
International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar-Apr 2024

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 643

Video Surveillance Anomaly Detection Based on a 2D

Convolutional Neural Networks Combined with Recurrent Neural

Networks

Konan Atchelo Desire Bienvenu*, Goore Bi Dje Jean Romain Desire**

Computer Science, Nanjing University of Information Science and Technology, Nanjing

Email: atchelochina@gmail.com

Computer Science, Nanjing University of Information Science and Technology, Nanjing

Email: desiregoore5@gmail.com

--************************----------------------------------

Abstract:
This study addresses the challenges posed by automated video surveillance, focusing specifically on crowd

behavior analysis. Moreover, it explores the utilization of spatio-temporal features for action anomaly

detection, aiming to enhance surveillance system capabilities. In our experimental endeavors, we propose

a novel model leveraging a combination of 2D CNNs and recurrent neural networks (RNNs) for improved

processing of video sequences. Our hypothesis posits that this amalgamation preserves the semantic

structure of video data more effectively, leading to more meaningful information extraction.Through

rigorous experimentation, our model demonstrates superior classification performance compared to the

original approach, despite being trained on a smaller dataset. This substantiates our hypothesis and

underscores the efficacy of our proposed method in action anomaly detection tasks. Overall, this research

contributes to advancing the field of automatic video surveillance, highlighting the potential benefits of

integrating convolutional and recurrent networks for complex data analysis.

Keywords —Deep learning, crowd analysis, anomaly detection, video-surveillance, Convolutional

Neural Network (CNN), recurrent neural networks (RNNs).

--************************----------------------------------

I. INTRODUCTION

We will study the use of spatio-temporal features

for the detection of anomalous actions in video.

Specifically, we will take as a starting point the

model proposed in the paper Real-World Anomaly

Detection in Surveillance Videos [1], and we will

make a proposal for improvement. Our approach

consists of changing the originally employed

feature extractor, which is based on the use of 3D

convolutions [2], for one based on classical 2D

convolutions followed by a recurrent stage.

Our hypothesis argues that, although 3D

convolutions are designed to extract information

from video fragments, they are not capable of

correctly capturing long-term temporal dependence.

The lack of capability in this regard results in an

overall model deterioration, which can be remedied

with a more powerful feature extractor that makes

use of both convolutional layers to extract spatial

information and recurrent layers to learn the

temporal sequence.

Next sections will detail the experimentation

carried out, describing the data set used, the original

model, and the proposed modifications.

II. SPATIO-TEMPORAL FEATURES

ANALYSIS

A. Dataset used: UCf101-Crime Dataset

The data set with which we worked was proposed

by the authors of the article under study. This

dataset is composed of video sequences extracted

from video surveillance cameras. As can be seen on

the project website, the database is composed of

RESEARCH ARTICLE OPEN ACCESS

International Journal of Scientific Research and Engineering Development

©IJSRED: All Rights are Reserved

1900 videos of varying length, with an average of

7247 frames. We are therefore talking about videos

of an acceptable averaging several minutes in

length. In total, 128 hours of video are available,

and 13 different classes of anomalies are included,

as well as videos that are considered normal.

Normal videos are considered to be those in which

no anomalous behaviour appears. Some of the

anomaly classes included in the set are abuse, theft,

burglary, breaking and entering, shooting, store

robbery, fighting or explosions. One particularity of

the dataset is the great diversity of frames in which

the videos are collected. Figure 1 shows different

frames extracted from normal videos. As can be

seen, we have videos taken by indoor and outdoor

cameras, both in daylight and at night, and with

different camera angles. This limits the possibility

of making assumptions about the data, and forces us

to build a generic model, able to work in different

situations.

Fig. 1 Examples of normal frames from the UCF-Crime datas

The second problem is to correctly assign the

class to which the videos labelled as anomalous

belong. In our case, we will focus on solving the

first problem. The authors of the original model

give much more importance to the first part than to

the second, and therefore we have focused on their

analysis, ignoring the second part. Therefore, for us

there will be no distinction between the different

kinds of anomalies, so from this point on we only

distinguish between normal and abnormal videos.

The data set is divided into training and test subsets.

For the training set, 800 normal videos and 810

f Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar

Available at www.ijsred.com

©IJSRED: All Rights are Reserved

00 videos of varying length, with an average of

7247 frames. We are therefore talking about videos

of an acceptable averaging several minutes in

length. In total, 128 hours of video are available,

and 13 different classes of anomalies are included,

as videos that are considered normal.

Normal videos are considered to be those in which

no anomalous behaviour appears. Some of the

anomaly classes included in the set are abuse, theft,

burglary, breaking and entering, shooting, store

explosions. One particularity of

the dataset is the great diversity of frames in which

shows different

frames extracted from normal videos. As can be

seen, we have videos taken by indoor and outdoor

ight and at night, and with

different camera angles. This limits the possibility

of making assumptions about the data, and forces us

to build a generic model, able to work in different

Crime dataset

The second problem is to correctly assign the

class to which the videos labelled as anomalous

belong. In our case, we will focus on solving the

first problem. The authors of the original model

give much more importance to the first part than to

nd, and therefore we have focused on their

analysis, ignoring the second part. Therefore, for us

there will be no distinction between the different

kinds of anomalies, so from this point on we only

distinguish between normal and abnormal videos.

et is divided into training and test subsets.

For the training set, 800 normal videos and 810

abnormal videos are available. For the test data set,

290 videos (150 normal, 140 abnormal) are

available.

The main peculiarity of the dataset is that the

training subset is weakly labelled. This means that,

although the objective to be addressed is to

temporally locate when an anomaly occurs, the

labels available in the training set only mark that

the video is anomalous, not where the anomaly

occurs. Therefore, instead of having for each video

a binary value per frame indicating whether or not

an anomaly is present in that frame, what we have

is a single binary label for the entire video

In the test set, however, the labelling is at the

frame level, and therefore we will have to learn to

temporarily locate the anomaly in a longer fragment.

This makes it necessary to design a specific

learning system to learn at the frame level when

such information is not available.

On the labels of the test set, we observe that we

are faced with a strongly unbalanced problem. In

total, we have 1027477 frames labelled as normal

frames, while there are only 84331 anomalous

frames. Surprisingly, despite having the sets

practically balanced in terms of anomalous and

normal frames, when we perform the calculation at

the frame level, there is a very significant unbalance.

This is because, in reality, the videos that present an

anomaly concentrate the anomaly in a few seconds,

and most of the video time is composed of normal

frames.

B. Original model

This architecture consists of a feature extractor

based on convolutional neural networks in three

dimensions, followed by a fully connected network

that performs the final classification. In addition,

the main contribution of the model is a loss f

that allows learning frame-level labelling despite

training with video-level labelling. This function

solves the labelling peculiarity of the training

dataset in a weak way. In the following sections

wewill describe in detail each of the parts of t

network, as well as the proposed loss functi

1) Feature extractor: C3D

The feature extractor used in the original mod

the model known as C3D [2]. The particularity of

Volume 7 Issue 2, Mar-Apr 2024

www.ijsred.com

Page 644

abnormal videos are available. For the test data set,

290 videos (150 normal, 140 abnormal) are

The main peculiarity of the dataset is that the

g subset is weakly labelled. This means that,

although the objective to be addressed is to

temporally locate when an anomaly occurs, the

labels available in the training set only mark that

the video is anomalous, not where the anomaly

stead of having for each video

a binary value per frame indicating whether or not

an anomaly is present in that frame, what we have

nary label for the entire video.

In the test set, however, the labelling is at the

we will have to learn to

temporarily locate the anomaly in a longer fragment.

This makes it necessary to design a specific

learning system to learn at the frame level when

such information is not available.

On the labels of the test set, we observe that we

are faced with a strongly unbalanced problem. In

total, we have 1027477 frames labelled as normal

frames, while there are only 84331 anomalous

frames. Surprisingly, despite having the sets

practically balanced in terms of anomalous and

we perform the calculation at

the frame level, there is a very significant unbalance.

This is because, in reality, the videos that present an

anomaly concentrate the anomaly in a few seconds,

and most of the video time is composed of normal

This architecture consists of a feature extractor

based on convolutional neural networks in three

dimensions, followed by a fully connected network

that performs the final classification. In addition,

the main contribution of the model is a loss function

level labelling despite

level labelling. This function

solves the labelling peculiarity of the training

dataset in a weak way. In the following sections

wewill describe in detail each of the parts of the

network, as well as the proposed loss function.

The feature extractor used in the original model is

]. The particularity of

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar-Apr 2024

Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 645

this model is that instead of using two dimensional

convolutions, which are typically used in image

processing, three-dimensional convolutions are

used. The difference is that the two dimensional

convolution only shifts the kernel along the width

and height of the image. The convolution kernel is

therefore a matrix, and the convolution output is in

two dimensions.When a 3D convolution is applied,

the temporal dimension is also taken into account.

In this case, the kernels are rank 3 tensors, and the

convolution does not use a single frame, but takes

into account several consecutive frames. In this way,

not only spatial information is collected (in the

height and width dimensions), but also temporal

information (since the time dimension is involved).

Thus, the output is in three dimensions, instead of

two. The proposed extractor therefore consists of a

series of 3D convolutions that take a video as input

and extract features from it.

According to the authors of the model, the output

of the first fully connected layer is the one to be

used as the representation of the fragment of video.

The model input is a 16-frame video of size 112 ×

112, and returns as output a 4096-element

descriptor of that video.The feature extractor used

in the work is previously trained on a dataset whose

objective is the classification of behaviours. This

large dataset is often used as a starting point for

training models dedicated to feature extraction in

video, similar to the use of ImageNet for images.

Since the neural networks used in this type of

work usually require large datasets to be trained, the

sets used are not usually large enough for the

learning to be sufficiently rich. For this reason, a

previous training stage is usually performed on a

large dataset, with which generic features are

learned, and then the model is refined on the dataset

being worked on. This technique is known as

transfer learning.

Specifically, in the work we are analysing, the

feature extractor is trained on the Sports-1M dataset

[3]. That dataset consists of 1133158 videos, with a

total of 487 distinct classes. The feature extractor is

trained by placing a densely connected layer at the

end of the previous architecture, with as many

neurons as classes in the dataset (487 in this case),

and training the entire network to solve the

classification task. Once the network is trained to

solve the problem, because the behaviours present

in the dataset are very varied, the layers of the

network are able to extract very diverse information

from the input videos. To build the final feature

extractor, the last classification layer is removed

and the weights learned for the rest of the layers are

kept. This last technique is what is known as

freezing the network.

After this training, we obtain a model capable of

summarizing the information of a 16-frame video

into a vector of 4096 components. This model will

be used to summarize the information of each video

in the set into 16-frame fragments. In this way, for

each video, we will have a variable number of

extracted descriptors. In the next section we will

discuss how these descriptors are converted into a

fixed size representation of the video, and how this

information can be used to train the final classifier.

To do this, we will need to define a cost function

that allows us to learn at the frame level (or a few

frames), despite having labels only at the video

level.

2) Multi-instance learning

In this section we present the learning policy

designed in the article for training the model. As

discussed above, we have labels at the video level,

but not at the frame level, which is the task we

really want to solve.

The training approach is based on what is known

as multi-instance learning. Instead of receiving a

label for each item in the dataset, a bag of uniquely

labelled items is received. In the case of binary

classification, a bag will be labelled as negative if

all the elements in the bag are negative elements.

On the other hand, a bag will be labelled positive if

at least one of its elements is positive. This

translates very simply to our scenario. In our case,

each video will represent a single bag, labelled

negative if it comes from a normal video (where no

anomalies occur), and positive if it comes from an

abnormal video (we know that an anomaly occurs

in that video, but not where). To achieve a fixed-

size representation for each video, the videos are

divided into 32 temporal segments, resulting in 32

elements in each bag. To define the occupancy of

each segment, the previously processed 16-frame

fragments are distributed equispaced, so that in

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar-Apr 2024

Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 646

each segment there are the same number of

fragments, all of them consecutive (or the most

equal distribution possible, if the division is not

exact). The representation of the segment is the

average of the representations of the fragments that

form it. Thus, for each video, 32 different elements

are obtained, which will form the bag in question.

Now, we have to define the loss function to train

with the model, given the bags we have obtained. In

a normal context, if we had examples of anomalous �� and normal �� videos labeled complete, we

would want to get a model whose output was a

score anomaly, such that however, what we have

are bags of examples, rather than complete videos.

 ����� > �����
In these bags we know that there are positive

examples, but we do not know what they are. Given

two bags of examples, one coming from a normal

video �� and one coming from an anomalous video ��, we will want to follow the score of the highest

scoring segment of the bag The normal video (that

piece of video that being normal is difficult to

classify) is higher than the highest scoring segment

of the abnormal bag (that segment of the abnormal

bag with a higher probability of being abnormal). In

other words, our intention will be to force with this

formulation, we want to ensure that fragments that

actually contain an anomaly have a higher score

than those that do not, but are difficult to classify

examples.

max�∈�� ������ > max�∈�� ������
Using a similar idea to the Hinge loss function,

which is used in SVM training to maximize the

classification margin, we define the loss function

for model training as in addition, the above function

we have ignored the temporal structure of the input

video.

���� , ��� = max	�0,1 −	max�∈�� ������ +	max�∈�� �������
In a video with anomalies, we have that most of the

time we encounter normal frames. For this reason,

we want most of the predictions we make to be

close to zero. In addition, we are interested in

preventing the change in the anomaly score from

being too abrupt, so we want the increase in the

anomaly score between one segment and the next

not to be too strong. This leads us to add two

regularization terms to the cost function, which are

responsible for controlling the two quantities we

have mentioned. With such a modification, the final

loss function becomes the term accompanying

parameter �� refers to the temporal regularization

term, and the term accompanying parameter ��

refers to the sparse regularization the values �� and �� can be adjusted to give more or less importance

to the regularization terms.

���� , ��� = max�0,1
−	� !�∈�� ������ +	� !�∈�� ������"
+	��#$������ − 	�����%��&

�'�

�()
+ ��#������

�

�()

Once we have seen the training policy of the

classifier model, we move on to give the complete

description of the original model.

3) Complete original model

Once we have seen the feature extractor and the

training policy, we move on to see how the

complete original model is trained.

Figure 2 shows the complete structure of the

original model. Given two videos from the dataset,

one normal and one anomalous, its 32 temporal

segments are extracted and the bags of examples

are formed. The 32 segments are processed with the

pre-trained feature extractor, and summary

descriptors are extracted for each segment. These

descriptors are classified using a fully connected

network, the only output of which is a neuron. This

neuron learns to return an anomaly score for each

segment. When the anomaly scores for the positive

and negative videos have been computed, the value

of the loss function is calculated and the weights of

the dense layers are updated using a gradient

descent method. The feature extractor is pre-trained

and frozen, so at full model training time its

weights are not updated.

For each training step, 60 videos are randomly

selected from the set in a balanced way (30 normal

and 30 abnormal), and the gradient of the loss

International Journal of Scientific Research and Engineering Development

©IJSRED: All Rights are Reserved

function is calculated based on the classification of

the 60 videos.

Once the model is trained with the

system, in inference time the video to be classified

is divided in the same way as in the previous

system.

Fig. 2 Complete architecture of the original model

The anomaly score is calculated for each segment.

To obtain a prediction for each frame

prediction of the segments is interpolated. Having

seen the original model in its entirety, we will now

describe the proposed modification.

C. Proposed model improvement

The proposed improvement of the model consists

of a modification of the feature ext

system that correctly captures the temporal

information contained in the video fragments.

The main criticism that can be made of the

previous model is that the feature extractor is not

ideal. Although three-dimensional convolutions are

models designed for feature extraction in video,

their capacity to extract temporal information

contained in a large number of consecutive frames

is limited, since the receptive field of the network is

limited by the size of the kernels used. In the case

of the previous model, we work with cores of size 3,

so we will extract information that is expressed in

three consecutive frames, not at a greater distance.

Thanks to the Pooling operation, in more advanced

layers of the network, information is extracted from

frames that are at a greater distance, but in our

opinion the time dependence is underrepresented in

these models.

Our proposal, therefore, tries to solve this

problem by providing an extractor with higher

quality spatio-temporal characteristics, which is

described below.

4) Feature extractor: Xception-LSTM

f Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar

Available at www.ijsred.com

©IJSRED: All Rights are Reserved

function is calculated based on the classification of

Once the model is trained with the previous

system, in inference time the video to be classified

is divided in the same way as in the previous

Complete architecture of the original model

The anomaly score is calculated for each segment.

To obtain a prediction for each frame, the

prediction of the segments is interpolated. Having

seen the original model in its entirety, we will now

The proposed improvement of the model consists

of a modification of the feature extractor by a

system that correctly captures the temporal

information contained in the video fragments.

The main criticism that can be made of the

previous model is that the feature extractor is not

dimensional convolutions are

esigned for feature extraction in video,

their capacity to extract temporal information

contained in a large number of consecutive frames

is limited, since the receptive field of the network is

limited by the size of the kernels used. In the case

evious model, we work with cores of size 3,

so we will extract information that is expressed in

three consecutive frames, not at a greater distance.

Thanks to the Pooling operation, in more advanced

layers of the network, information is extracted from

es that are at a greater distance, but in our

opinion the time dependence is underrepresented in

Our proposal, therefore, tries to solve this

problem by providing an extractor with higher

temporal characteristics, which is

As mentioned above, the proposal is based on

modifying the feature extractor of the previous

model, in such a way that an architecture capable of

correctly capturing temporal information is used.

For this purpose, we will make use of recurrent

neural networks. This type of model differs from

classical neural networks in that it connects the

output of neurons of a layer with inputs from

neurons within the same layer. Thus, their

prediction depends not only on a s

a small set of elements) of the input vector, but also

on the information received by the network in

previous stages. In particular, we will use two

dimensional convolutional networks to extract

information from all the frames of the vide

we will create a time series with these descriptions.

The time series will be used as input to a recurrent

network that will learn the temporal pattern.

Specifically, we will use an

[4]. This architecture was proposed to solve the

problem of forgetting that was detected in the first

recurrent neural networks. This problem is that,

although theoretically recurrent neural networks

should be able to learn long

patterns, it was observed that when the information

was sufficiently separated the effectiveness of these

models deteriorated significantly. To mitigate this

deterioration, what the LSTM neural network uses

is an internal state that is transmitted between cells,

in addition to the network output itself. In this w

the output of each neuron is partly separated from

the internal state of the network that is transmitted

to subsequent neurons. It was observed that this

separation is beneficial and significantly improves

the results obtained by the network.

operation of these neurons consists of combining

the network memory (represented by the internal

state and the previous output) with the current input

by means of three different modules, known as

gates. In the recurrent network we have connections

between the neurons of the hidden layer, which

does not occur in classical neural networks upward.

Each neuron receives, in addition to the

corresponding input, the previous internal state and

output of the layer.

As in the original model, we will work with

frame video fragments. We will independently

introduce the frames into an Xception model [5

Volume 7 Issue 2, Mar-Apr 2024

www.ijsred.com

Page 647

As mentioned above, the proposal is based on

modifying the feature extractor of the previous

model, in such a way that an architecture capable of

correctly capturing temporal information is used.

se, we will make use of recurrent

neural networks. This type of model differs from

classical neural networks in that it connects the

output of neurons of a layer with inputs from

neurons within the same layer. Thus, their

prediction depends not only on a single element (or

a small set of elements) of the input vector, but also

on the information received by the network in

previous stages. In particular, we will use two

dimensional convolutional networks to extract

information from all the frames of the video, and

we will create a time series with these descriptions.

The time series will be used as input to a recurrent

network that will learn the temporal pattern.

 LSTM architecture

]. This architecture was proposed to solve the

problem of forgetting that was detected in the first

recurrent neural networks. This problem is that,

although theoretically recurrent neural networks

should be able to learn long-lasting temporal

patterns, it was observed that when the information

fficiently separated the effectiveness of these

models deteriorated significantly. To mitigate this

deterioration, what the LSTM neural network uses

is an internal state that is transmitted between cells,

in addition to the network output itself. In this way,

the output of each neuron is partly separated from

the internal state of the network that is transmitted

to subsequent neurons. It was observed that this

separation is beneficial and significantly improves

esults obtained by the network. The basic

operation of these neurons consists of combining

the network memory (represented by the internal

state and the previous output) with the current input

by means of three different modules, known as

n the recurrent network we have connections

n the neurons of the hidden layer, which

does not occur in classical neural networks upward.

Each neuron receives, in addition to the

corresponding input, the previous internal state and

As in the original model, we will work with 16-

frame video fragments. We will independently

rames into an Xception model [5],

International Journal of Scientific Research and Engineering Development

©IJSRED: All Rights are Reserved

pre-trained on the ImageNet dataset [6

is available for direct download in the Keras

framework [7], which has been used for the

implementation). The output of the penultimate

layer of the network, which is a Global Average

Pooling layer, is used as the descriptor of each

frame. This layer summarizes all the information of

a feature map by averaging the values of all the

pixels that make it up. The output obtained is a

vector of 2048 values.

Consequently, the frame representation of a video

is a matrix of dimensions 16 * 2048. This

representation is fed into an LSTM layer, which

will consider the input as a time series of 16 time

slots with 2048 features.

The output of such a layer will be a descriptor

representing the spatiotemporal information

contained in the 16-frame video fragment.

Experiments have been carried out with different

layer sizes. Specifically, descriptors of size 512,

768 and 1024 have been proposed, with better

results being obtained the larger the descriptor size.

Given the lack of computational resources we

have experienced when training the models, instead

of having pre-trained the feature extractor on the

Sports-1M set (on which the original extractor was

pre-trained), we have pre-trained our extr

the UCF-101 dataset [8]. That set has 13320 videos

spread over 101 different classes. The duration of

the videos is relatively short, ranging from just over

a second to just over a minute for the longest videos.

As we can see, we are dealing with a dataset of a

much smaller size than the one used by the authors

of the original paper. This difference in size will

mean that the features we learn with our feature

extractor will be less rich and varied than those we

could learn with a larger set, which may result in a

loss of model performance. Nevertheless, we are

talking about a data set of acceptable size for model

pre-training.

As for the training policy, we will add to the

feature extractor a block of densely connected

layers at the end, which will perform the

classification of the videos. To create the training

examples, from the videos in the UCF

we will select 16 equispaced frames within the

whole video, and scale the frames to have the input

size required by the Xception network (the input

f Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar

Available at www.ijsred.com

©IJSRED: All Rights are Reserved

ined on the ImageNet dataset [6] (this model

nload in the Keras

], which has been used for the

implementation). The output of the penultimate

layer of the network, which is a Global Average

Pooling layer, is used as the descriptor of each

frame. This layer summarizes all the information of

e values of all the

pixels that make it up. The output obtained is a

Consequently, the frame representation of a video

is a matrix of dimensions 16 * 2048. This

representation is fed into an LSTM layer, which

as a time series of 16 time

The output of such a layer will be a descriptor

representing the spatiotemporal information

frame video fragment.

Experiments have been carried out with different

fically, descriptors of size 512,

768 and 1024 have been proposed, with better

results being obtained the larger the descriptor size.

Given the lack of computational resources we

have experienced when training the models, instead

feature extractor on the

1M set (on which the original extractor was

trained our extractor on

]. That set has 13320 videos

spread over 101 different classes. The duration of

ort, ranging from just over

a second to just over a minute for the longest videos.

As we can see, we are dealing with a dataset of a

much smaller size than the one used by the authors

of the original paper. This difference in size will

es we learn with our feature

extractor will be less rich and varied than those we

could learn with a larger set, which may result in a

loss of model performance. Nevertheless, we are

talking about a data set of acceptable size for model

r the training policy, we will add to the

feature extractor a block of densely connected

layers at the end, which will perform the

classification of the videos. To create the training

examples, from the videos in the UCF-101 dataset

paced frames within the

whole video, and scale the frames to have the input

size required by the Xception network (the input

will have a final size of 16 × 299 × 299). The

convolutional network weights will be frozen, to

reduce the computational burden of

we consider the features learned in ImageNet to be

of good quality for image classification. Therefore,

we will only train the recurrent layer and the fully

connected layers.

Once the complete training has been carried out,

we remove the densely connected layers, and use

the output of the recurrent layer as the descriptor of

the video fragment. We thus have a 512, 768 or

1024 element descriptor for each

fragment. In Figure 3 we can see the complete

feature extractor, ready for pre-t

Fig. 3: Proposedfeature extractor, along with fully connected layers for

training.

Once the model has been pre-

101 set, the fully connected layers are removed.

Therefore, our final feature extractor is composed

of replicas of the Xception network for each of the

input frames, and an LSTM network with output

size 512, 768 or 1024, which will be what we will

know as the video fragment descriptor.

III. EXPERIMENTATION

OBTAINED

A. Implementation aspects

The code developed for the work, which allows

replicating the experimentation carried out, is

available in the repository

https://github.com/atchelodev/vs

The models provided are the ones for the

experiment in which a 1024 size representation is

used. The rest of the models have not been provided

because the experimentation is similar in all cases,

and we have preferred to include only the best of

the models.

Volume 7 Issue 2, Mar-Apr 2024

www.ijsred.com

Page 648

will have a final size of 16 × 299 × 299). The

convolutional network weights will be frozen, to

reduce the computational burden of training, since

we consider the features learned in ImageNet to be

of good quality for image classification. Therefore,

we will only train the recurrent layer and the fully

Once the complete training has been carried out,

nsely connected layers, and use

the output of the recurrent layer as the descriptor of

the video fragment. We thus have a 512, 768 or

1024 element descriptor for each 16-frame

we can see the complete

training.

: Proposedfeature extractor, along with fully connected layers for

-trained on the UCF-

101 set, the fully connected layers are removed.

Therefore, our final feature extractor is composed

the Xception network for each of the

input frames, and an LSTM network with output

size 512, 768 or 1024, which will be what we will

know as the video fragment descriptor.

EXPERIMENTATION AND RESULTS

OBTAINED

he work, which allows

replicating the experimentation carried out, is

available in the repository

https://github.com/atchelodev/vs-anomaly-detection.

The models provided are the ones for the

experiment in which a 1024 size representation is

of the models have not been provided

because the experimentation is similar in all cases,

and we have preferred to include only the best of

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar-Apr 2024

Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 649

The code localized at

https://github.com/ptirupat/AnomalyDetection_CV

PR18 is used as the basis for the original

implementation. An implementation of the model,

as well as the compressed file of the original trained

architecture, is provided in this repository. However,

the code needed to retrain the system is not

available. In addition, the author of the article

provides the code at

https://github.com/WaqasSultani/AnomalyDetectio

nCVPR2018.

In order to make the comparison between our

model and the original more fair, we have chosen to

repeat the experimentation carried out by the

authors, in order to avoid possible differences in the

training of the models. This is because we cannot

guarantee that we are performing exactly the same

steps as the original authors from the code they

provide, since it is not complete. For example, in

neither of the two repositories are the code for

feature extraction is provided, so we cannot be sure

that the results obtained by the original model from

the features extracted by us are identical to those

originally obtained. Nevertheless, we also include

their results, which show that the model trained by

us does not have exactly the same behaviour as

theirs.

In this way, we will have two versions of the

original model, one based on the trained model

provided by the authors, and the other fully trained

by us. As for the full implementation and training

of the original model, the two sources above have

been used to replicate the experimentation as

reliably as possible. However, because much of the

code was replicated between the two repositories,

and some parts were inefficiently implemented,

some changes were made to parts of the code while

respecting its original operation. The original code

of the article has not been used directly due to the

impossibility of replicating some of the stages. For

example, there are parts of the system written in

MATLAB, or that require the use of external tools.

The implementation we have carried out allows us

to fully repeat the experimentation using Python

exclusively, and without the need to resort to

external sources.

The OpenCV library [9] has been used to process

the data in video format. In particular, we have used

the modules that allow the reading of videos from

disk to memory. This library loads the videos as a

list of numerical matrices, which represent each of

the frames that make up the video sequence. For the

handling of these matrices, we have made use of the

NumPy numerical computation library [10, 11].

This package provides an interface to operate

efficiently with structured collections of numbers

(N-dimensional arrays). Because Python is a

language oriented towards flexibility and ease of

use, it has as a trade-off a significant loss of

performance when performing arithmetic

operations. For this reason, NumPy is an essential

tool for the development of applications with high

computational cost. In addition, for the effective

management of annotation files, which are provided

in CSV format, use has been made of Pandas [12].

This library allows the management of data

structured in tables, using structures known as

DataFrames.

For the implementation of neural network models,

the Keraslibrary[7] has been used. This library

provides a high-level interface for the

implementation of deep learning models, using

underneath the TensorFlow library [72]. The use of

these two software packages greatly facilitates

model development and validation, while offering

some flexibility. This allows testing on

architectures of some complexity without the need

to write the entire system at a low level, but simply

by combining neurons of various types organized in

layers. In addition, the use of TensorFlow allows

the execution of models on GPU architectures,

instead of CPU. Because neural networks need to

operate on high-dimensional matrices, running

these models requires performing a very large

number of arithmetic operations. The execution of

these operations is computationally very expensive,

and the ability to use the parallel processing of

graphics cards greatly reduces model execution

times.

As for the hardware architecture on which the

models were run, the executions were carried out on

a compute node with NVIDIA Tesla V100 graphics

cards with 32 GB of graphics RAM. All models

have been run using a single graphics unit at the

same time.

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar-Apr 2024

Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 650

B. Our experimentation

1) Xception-LSTM extractor training

The training of the feature extractor has been

performed on a larger dataset, and the model

obtained has been frozen and used to extract the

video representations of our target set.

The training of the extractor has been performed

on the UCF-101 dataset, as described above. To

control the evolution of the model and check if it

over-fits, the training and validation sets proposed

by the authors of the data set as first partitions are

used as training and validation sets. In order to

make the comparison between models fair, the data

set is divided into training and testing three times.

In this way, the models are required to be trained

and evaluated three times, thus reducing the

possible influence of chance. In our case, we will

use the first of the three splits to train our extractor.

Using the test partition as the validation set, we can

observe how the extractor behaves on data that it

has not observed while it is being trained, thus

giving an idea of its generalization capability.

Using this split, the classifier is trained on a set of

9537 videos, and evaluated on a set of 3783. It is

possible that the division we have used is not the

most appropriate, since the validation set is

relatively large. In our case, we do not need a

validation set that guarantees a fair comparison

between our model and the rest of the models that

solve this problem, but we want to get an idea of

the correct performance of our extractor. It is

possible that with a larger training set, in exchange

for a smaller validation set, we would achieve

higher quality features, since we would have more

training diversity. However, we have not studied

this detail in more depth because the default

division already leaves a set of training data of

acceptable size, sufficient for the experimentation

we face in this work.

As previously mentioned, in order to train the

feature extractor, we modified the last part of the

network to solve the classification problem on this

dataset. Specifically, to the extractor architecture

(composed of the Xception modules for image

processing plus the LSTM layer for temporal

learning), we add two hidden layers, and the output

layer, which has 101 neurons (as many as classes in

the dataset). Thus, we have the following final

structure:

• Xception module, which accepts images of size

299 × 299 × 3, and returns an image descriptor of

size 2048. Since we work with if we have 16 frames,

using the TimeDistributed module of Keras we can

have 16 copies of the network in parallel, so that the

output is a time series of 16 time instants and 2048

features per instant. This part of the network is

trained on ImageNet and is not retrained.

• LSTM recurrent layer accepts as input a time

series of 16 time instants and 2048 features, and

returns a series description of size 512, 768 or 1024,

depending on the size of the descriptor we want to

extract. This part of the network is randomly

initialized and trained at this stage.

• Dense layer classifier. This part of the network,

consisting of three layers, processes the temporal

descriptor and performs the final classification.

Like the recurrent part, it is randomly initialized

and entered at this stage. This entire module will be

discarded after training, thus retaining the feature

extractor part exclusively. The size of the two

hidden layers will depend on the size of the

descriptor (for example, in the case of descriptor

size 1024, the dense layers are of size 512 and 128).

The last layer always has 101 neurons, as many as

we have classes in the dataset.

To construct the dataset examples, because the

original videos have different sizes and durations,

the frames have been scaled to have size 299×299

(in our experimentation distortion has not been

taken into account in the same way as it is in C3D),

and the videos have been sampled to obtain

fragments of 16 frames equispaced between the

beginning and the end of each video. We therefore

obtain a representation for each sequence of

16×299×299×299×3. For the preprocessing of each

frame, Keras provides a function that normalizes

the input to suit how the Xception model was

trained. This function, roughly speaking, performs a

normalization of each pixel value by dividing by

the standard deviation and subtracting the mean of

the pixel values of the ImageNet set.

The Adam optimizer is used for training the

model with a learning rate of 10−5, and a decay of

10−6 (this optimizer reduces the learning rate after

a certain number of epochs, in order to fine tune the

International Journal of Scientific Research and Engineering Development

©IJSRED: All Rights are Reserved

result in the last stages of training). The cost

function to be optimized is the categori

and the model is trained for 200 epochs. To keep

the best model found so far, we use the

ModelCheckpointer feature of Keras, which allows

you to specify a metric and the checking period,

and saves a copy of the model at the training time

when we check if the metric is the best obtained so

far. We use as a metric to observe the accuracy

obtained on the validation set. We observe a metric

on the validation set so that the overfitting does not

lead us to think that the model performs very well,

despite a poor generation capacity.

During training, three different metrics have been

collected, which are often used in the evaluation of

classification problems with such a large number of

classes; the value of the cost function, which

indicates whether the training is being carried out

correctly, the "Top-1" accuracy, which indicates the

percentage of correctly classified examples, and the

"Top-5" accuracy, which indicates the percentage

of examples whose actual class is among the five

most probable classes predicted by the model.

These last two metrics are particular cases of the

"Top-k" accuracy, which is very useful for

evaluating problems with a large number of classes.

In many cases, the classes represented in data sets

of this type have a large overlap because they

represent similar concepts. In the predictions of the

models, several classes appear with a high

probability, very similar for all of them, among

which the real class is usually found. The "Top

metric partly addresses the fact that the m

selected the correct class as one of the most likely,

but not as the most likely of all. Clearly, it is a

much less serious error to predict almost

equiprobably the classes "Riding a horse" and

"Horse racing" (both present in the UCF

but put slightly above the correct in- than to assign

with high probability the class "Playing guitar" high

to an example of "Riding a horse". This is why the

"Top-k" metric for k ≥ 3 is usually considered to

be fairer than the "Top-1" metric for problems wit

so many classes.

The graphs in Figure 4 show the evolution of

these three metrics during the training of the 1024

representation size model. We do not show the

f Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar

Available at www.ijsred.com

©IJSRED: All Rights are Reserved

result in the last stages of training). The cost

function to be optimized is the categorical entropy,

and the model is trained for 200 epochs. To keep

the best model found so far, we use the

ModelCheckpointer feature of Keras, which allows

you to specify a metric and the checking period,

and saves a copy of the model at the training time

we check if the metric is the best obtained so

far. We use as a metric to observe the accuracy

obtained on the validation set. We observe a metric

on the validation set so that the overfitting does not

lead us to think that the model performs very well,

During training, three different metrics have been

collected, which are often used in the evaluation of

classification problems with such a large number of

classes; the value of the cost function, which

he training is being carried out

1" accuracy, which indicates the

percentage of correctly classified examples, and the

5" accuracy, which indicates the percentage

of examples whose actual class is among the five

es predicted by the model.

These last two metrics are particular cases of the

k" accuracy, which is very useful for

evaluating problems with a large number of classes.

In many cases, the classes represented in data sets

ap because they

represent similar concepts. In the predictions of the

models, several classes appear with a high

probability, very similar for all of them, among

which the real class is usually found. The "Top-k"

metric partly addresses the fact that the model has

selected the correct class as one of the most likely,

but not as the most likely of all. Clearly, it is a

much less serious error to predict almost

equiprobably the classes "Riding a horse" and

"Horse racing" (both present in the UCF-101 set),

than to assign

with high probability the class "Playing guitar" high

to an example of "Riding a horse". This is why the

3 is usually considered to

1" metric for problems with

show the evolution of

these three metrics during the training of the 1024

representation size model. We do not show the

evolution of the other two models because the

reasoning on them is similar and does not provid

new information.

In view of the results that can be observed, we

have obtained a fairly good quality feature extractor.

We observe how from 100 epochs onwards the

model begins to over-fit, since in the cost function

graph the value in the training set c

but in the validation set it stagnates and begins to

rise. Furthermore, in the accuracy graph there is a

stagnation of the values obtained.

Thanks to the ModelCheckpointer we discussed

previously, we have conserved the state of the

model at epoch 100 for our feature extractor. We

have considered that at that point a quality model is

obtained from the metrics we have calculated. At

the guard point, we have considered that a quality

model is obtained at that point from the metrics we

have calculated.

Fig. 4: Proposedfeature extractor, along with fully connected layers for

training.

At the previous save point, at 80 epochs, the

model performs slightly worse in terms of both

Top-1 and Top-5 accuracy, and very similar cost

function values. The next save point, at 120 epochs,

is already at the stage where the model over

we are left with the intermediate model.

After training the extractor models, we obtain the

following table of accuracies:
Table 1: Top-1 and Top-5 results for the thre

Dimensions Top-1 Accuracy

512 elements 57.63 %

768 elements 62.98 %

1024 elements 63.27 %

As we can see, for the three dimensions we

obtain a quite good quality. The original C3D

model shows in their experiment [2

Volume 7 Issue 2, Mar-Apr 2024

www.ijsred.com

Page 651

evolution of the other two models because the

reasoning on them is similar and does not provide

In view of the results that can be observed, we

have obtained a fairly good quality feature extractor.

We observe how from 100 epochs onwards the

fit, since in the cost function

graph the value in the training set continues to fall,

but in the validation set it stagnates and begins to

rise. Furthermore, in the accuracy graph there is a

stagnation of the values obtained.

Thanks to the ModelCheckpointer we discussed

previously, we have conserved the state of the

at epoch 100 for our feature extractor. We

have considered that at that point a quality model is

obtained from the metrics we have calculated. At

the guard point, we have considered that a quality

model is obtained at that point from the metrics we

: Proposedfeature extractor, along with fully connected layers for

At the previous save point, at 80 epochs, the

model performs slightly worse in terms of both

5 accuracy, and very similar cost

next save point, at 120 epochs,

is already at the stage where the model over-fits, so

we are left with the intermediate model.

After training the extractor models, we obtain the

5 results for the three extractors on UCF-101

Top-5 Accuracy

82.42 %

84.67 %

84.66 %

As we can see, for the three dimensions we

obtain a quite good quality. The original C3D

shows in their experiment [2, Figure 2] that

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar-Apr 2024

Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 652

their model reaches a Top-1 accuracy of 45% when

trained as a full neural network (as we have done).

They then show the results of their final model,

which employs the C3D features but uses an SVM

for the final classification, and whose results are

significantly better, with a Top-1 accuracy of more

than 80 %. However, as we are interested in

comparing the feature extractors, we believe that

the fair comparison should be with the full neural

model. From the results obtained, we can conclude

that our extractor is more powerful than the one

they propose, at least as far as UCF-101

classification is concerned.

Comparing the results of our three extractors, it

seems clear that there is an improvement the larger

the size of the feature vector. This improvement is

not as noticeable between the 768 and the 1024

extractor, whose results are very similar (especially

in terms of Top-5 accuracy). However, there is a

substantial improvement between these two models

and the smaller one.

2) Feature extraction

For feature extraction from the UCF-Crime set

videos, we followed the same policy as in the

original work. We split the video into 16-frame

fragments with no overlap, pre-processed the

frames to bring them to size 299×299, and used the

function provided by Keraspreprocessing for

Xception.

Using the network trained according to the

previous section without the dense layers, we obtain

for each video a representation of size k×1024, with

k equal to the number of non-overlapping fragments

of 16 frames. By grouping these fragments into 32

groups and taking the average of the fragments in

each group, we obtain the final representation of the

video consisting of 32 fragments, each with a

feature vector of size 1024.

3) Classifier training

Once we have the extracted features, we apply a

strategy analogous to that of the original model for

training the classifier. The classifier is again a fully

connected neural network, but smaller in size than

the one used by the original model. We have two

hidden layers, of size 512 and 64, respectively, and

the output neuron. The reduction in the size of the

hidden layers is justified by the reduction in the size

of the descriptor, which has become half the

original size.

In addition, the deactivation rate of the Dropout

layers has been reduced from 0.6 to 0.4, as we

considered that the original model took an

excessive value, which can also cause the classifier

performance to degrade and training to be much

slower.

The weighting values of the loss function terms

have also been adjusted. The value of the kernel

regularizer has been increased to 0.01, and the

multipliers of the time and sparse constraints have

been reduced by half (from 0.00008 to 0.00004).

These adjustments have been made after studying

the first training runs of the model and observing

that it ate too many false negatives. This could

occur because the dispersion restrictions were too

strong, so we have slightly mitigated that effect by

reducing the significance of the term.

The optimizer used in our case is again Adagrad,

although we have increased the learning rate to 0.2

at the beginning. It has been observed that the

training is quite slow at the beginning, and this

modification improves this initial bad behaviour.

C. Results obtained

In this section, we show the results obtained in

the final experiment. First, we show the confusion

matrices for the 0.5 decision threshold of both

models:
Table 2: Top-1 and Top-5 results for the three extractors on UCF-101

Model TN FP FN TP

Original -

pre-training

902433 125044 49699 34632

Original -

replicated

783342 244135 43699 40632

Xception-

LSTM - 1024

875515 151962 44145 40186

Xception-

LSTM - 768

908518 118959 52874 31457

Xception-

LSTM - 512

914259 113218 60661 23670

In the table we can observe several details that

are worth commenting on. First, we can observe

how the original model trained by the authors

International Journal of Scientific Research and Engineering Development

©IJSRED: All Rights are Reserved

(marked here as pretrained) and the original model

replicated by us do not obtain equivalent

Our replication has a larger number of true

positives, with an increase of 6000.

The results of this experimentation are not very

reliable, since it is usually very difficult to replicate

the training conditions of a model, and therefore a

comparison with the original results may not be

entirely fair. This is the reason why we have

decided to replicate the experimentation, since it is

usually very difficult to replicate the training

conditions of a model, and therefore the comparison

with the original results may not be entirely fair.

The model replicated by us has been trained in

conditions similar to those we have imposed on our

proposal, so the comparison is, from our point of

view, fairer with that model.

Comparing our proposals with each other,

see how the size of the representation significantly

affects the results obtained by the model. The larger

the feature vector, the more anomalous frames are

detected, at the cost of committing more false

positives. However, the increase in false po

not as noticeable as the increase in well

frames, so we believe that our model improves with

increasing representation size.

It is especially noteworthy to compare the

increase in false positives between models. While

for the 512- and 768-characteristic models, the

increase in false positives is small (in fact, in

absolute terms, the increase in false positives is

smaller than the increase in true positives, despite

the class imbalance), when we look at the 1024

model this problem skyrockets. It would be

worthwhile to study why this increase has occurred.

As for the comparison between our proposal and

the original model, if we compare with our

experimentation, the proposed model of larger

representation size is significantly better

original proposal. The number of true positives is

almost the same, but the number of false positives

has been drastically reduced. This indicates that the

features we have extracted are better able to

differentiate normal from abnormal fotograms

those extracted by the C3D model. If we compare

with the original proposal trained by the original

authors, we obtain a considerable increase in the

number of true positives (we detect about 6000

f Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar

Available at www.ijsred.com

©IJSRED: All Rights are Reserved

(marked here as pretrained) and the original model

replicated by us do not obtain equivalent results.

Our replication has a larger number of true

The results of this experimentation are not very

reliable, since it is usually very difficult to replicate

the training conditions of a model, and therefore a

son with the original results may not be

entirely fair. This is the reason why we have

decided to replicate the experimentation, since it is

usually very difficult to replicate the training

conditions of a model, and therefore the comparison

nal results may not be entirely fair.

The model replicated by us has been trained in

conditions similar to those we have imposed on our

proposal, so the comparison is, from our point of

Comparing our proposals with each other, we can

see how the size of the representation significantly

affects the results obtained by the model. The larger

the feature vector, the more anomalous frames are

detected, at the cost of committing more false

positives. However, the increase in false positives is

not as noticeable as the increase in well-classified

frames, so we believe that our model improves with

It is especially noteworthy to compare the

increase in false positives between models. While

characteristic models, the

increase in false positives is small (in fact, in

absolute terms, the increase in false positives is

smaller than the increase in true positives, despite

the class imbalance), when we look at the 1024-size

skyrockets. It would be

worthwhile to study why this increase has occurred.

As for the comparison between our proposal and

the original model, if we compare with our

experimentation, the proposed model of larger

representation size is significantly better than the

original proposal. The number of true positives is

almost the same, but the number of false positives

has been drastically reduced. This indicates that the

features we have extracted are better able to

differentiate normal from abnormal fotograms than

those extracted by the C3D model. If we compare

with the original proposal trained by the original

authors, we obtain a considerable increase in the

number of true positives (we detect about 6000

more positive frames), but at the cost of a

significant increase in false positives. In this case,

probably, the decision between choosing one model

or the other if we look exclusively at the confusion

matrices would be justified by the requirements of

the real problem to be solved. In this case, detecting

a greater number of positives is advisable, since we

are talking about an alarm system.

A false positive will be less serious than

committing a false negative, since in the case of a

false positive it simply warns of something that is

not really happening, but in the case of a false

positive we can ignore a dangerous situation that

we would be interested in detecting.

In addition to the confusion matrices, the ROC

curves and PR curves are shown below:

Fig. 5: Proposedfeature extractor, along with fully

training.

In view of the ROC curves, we can conclude that

all models perform similarly. In principle, the two

models with the worst ROC curve quality are the

replica of the original model and the Xception

LSTM model with 512 feature si

curves are dominated by the other 3 practically

throughout the graph. On the other hand, the curve

obtained by the Xception-LSTM model of size 768

is clearly dominant in most of the graph. For low

false positive rates this advantage is not so

noticeable, but it quickly becomes the best model

and dominates the rest of the curves in the rest of

the graph, reached only by the 1024 features

representation for a false positive rate around 0.4.

Volume 7 Issue 2, Mar-Apr 2024

www.ijsred.com

Page 653

more positive frames), but at the cost of a

t increase in false positives. In this case,

probably, the decision between choosing one model

or the other if we look exclusively at the confusion

matrices would be justified by the requirements of

the real problem to be solved. In this case, detecting

greater number of positives is advisable, since we

are talking about an alarm system.

A false positive will be less serious than

committing a false negative, since in the case of a

false positive it simply warns of something that is

ut in the case of a false

positive we can ignore a dangerous situation that

we would be interested in detecting.

In addition to the confusion matrices, the ROC

curves and PR curves are shown below:

: Proposedfeature extractor, along with fully connected layers for

In view of the ROC curves, we can conclude that

all models perform similarly. In principle, the two

models with the worst ROC curve quality are the

replica of the original model and the Xception-

LSTM model with 512 feature size. These two

curves are dominated by the other 3 practically

throughout the graph. On the other hand, the curve

LSTM model of size 768

is clearly dominant in most of the graph. For low

false positive rates this advantage is not so

noticeable, but it quickly becomes the best model

and dominates the rest of the curves in the rest of

the graph, reached only by the 1024 features

representation for a false positive rate around 0.4.

International Journal of Scientific Research and Engineering Development

©IJSRED: All Rights are Reserved

Another detail we can observe is that the models

based exclusively on convolution perform better

than our models when it comes to low false positive

rates. Both the original model and the replica

remain the best models when we are talking about a

false positive rate below 0.1. However, beyond that

point, our proposals achieve similar performance to

the original proposals, and quickly outperform them

for the rest of the graph.

If we look in terms of AUC, surprisingly, the best

model found is the one using the 768 size

representation. Although in the confusion

found the 1024 size model to be better, in terms of

AUC we have a better performance by the medium

size model. In particular, it outperforms by more

than 1.5 percentage points both the original model

and our proposal for the larger size, both of

achieve very similar results. We are talking about a

relatively large improvement, so this model could

be the most appropriate in some contexts. In

addition, the EER, which is the point where the

ROC curve intersects with the diagonal dashed line,

also shows that the best model is the LSTM of size

768. Next, with a very similar result between them,

are the two full convolutional and the LSTM model

of size 1024. Finally, the worst performing model

in this case is again the LSTM of size 512.

We move on to show the PR curves:

Fig. 6: PR curves of the models

In this comparison, we found very diffe

results. On the one hand, if we look at the left side

of the graph, we see that the replica of the original

model has the highest accuracy, but here we ar

talking about low true positive rates (this metric is

f Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar

Available at www.ijsred.com

©IJSRED: All Rights are Reserved

Another detail we can observe is that the models

exclusively on convolution perform better

than our models when it comes to low false positive

and the replica

remain the best models when we are talking about a

false positive rate below 0.1. However, beyond that

roposals achieve similar performance to

the original proposals, and quickly outperform them

If we look in terms of AUC, surprisingly, the best

model found is the one using the 768 size

representation. Although in the confusion matrix we

found the 1024 size model to be better, in terms of

AUC we have a better performance by the medium

size model. In particular, it outperforms by more

than 1.5 percentage points both the original model

and our proposal for the larger size, both of which

achieve very similar results. We are talking about a

relatively large improvement, so this model could

be the most appropriate in some contexts. In

addition, the EER, which is the point where the

ROC curve intersects with the diagonal dashed line,

so shows that the best model is the LSTM of size

768. Next, with a very similar result between them,

are the two full convolutional and the LSTM model

of size 1024. Finally, the worst performing model

in this case is again the LSTM of size 512.

In this comparison, we found very different

f we look at the left side

of the graph, we see that the replica of the original

model has the highest accuracy, but here we are

talking about low true positive rates (this metric is

called Recall, and is the name shown here). We also

have the original model above in this case. As we

move up the graph towards higher levels of recall,

the replica starts to lose much of its credibil

quickly becomes the worst of the models.

Something similar happens to the original model,

which ends up being surpassed by the 1024 and 768

models. However, the loss of performance in this

case is much more gradual than in the replica.

Our three models, on the other hand, have a

similar behaviour throughout the graph. Although

they do not reach very high levels of accuracy at

any point, the accuracy remains more or less

constant. They even outperform the original models

in a large part of the graph. However, due to the

good performance of the convolutional model at

low true positive rates, when we look at the average

accuracy both the original and the replica

outperform all of our proposals.

This good behaviour at the beginning means that

the convolutional models manage to differentiate

more clearly the clearly anomalous behaviours than

the Xception-LSTM models. That is, for those

examples in which the anomaly is clear, the

convolutional model tends to respond more reliably,

so that it correctly classifies a significant percentage

of such frames. On the other hand, when more

difficult classification frames begin to appear, the

Xception-LSTM models start to perform better than

the pure convolutional models.

We will now show and analyse the comparative

metrics table:
Table 3: Table of comparative metrics of the models at the photo level

Model Accuracy AUC F1

Original

- pre-training

0.8428 0.7508 0.2838

Original

- replicated

0.7411 0.7369 0.2201

Xception

-LSTM -

1024

0.8236 0.7504 0.2907

Xception

-LSTM - 768

0.8455 0.7674 0.2681

Xception

-LSTM - 512

0.8436 0.7177 0.2140

Volume 7 Issue 2, Mar-Apr 2024

www.ijsred.com

Page 654

called Recall, and is the name shown here). We also

have the original model above in this case. As we

move up the graph towards higher levels of recall,

the replica starts to lose much of its credibility, and

quickly becomes the worst of the models.

Something similar happens to the original model,

which ends up being surpassed by the 1024 and 768

models. However, the loss of performance in this

case is much more gradual than in the replica.

odels, on the other hand, have a

throughout the graph. Although

they do not reach very high levels of accuracy at

any point, the accuracy remains more or less

constant. They even outperform the original models

. However, due to the

good performance of the convolutional model at

low true positive rates, when we look at the average

accuracy both the original and the replica

This good behaviour at the beginning means that

utional models manage to differentiate

more clearly the clearly anomalous behaviours than

LSTM models. That is, for those

examples in which the anomaly is clear, the

convolutional model tends to respond more reliably,

sifies a significant percentage

of such frames. On the other hand, when more

difficult classification frames begin to appear, the

LSTM models start to perform better than

We will now show and analyse the comparative

: Table of comparative metrics of the models at the photo level

F1 EER AP

0.2838 0.3119 0.2057

0.2201 0.3253 0.2014

0.2907 0.3221 0.1823

0.2681 0.2980 0.1770

0.2140 0.3388 0.1451

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar-Apr 2024

Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 655

The first metric we encounter is accuracy.

Although we know that this metric is not very

relevant when we are faced with a very unbalanced

classification problem, such as ours, it is a metric

that is usually calculated, so we have decided to

include it. For this metric, we have the best

performance for the LSTM model of size 768,

although almost all models obtain similar results.

The original replicated model is clearly the worst of

the five in this metric, scoring about 10 percentage

points lower than the rest.

In terms of AUC, as we had already seen in the

previous graph, the best model is the proposal of

size 768, which far outperforms the rest of the

models. In particular, it obtains better results than

the original model itself in the article. It is

important to note that our extractor was pretrained

on a set containing less information than the one

used in the original extractor, so this margin of

improvement that we have obtained could be

further enlarged with the new data. As for the rest

of the models, we can see how the original model

achieves a similar result to that obtained by the

1024 size proposal. Slightly behind is the replica

model, and finally the Xception-LSTM model of

size 512.

The improvement that we consider most

important from our study is on the F metric1 for the

0.5 decision threshold. This improvement was

foreseeable given the results we observed on the

confusion matrix, but here we confirm that it does

indeed occur. In particular, we have improved this

metric with the proposed model of size 1024, which

achieves the highest score of all models. We

consider this metric to be particularly relevant

because it represents the behavior of the model.

This implies that, for the set decision threshold,

the larger Xception-LSTM model performs better

than the original model, which supports our starting

hypothesis. This implies that, for the set decision

threshold, the larger Xception-LSTM model

performs better than the original model, which

supports our starting hypothesis. It is curious to

note that, despite being the best model in terms of

AUC by a significant margin, the model of

dimension 768 obtains worse results in this metric.

This highlights the importance of using several

metrics to compare models, since the use of a single

metric, unless we are very interested in a specific

behavior, tends to give erroneous ideas.

The last two metrics we have shown can be

observed in the graphs shown. The equal error rate

(EER), which indicates a better model the lower the

value, could be observed in the graph of the ROC

curves, since it is the point where the curves

crossed the diagonal of points. As we said, the 768

dimension model is the best model in terms of this

metric. The AP, which was shown in the PR plot

legend, tells us that the best models in terms of

average accuracy are the pure convolutional models,

because of the very high accuracy they had for low

hit rates.

Finally, we show the results in terms of the

models ability to classify at the video level. The

ability of the models to detect the presence of an

anomaly may be even more important than the

exact location of the anomaly within the video.

Even if the anomaly is not perfectly delimited, i.e.,

the first or last seconds of the anomaly are not

precisely delimited, the fact of generating the alarm

when an anomalous situation actually occurs, and

not doing so when we are faced with a normal

video, is of great importance if we intend to

implement a system of these characteristics in a real

environment.

The following table shows the results of the

models in terms of videolevel evaluation:
Table 4: Percentage of normal and abnormal videos in which an alarm

was generated.

Model % Normal videos % Anomalous

videos

Original 13.33 64.89

Replica 11.11 74.05

Xception-

LSTM - 1024

15.55 77.86

Xception-

LSTM - 768

12.59 72.52

Xception-

LSTM - 512

8.15 71.76

For normal videos, a higher percentage implies that

more false alarms have been generated in normal

videos, and therefore a worse performance of the

model. For anomalous videos, on the other hand, a

higher percentage indicates that anomalies have

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar-Apr 2024

Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 656

been detected in a larger number of videos, and

therefore better results.

For these metrics, we can observe that our

proposal is also of quite good quality. On the one

hand, it is observed that the original model has a

quite improvable behavior, especially in terms of

anomalous unlabeled videos. In particular, no

alarms are generated in one out of three videos,

which means that it is a rather unreliable model for

use in real environments. The original model

replicated by us improves these results significantly,

generating fewer alarms in normal videos, and a

significant increase in alarms for anomalous videos.

Specifically, alarms are lost in only one out of four

videos. Still a high value, but significantly better

than the original.

Comparing the results obtained by our models,

we find that the larger the representation size, the

more anomaly information is collected. The

increase in descriptor size is accompanied by a

significant increase in the number of positive videos

in which an alarm is generated. As a counterpart, a

much higher number of false positives are also

committed. The poor performance of the 768-

feature model is particularly notable in this case. It

barely improves the percentage of detected videos

compared to the 512-size model, and on the other

hand, it also has almost as many false alarms as the

1024-size model.

Between the 1024 size model and the original

model trained by us, which are the two best

performers, the decision between which one

performs better is subjective. Our model is able to

detect a higher number of anomalous videos, but at

the cost of a significant increase in the number of

false alarms. Probably, if the model is to be used in

a real application, we will be more interested in a

model similar to ours, since we will be interested in

detecting as many anomalous situations as possible.

The occurrence of false negatives is less of a

concern, since an alarm of this type will probably

serve as a warning method and not as a decision

making method. We are therefore interested in it

being very sensitive to the positive class, and not so

much to the negative class, since false alarms will

be processed a posteriori by a human.

IV. CONCLUSIONS

We studied the effectiveness of using spatio-

temporal features extracted with deep learning

models for video anomaly detection. Specifically,

we experimented on a crowd anomaly detection

model using a feature extractor based exclusively

on deep learning models convolutional neural

patterns in three dimensions. For such a model, the

feature extractor has been replaced by a composite

of convolutional and recurrent layers. Our starting

hypothesis was that recurrent neural networks

would be better temporal feature extractors than 3D

convolutional networks.

From the experimental results, we have been able

to verify that the combined convolutional-recurrent

model performs better than the purely convolutional

model for the analysis of video sequences.

Finally, although the results obtained are better

than those of the original experimentation, it can be

seen that there is still ample room for improvement

in this data set. The number of false negatives is

still very high, with less than 50 % of the positive

photograms being correctly classified. It is possible

that this problem is partly justified by the type of

labeling of the set. Having to train without the exact

location of the anomalies makes it difficult to teach

the model to accurately locate the anomaly in the

complete anomalous video. This implies that errors

are likely being made in the first and last frames

around the anomalies. Furthermore, we have seen

that in a quarter of the videos labeled as anomalous

we did not generate any positive labels, i.e., we

ignored almost 25% of the anomalies present in the

set. We are talking about a very significant number

of errors, which will require more powerful models

to be detected.

ACKNOWLEDGMENT

I would like to express my deepest gratitude to a

multitude of individuals and organizations whose

contributions have been indispensable to the

completion of this thesis. The journey of my

research, filled with challenges and achievements,

was made possible by their generous support and

cooperation.

Foremost, I extend my sincerest appreciation to

my supervisor, Qing Tian unwavering guidance,

encouragement, and expertise. His mentorship has

been a beacon of light throughout this journey,

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar-Apr 2024

Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 657

providing me with the academic rigor and moral

support needed to navigate the complexities of my

research. Qing Tian's patience, knowledge, and

commitment have been the foundation of my

scholarly growth and achievements.

My gratitude extends to the various institutions,

companies, and organizations that have facilitated

my research. Special thanks to Nanjing University

of Information Science & Technology, and all

others for providing the essential tools, resources,

and environments crucial for my study. The

assistance received has been pivotal in overcoming

challenges and achieving my research objectives.

Furthermore, I appreciate all those who provided

logistical support, guidance, and encouragement

throughout this journey. The collaborative spirit and

shared wisdom of these individuals and groups have

been a source of motivation and inspiration.

In conclusion, my heartfelt thanks go out to

everyone who has played a part in this academic

endeavor. Your varied forms of support have not

only facilitated my research but have also been vital

to my growth as a scholar. Thank you for your

invaluable contributions and for being a part of my

journey.

REFERENCES

[1] WaqasSultani, Chen Chen y Mubarak Shah. “Real-world anomaly

detection in surveillance videos”. En: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. 2018, pages.
6479-6488.

[2] Du Tran y col. “Learning spatiotemporal features with 3D

convolutional networks”. En: Proceedings of the IEEE international

conference on computer vision. 2015, pages. 4489-4497.

[3] Andrej Karpathy y col. “Large-scale video classification with

convolutional neural networks”. En: Proceedings of the IEEE

conference on Computer Vision and Pattern Recognition. 2014, pages.

1725-1732.

[4] Sepp Hochreiter y Jürgen Schmidhuber. “Long short-term memory”.
En: Neural computation 9.8 (1997), pages. 1735-1780.

[5] François Chollet. “Xception: Deep learning with depthwise separable

convolutions”. En: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017, pages. 1251-1258.

[6] Jia Deng y col. “Imagenet: A large-scale hierarchical image database”.

En: 2009 IEEE conference on computer vision and pattern recognition.
Ieee. 2009, pages. 248-255.

[7] François Chollet y col. Keras. https://keras.io. 2015.

[8] Khurram Soomro, Amir Roshan Zamir y Mubarak Shah. “UCF101: A

dataset of 101 human actions classes from videos in the wild”. En:

arXiv preprint arXiv:1212.0402 (2012).

[9] Gary Bradski y Adrian Kaehler. “OpenCV”. En: Dr. Dobb’s journal of

software tools 3 (2000).

[10] Travis E Oliphant. A guide to NumPy. Vol. 1. Trelgol Publishing USA,

2006.
[11] Stefan Van Der Walt, S Chris Colbert y Gael Varoquaux. “The NumPy

array: a structure for efficient numerical computation”. En: Computing

in Science & Engineering 13.2 (2011), pages. 22.
[12] The pandas development team. pandas-dev/pandas: Pandas. Ver. latest.

Feb. de 2020. doi: 10.5281/zenodo.3509134. url: https://doi.org/
10.5281/zenodo.3509134.

