the authors of the data set as first partitions are 

used as training and validation sets. In order to 

make the comparison between models fair, the data 

set is divided into training and testing three times. 

In this way, the models are required to be trained 

and evaluated three times, thus reducing the 

possible influence of chance. In our case, we will 

use the first of the three splits to train our extractor. 

Using the test partition as the validation set, we can 

observe how the extractor behaves on data that it 

has not observed while it is being trained, thus 

giving an idea of its generalization capability. 

Using this split, the classifier is trained on a set of 

9537 videos, and evaluated on a set of 3783. It is 

possible that the division we have used is not the 

most appropriate, since the validation set is 

relatively large. In our case, we do not need a 

validation set that guarantees a fair comparison 

between our model and the rest of the models that 

solve this problem, but we want to get an idea of 

the correct performance of our extractor. It is 

possible that with a larger training set, in exchange 

for a smaller validation set, we would achieve 

higher quality features, since we would have more 

training diversity. However, we have not studied 

this detail in more depth because the default 

division already leaves a set of training data of 

acceptable size, sufficient for the experimentation 

we face in this work. 

As previously mentioned, in order to train the 

feature extractor, we modified the last part of the 

network to solve the classification problem on this 

dataset. Specifically, to the extractor architecture 

(composed of the Xception modules for image 

processing plus the LSTM layer for temporal 

learning), we add two hidden layers, and the output 

layer, which has 101 neurons (as many as classes in 

the dataset). Thus, we have the following final 

structure: 

• Xception module, which accepts images of size 

299 × 299 × 3, and returns an image descriptor of 

size 2048. Since we work with if we have 16 frames, 

using the TimeDistributed module of Keras we can 

have 16 copies of the network in parallel, so that the 

output is a time series of 16 time instants and 2048 

features per instant. This part of the network is 

trained on ImageNet and is not retrained. 

• LSTM recurrent layer accepts as input a time 

series of 16 time instants and 2048 features, and 

returns a series description of size 512, 768 or 1024, 

depending on the size of the descriptor we want to 

extract. This part of the network is randomly 

initialized and trained at this stage. 

• Dense layer classifier. This part of the network, 

consisting of three layers, processes the temporal 

descriptor and performs the final classification. 

Like the recurrent part, it is randomly initialized 

and entered at this stage. This entire module will be 

discarded after training, thus retaining the feature 

extractor part exclusively. The size of the two 

hidden layers will depend on the size of the 

descriptor (for example, in the case of descriptor 

size 1024, the dense layers are of size 512 and 128). 

The last layer always has 101 neurons, as many as 

we have classes in the dataset. 

To construct the dataset examples, because the 

original videos have different sizes and durations, 

the frames have been scaled to have size 299×299 

(in our experimentation distortion has not been 

taken into account in the same way as it is in C3D), 

and the videos have been sampled to obtain 

fragments of 16 frames equispaced between the 

beginning and the end of each video. We therefore 

obtain a representation for each sequence of 

16×299×299×299×3. For the preprocessing of each 

frame, Keras provides a function that normalizes 

the input to suit how the Xception model was 

trained. This function, roughly speaking, performs a 

normalization of each pixel value by dividing by 

the standard deviation and subtracting the mean of 

the pixel values of the ImageNet set. 

The Adam optimizer is used for training the 

model with a learning rate of 10−5, and a decay of 

10−6 (this optimizer reduces the learning rate after 

a certain number of epochs, in order to fine tune the 
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result in the last stages of training). The cost 

function to be optimized is the categori

and the model is trained for 200 epochs. To keep 

the best model found so far, we use the 

ModelCheckpointer feature of Keras, which allows 

you to specify a metric and the checking period, 

and saves a copy of the model at the training time 

when we check if the metric is the best obtained so 

far. We use as a metric to observe the accuracy 

obtained on the validation set. We observe a metric 

on the validation set so that the overfitting does not 

lead us to think that the model performs very well, 

despite a poor generation capacity. 

During training, three different metrics have been 

collected, which are often used in the evaluation of 

classification problems with such a large number of 

classes; the value of the cost function, which 

indicates whether the training is being carried out 

correctly, the "Top-1" accuracy, which indicates the 

percentage of correctly classified examples, and the 

"Top-5" accuracy, which indicates the percentage 

of examples whose actual class is among the five 

most probable classes predicted by the model. 

These last two metrics are particular cases of the 

"Top-k" accuracy, which is very useful for 

evaluating problems with a large number of classes. 

In many cases, the classes represented in data sets 

of this type have a large overlap because they 

represent similar concepts. In the predictions of the 

models, several classes appear with a high 

probability, very similar for all of them, among 

which the real class is usually found. The "Top

metric partly addresses the fact that the m

selected the correct class as one of the most likely, 

but not as the most likely of all. Clearly, it is a 

much less serious error to predict almost 

equiprobably the classes "Riding a horse" and 

"Horse racing" (both present in the UCF

but put slightly above the correct in- than to assign 

with high probability the class "Playing guitar" high 

to an example of "Riding a horse". This is why the 

"Top-k" metric for k ≥ 3 is usually considered to 

be fairer than the "Top-1" metric for problems wit

so many classes. 

The graphs in Figure 4 show the evolution of 

these three metrics during the training of the 1024 

representation size model. We do not show the 
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result in the last stages of training). The cost 

function to be optimized is the categorical entropy, 

and the model is trained for 200 epochs. To keep 

the best model found so far, we use the 

ModelCheckpointer feature of Keras, which allows 

you to specify a metric and the checking period, 

and saves a copy of the model at the training time 

we check if the metric is the best obtained so 

far. We use as a metric to observe the accuracy 

obtained on the validation set. We observe a metric 

on the validation set so that the overfitting does not 

lead us to think that the model performs very well, 

During training, three different metrics have been 

collected, which are often used in the evaluation of 

classification problems with such a large number of 

classes; the value of the cost function, which 

he training is being carried out 

1" accuracy, which indicates the 

percentage of correctly classified examples, and the 

5" accuracy, which indicates the percentage 

of examples whose actual class is among the five 

es predicted by the model. 

These last two metrics are particular cases of the 

k" accuracy, which is very useful for 

evaluating problems with a large number of classes. 

In many cases, the classes represented in data sets 

ap because they 

represent similar concepts. In the predictions of the 

models, several classes appear with a high 

probability, very similar for all of them, among 

which the real class is usually found. The "Top-k" 

metric partly addresses the fact that the model has 

selected the correct class as one of the most likely, 

but not as the most likely of all. Clearly, it is a 

much less serious error to predict almost 

equiprobably the classes "Riding a horse" and 

"Horse racing" (both present in the UCF-101 set), 

than to assign 

with high probability the class "Playing guitar" high 

to an example of "Riding a horse". This is why the 

3 is usually considered to 

1" metric for problems with 

show the evolution of 

these three metrics during the training of the 1024 

representation size model. We do not show the 

evolution of the other two models because the 

reasoning on them is similar and does not provid

new information.  

In view of the results that can be observed, we 

have obtained a fairly good quality feature extractor. 

We observe how from 100 epochs onwards the 

model begins to over-fit, since in the cost function 

graph the value in the training set c

but in the validation set it stagnates and begins to 

rise. Furthermore, in the accuracy graph there is a 

stagnation of the values obtained.

Thanks to the ModelCheckpointer we discussed 

previously, we have conserved the state of the 

model at epoch 100 for our feature extractor. We 

have considered that at that point a quality model is 

obtained from the metrics we have calculated. At 

the guard point, we have considered that a quality 

model is obtained at that point from the metrics we 

have calculated. 

Fig. 4: Proposedfeature extractor, along with fully connected layers for 

training. 

At the previous save point, at 80 epochs, the 

model performs slightly worse in terms of both 

Top-1 and Top-5 accuracy, and very similar cost 

function values. The next save point, at 120 epochs, 

is already at the stage where the model over

we are left with the intermediate model.

After training the extractor models, we obtain the 

following table of accuracies: 
Table 1: Top-1 and Top-5 results for the thre

Dimensions Top-1 Accuracy 

512 elements 57.63 % 

768 elements 62.98 % 

1024 elements 63.27 % 

As we can see, for the three dimensions we 

obtain a quite good quality. The original C3D 

model shows in their experiment [2
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evolution of the other two models because the 

reasoning on them is similar and does not provide 

In view of the results that can be observed, we 

have obtained a fairly good quality feature extractor. 

We observe how from 100 epochs onwards the 

fit, since in the cost function 

graph the value in the training set continues to fall, 

but in the validation set it stagnates and begins to 

rise. Furthermore, in the accuracy graph there is a 

stagnation of the values obtained. 

Thanks to the ModelCheckpointer we discussed 

previously, we have conserved the state of the 

at epoch 100 for our feature extractor. We 

have considered that at that point a quality model is 

obtained from the metrics we have calculated. At 

the guard point, we have considered that a quality 

model is obtained at that point from the metrics we 

 
: Proposedfeature extractor, along with fully connected layers for 

At the previous save point, at 80 epochs, the 

model performs slightly worse in terms of both 

5 accuracy, and very similar cost 

next save point, at 120 epochs, 

is already at the stage where the model over-fits, so 

we are left with the intermediate model.  

After training the extractor models, we obtain the 

5 results for the three extractors on UCF-101 

Top-5 Accuracy 

82.42 % 

84.67 % 

84.66 % 

As we can see, for the three dimensions we 

obtain a quite good quality. The original C3D 

shows in their experiment [2, Figure 2] that 
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their model reaches a Top-1 accuracy of 45% when 

trained as a full neural network (as we have done). 

They then show the results of their final model, 

which employs the C3D features but uses an SVM 

for the final classification, and whose results are 

significantly better, with a Top-1 accuracy of more 

than 80 %. However, as we are interested in 

comparing the feature extractors, we believe that 

the fair comparison should be with the full neural 

model. From the results obtained, we can conclude 

that our extractor is more powerful than the one 

they propose, at least as far as UCF-101 

classification is concerned. 

Comparing the results of our three extractors, it 

seems clear that there is an improvement the larger 

the size of the feature vector. This improvement is 

not as noticeable between the 768 and the 1024 

extractor, whose results are very similar (especially 

in terms of Top-5 accuracy). However, there is a 

substantial improvement between these two models 

and the smaller one. 

2)  Feature extraction 

For feature extraction from the UCF-Crime set 

videos, we followed the same policy as in the 

original work. We split the video into 16-frame 

fragments with no overlap, pre-processed the 

frames to bring them to size 299×299, and used the 

function provided by Keraspreprocessing for 

Xception. 

Using the network trained according to the 

previous section without the dense layers, we obtain 

for each video a representation of size k×1024, with  

k equal to the number of non-overlapping fragments 

of 16 frames. By grouping these fragments into 32 

groups and taking the average of the fragments in 

each group, we obtain the final representation of the 

video consisting of 32 fragments, each with a 

feature vector of size 1024. 

 

3)  Classifier training 

Once we have the extracted features, we apply a 

strategy analogous to that of the original model for 

training the classifier. The classifier is again a fully 

connected neural network, but smaller in size than 

the one used by the original model. We have two 

hidden layers, of size 512 and 64, respectively, and 

the output neuron. The reduction in the size of the 

hidden layers is justified by the reduction in the size 

of the descriptor, which has become half the 

original size.  

In addition, the deactivation rate of the Dropout 

layers has been reduced from 0.6 to 0.4, as we 

considered that the original model took an 

excessive value, which can also cause the classifier 

performance to degrade and training to be much 

slower.  

The weighting values of the loss function terms 

have also been adjusted. The value of the kernel 

regularizer has been increased to 0.01, and the 

multipliers of the time and sparse constraints have 

been reduced by half (from 0.00008 to 0.00004). 

These adjustments have been made after studying 

the first training runs of the model and observing 

that it ate too many false negatives. This could 

occur because the dispersion restrictions were too 

strong, so we have slightly mitigated that effect by 

reducing the significance of the term. 

The optimizer used in our case is again Adagrad, 

although we have increased the learning rate to 0.2 

at the beginning. It has been observed that the 

training is quite slow at the beginning, and this 

modification improves this initial bad behaviour. 

C. Results obtained 

In this section, we show the results obtained in 

the final experiment. First, we show the confusion 

matrices for the 0.5 decision threshold of both 

models: 
Table 2: Top-1 and Top-5 results for the three extractors on UCF-101 

Model TN FP FN TP 

Original - 

pre-training 

902433 125044 49699 34632 

Original - 

replicated 

783342 244135 43699 40632 

Xception-

LSTM - 1024 

875515 151962 44145 40186 

Xception-

LSTM - 768 

908518 118959 52874 31457 

Xception-

LSTM - 512 

914259 113218 60661 23670 

In the table we can observe several details that 

are worth commenting on. First, we can observe 

how the original model trained by the authors 
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(marked here as pretrained) and the original model 

replicated by us do not obtain equivalent 

Our replication has a larger number of true 

positives, with an increase of 6000. 

The results of this experimentation are not very 

reliable, since it is usually very difficult to replicate 

the training conditions of a model, and therefore a 

comparison with the original results may not be 

entirely fair. This is the reason why we have 

decided to replicate the experimentation, since it is 

usually very difficult to replicate the training 

conditions of a model, and therefore the comparison 

with the original results may not be entirely fair. 

The model replicated by us has been trained in 

conditions similar to those we have imposed on our 

proposal, so the comparison is, from our point of 

view, fairer with that model. 

Comparing our proposals with each other,

see how the size of the representation significantly 

affects the results obtained by the model. The larger 

the feature vector, the more anomalous frames are 

detected, at the cost of committing more false 

positives. However, the increase in false po

not as noticeable as the increase in well

frames, so we believe that our model improves with 

increasing representation size. 

It is especially noteworthy to compare the 

increase in false positives between models. While 

for the 512- and 768-characteristic models, the 

increase in false positives is small (in fact, in 

absolute terms, the increase in false positives is 

smaller than the increase in true positives, despite 

the class imbalance), when we look at the 1024

model this problem skyrockets. It would be 

worthwhile to study why this increase has occurred.

As for the comparison between our proposal and 

the original model, if we compare with our 

experimentation, the proposed model of larger 

representation size is significantly better

original proposal. The number of true positives is 

almost the same, but the number of false positives 

has been drastically reduced. This indicates that the 

features we have extracted are better able to 

differentiate normal from abnormal fotograms

those extracted by the C3D model. If we compare 

with the original proposal trained by the original 

authors, we obtain a considerable increase in the 

number of true positives (we detect about 6000 
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(marked here as pretrained) and the original model 

replicated by us do not obtain equivalent results. 

Our replication has a larger number of true 

The results of this experimentation are not very 

reliable, since it is usually very difficult to replicate 

the training conditions of a model, and therefore a 

son with the original results may not be 

entirely fair. This is the reason why we have 

decided to replicate the experimentation, since it is 

usually very difficult to replicate the training 

conditions of a model, and therefore the comparison 

nal results may not be entirely fair. 

The model replicated by us has been trained in 

conditions similar to those we have imposed on our 

proposal, so the comparison is, from our point of 

Comparing our proposals with each other, we can 

see how the size of the representation significantly 

affects the results obtained by the model. The larger 

the feature vector, the more anomalous frames are 

detected, at the cost of committing more false 

positives. However, the increase in false positives is 

not as noticeable as the increase in well-classified 

frames, so we believe that our model improves with 

It is especially noteworthy to compare the 

increase in false positives between models. While 

characteristic models, the 

increase in false positives is small (in fact, in 

absolute terms, the increase in false positives is 

smaller than the increase in true positives, despite 

the class imbalance), when we look at the 1024-size 

skyrockets. It would be 

worthwhile to study why this increase has occurred. 

As for the comparison between our proposal and 

the original model, if we compare with our 

experimentation, the proposed model of larger 

representation size is significantly better than the 

original proposal. The number of true positives is 

almost the same, but the number of false positives 

has been drastically reduced. This indicates that the 

features we have extracted are better able to 

differentiate normal from abnormal fotograms than 

those extracted by the C3D model. If we compare 

with the original proposal trained by the original 

authors, we obtain a considerable increase in the 

number of true positives (we detect about 6000 

more positive frames), but at the cost of a 

significant increase in false positives. In this case, 

probably, the decision between choosing one model 

or the other if we look exclusively at the confusion 

matrices would be justified by the requirements of 

the real problem to be solved. In this case, detecting 

a greater number of positives is advisable, since we 

are talking about an alarm system.

A false positive will be less serious than 

committing a false negative, since in the case of a 

false positive it simply warns of something that is 

not really happening, but in the case of a false 

positive we can ignore a dangerous situation that 

we would be interested in detecting.

In addition to the confusion matrices, the ROC 

curves and PR curves are shown below:

Fig. 5: Proposedfeature extractor, along with fully 

training. 

In view of the ROC curves, we can conclude that 

all models perform similarly. In principle, the two 

models with the worst ROC curve quality are the 

replica of the original model and the Xception

LSTM model with 512 feature si

curves are dominated by the other 3 practically 

throughout the graph. On the other hand, the curve 

obtained by the Xception-LSTM model of size 768 

is clearly dominant in most of the graph. For low 

false positive rates this advantage is not so

noticeable, but it quickly becomes the best model 

and dominates the rest of the curves in the rest of 

the graph, reached only by the 1024 features 

representation for a false positive rate around 0.4.
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: Proposedfeature extractor, along with fully connected layers for 

In view of the ROC curves, we can conclude that 

all models perform similarly. In principle, the two 

models with the worst ROC curve quality are the 

replica of the original model and the Xception-

LSTM model with 512 feature size. These two 

curves are dominated by the other 3 practically 

throughout the graph. On the other hand, the curve 

LSTM model of size 768 

is clearly dominant in most of the graph. For low 

false positive rates this advantage is not so 

noticeable, but it quickly becomes the best model 

and dominates the rest of the curves in the rest of 

the graph, reached only by the 1024 features 

representation for a false positive rate around 0.4. 
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Another detail we can observe is that the models 

based exclusively on convolution perform better 

than our models when it comes to low false positive 

rates. Both the original model and the replica 

remain the best models when we are talking about a 

false positive rate below 0.1. However, beyond that 

point, our proposals achieve similar performance to 

the original proposals, and quickly outperform them 

for the rest of the graph. 

If we look in terms of AUC, surprisingly, the best 

model found is the one using the 768 size 

representation. Although in the confusion 

found the 1024 size model to be better, in terms of 

AUC we have a better performance by the medium 

size model. In particular, it outperforms by more 

than 1.5 percentage points both the original model 

and our proposal for the larger size, both of 

achieve very similar results. We are talking about a 

relatively large improvement, so this model could 

be the most appropriate in some contexts. In 

addition, the EER, which is the point where the 

ROC curve intersects with the diagonal dashed line, 

also shows that the best model is the LSTM of size 

768. Next, with a very similar result between them, 

are the two full convolutional and the LSTM model 

of size 1024. Finally, the worst performing model 

in this case is again the LSTM of size 512.

We move on to show the PR curves: 

Fig. 6: PR curves of the models 

In this comparison, we found very diffe

results. On the one hand, if we look at the left side 

of the graph, we see that the replica of the original 

model has the highest accuracy, but here we ar

talking about low true positive rates (this metric is 

f Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar

Available at www.ijsred.com

©IJSRED: All Rights are Reserved 

Another detail we can observe is that the models 

exclusively on convolution perform better 

than our models when it comes to low false positive 

and the replica 

remain the best models when we are talking about a 

false positive rate below 0.1. However, beyond that 

roposals achieve similar performance to 

the original proposals, and quickly outperform them 

If we look in terms of AUC, surprisingly, the best 

model found is the one using the 768 size 

representation. Although in the confusion matrix we 

found the 1024 size model to be better, in terms of 

AUC we have a better performance by the medium 

size model. In particular, it outperforms by more 

than 1.5 percentage points both the original model 

and our proposal for the larger size, both of which 

achieve very similar results. We are talking about a 

relatively large improvement, so this model could 

be the most appropriate in some contexts. In 

addition, the EER, which is the point where the 

ROC curve intersects with the diagonal dashed line, 

so shows that the best model is the LSTM of size 

768. Next, with a very similar result between them, 

are the two full convolutional and the LSTM model 

of size 1024. Finally, the worst performing model 

in this case is again the LSTM of size 512.  

 

In this comparison, we found very different 

f we look at the left side 

of the graph, we see that the replica of the original 

model has the highest accuracy, but here we are 

talking about low true positive rates (this metric is 

called Recall, and is the name shown here). We also 

have the original model above in this case. As we 

move up the graph towards higher levels of recall, 

the replica starts to lose much of its credibil

quickly becomes the worst of the models. 

Something similar happens to the original model, 

which ends up being surpassed by the 1024 and 768 

models. However, the loss of performance in this 

case is much more gradual than in the replica.

Our three models, on the other hand, have a 

similar behaviour throughout the graph. Although 

they do not reach very high levels of accuracy at 

any point, the accuracy remains more or less 

constant. They even outperform the original models 

in a large part of the graph. However, due to the 

good performance of the convolutional model at 

low true positive rates, when we look at the average 

accuracy both the original and the replica 

outperform all of our proposals. 

This good behaviour at the beginning means that 

the convolutional models manage to differentiate 

more clearly the clearly anomalous behaviours than 

the Xception-LSTM models. That is, for those 

examples in which the anomaly is clear, the 

convolutional model tends to respond more reliably, 

so that it correctly classifies a significant percentage 

of such frames. On the other hand, when more 

difficult classification frames begin to appear, the 

Xception-LSTM models start to perform better than 

the pure convolutional models. 

We will now show and analyse the comparative 

metrics table: 
Table 3: Table of comparative metrics of the models at the photo level

Model Accuracy AUC F1

Original 

- pre-training 

0.8428 0.7508 0.2838

Original 

- replicated 

0.7411 0.7369 0.2201

Xception

-LSTM - 

1024 

0.8236 0.7504 0.2907

Xception

-LSTM - 768 

0.8455 0.7674 0.2681

Xception

-LSTM - 512 

0.8436 0.7177 0.2140
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F1 EER AP 

0.2838 0.3119 0.2057 

0.2201 0.3253 0.2014 

0.2907 0.3221 0.1823 

0.2681 0.2980 0.1770 

0.2140 0.3388 0.1451 
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The first metric we encounter is accuracy. 

Although we know that this metric is not very 

relevant when we are faced with a very unbalanced 

classification problem, such as ours, it is a metric 

that is usually calculated, so we have decided to 

include it. For this metric, we have the best 

performance for the LSTM model of size 768, 

although almost all models obtain similar results. 

The original replicated model is clearly the worst of 

the five in this metric, scoring about 10 percentage 

points lower than the rest. 

In terms of AUC, as we had already seen in the 

previous graph, the best model is the proposal of 

size 768, which far outperforms the rest of the 

models. In particular, it obtains better results than 

the original model itself in the article. It is 

important to note that our extractor was pretrained 

on a set containing less information than the one 

used in the original extractor, so this margin of 

improvement that we have obtained could be 

further enlarged with the new data. As for the rest 

of the models, we can see how the original model 

achieves a similar result to that obtained by the 

1024 size proposal. Slightly behind is the replica 

model, and finally the Xception-LSTM model of 

size 512. 

The improvement that we consider most 

important from our study is on the F metric1 for the 

0.5 decision threshold. This improvement was 

foreseeable given the results we observed on the 

confusion matrix, but here we confirm that it does 

indeed occur. In particular, we have improved this 

metric with the proposed model of size 1024, which 

achieves the highest score of all models. We 

consider this metric to be particularly relevant 

because it represents the behavior of the model. 

This implies that, for the set decision threshold, 

the larger Xception-LSTM model performs better 

than the original model, which supports our starting 

hypothesis. This implies that, for the set decision 

threshold, the larger Xception-LSTM model 

performs better than the original model, which 

supports our starting hypothesis. It is curious to 

note that, despite being the best model in terms of 

AUC by a significant margin, the model of 

dimension 768 obtains worse results in this metric. 

This highlights the importance of using several 

metrics to compare models, since the use of a single 

metric, unless we are very interested in a specific 

behavior, tends to give erroneous ideas. 

The last two metrics we have shown can be 

observed in the graphs shown. The equal error rate 

(EER), which indicates a better model the lower the 

value, could be observed in the graph of the ROC 

curves, since it is the point where the curves 

crossed the diagonal of points. As we said, the 768 

dimension model is the best model in terms of this 

metric. The AP, which was shown in the PR plot 

legend, tells us that the best models in terms of 

average accuracy are the pure convolutional models, 

because of the very high accuracy they had for low 

hit rates.  

Finally, we show the results in terms of the 

models ability to classify at the video level. The 

ability of the models to detect the presence of an 

anomaly may be even more important than the 

exact location of the anomaly within the video. 

Even if the anomaly is not perfectly delimited, i.e., 

the first or last seconds of the anomaly are not 

precisely delimited, the fact of generating the alarm 

when an anomalous situation actually occurs, and 

not doing so when we are faced with a normal 

video, is of great importance if we intend to 

implement a system of these characteristics in a real 

environment. 

The following table shows the results of the 

models in terms of videolevel evaluation: 
Table 4: Percentage of normal and abnormal videos in which an alarm 

was generated. 

Model % Normal videos % Anomalous 

videos 

Original  13.33 64.89 

Replica 11.11 74.05 

Xception-

LSTM - 1024 

15.55 77.86 

Xception-

LSTM - 768 

12.59 72.52 

Xception-

LSTM - 512 

8.15 71.76 

 

For normal videos, a higher percentage implies that 

more false alarms have been generated in normal 

videos, and therefore a worse performance of the 

model. For anomalous videos, on the other hand, a 

higher percentage indicates that anomalies have 
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been detected in a larger number of videos, and 

therefore better results. 

For these metrics, we can observe that our 

proposal is also of quite good quality. On the one 

hand, it is observed that the original model has a 

quite improvable behavior, especially in terms of 

anomalous unlabeled videos. In particular, no 

alarms are generated in one out of three videos, 

which means that it is a rather unreliable model for 

use in real environments. The original model 

replicated by us improves these results significantly, 

generating fewer alarms in normal videos, and a 

significant increase in alarms for anomalous videos. 

Specifically, alarms are lost in only one out of four 

videos. Still a high value, but significantly better 

than the original. 

Comparing the results obtained by our models, 

we find that the larger the representation size, the 

more anomaly information is collected. The 

increase in descriptor size is accompanied by a 

significant increase in the number of positive videos 

in which an alarm is generated. As a counterpart, a 

much higher number of false positives are also 

committed. The poor performance of the 768-

feature model is particularly notable in this case. It 

barely improves the percentage of detected videos 

compared to the 512-size model, and on the other 

hand, it also has almost as many false alarms as the 

1024-size model. 

Between the 1024 size model and the original 

model trained by us, which are the two best 

performers, the decision between which one 

performs better is subjective. Our model is able to 

detect a higher number of anomalous videos, but at 

the cost of a significant increase in the number of 

false alarms. Probably, if the model is to be used in 

a real application, we will be more interested in a 

model similar to ours, since we will be interested in 

detecting as many anomalous situations as possible. 

The occurrence of false negatives is less of a 

concern, since an alarm of this type will probably 

serve as a warning method and not as a decision 

making method. We are therefore interested in it 

being very sensitive to the positive class, and not so 

much to the negative class, since false alarms will 

be processed a posteriori by a human. 

IV. CONCLUSIONS 

We studied the effectiveness of using spatio-

temporal features extracted with deep learning 

models for video anomaly detection. Specifically, 

we experimented on a crowd anomaly detection 

model using a feature extractor based exclusively 

on deep learning models convolutional neural 

patterns in three dimensions. For such a model, the 

feature extractor has been replaced by a composite 

of convolutional and recurrent layers. Our starting 

hypothesis was that recurrent neural networks 

would be better temporal feature extractors than 3D 

convolutional networks. 

From the experimental results, we have been able 

to verify that the combined convolutional-recurrent 

model performs better than the purely convolutional 

model for the analysis of video sequences. 

Finally, although the results obtained are better 

than those of the original experimentation, it can be 

seen that there is still ample room for improvement 

in this data set. The number of false negatives is 

still very high, with less than 50 % of the positive 

photograms being correctly classified. It is possible 

that this problem is partly justified by the type of 

labeling of the set. Having to train without the exact 

location of the anomalies makes it difficult to teach 

the model to accurately locate the anomaly in the 

complete anomalous video. This implies that errors 

are likely being made in the first and last frames 

around the anomalies. Furthermore, we have seen 

that in a quarter of the videos labeled as anomalous 

we did not generate any positive labels, i.e., we 

ignored almost 25% of the anomalies present in the 

set. We are talking about a very significant number 

of errors, which will require more powerful models 

to be detected. 
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