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Abstract: 
Semantic segmentation stands as a significant subject in computer vision. Scene parsing, an essential facet, entails dividing 

images into semantic categories such as sky, road, person, and others, thereby offering a holistic comprehension of the image. 

The difficulty lies in categorizing each pixel, particularly in varied scenarios. This work introduces an enhanced encoder-

decoder type model UNet. The U-Net consists of an encoder, which captures context by reducing input size, and a symmetric 

decoder for precise localization, our model employs an Efficient Channel Attention (ECA) mechanism for improved 

understanding of urban scenarios and also employs Deformable Convolutional Network (DCN) to understand various shaped 

objects. The enhanced UNet excels in pixel-level prediction, displaying superior performance in various semantic segmentation 

challenges. Notably, on the Cityscapes Dataset, the model attains a remarkable 74.3% mIoU in the training set and 69.8% mIoU 

in the validation set, underscoring its effectiveness in semantic segmentation. 
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I.     INTRODUCTION 

     Prior to the rise of deep learning, classical machine 

learning methods such as SVM, Random Forest, and K-

means Clustering were employed for image 

segmentation challenges. However, for most image-

related tasks, deep learning has proven significantly 

more effective than traditional techniques and has 

become the standard approach for semantic 

segmentation. The pursuit of efficient and secure 

navigation in autonomous vehicles has been a focal 

point in recent research, with various companies and 

research centres striving to develop the first practical 

driverless car model. Real-time video segmentation is 

crucial for interpreting scenes, directly influencing the 

steering and braking of vehicles for safer movements. 

Figure 1 illustrates the entire control mechanism of 

autonomous vehicles. The primary approach to achieve 

visual scene understanding is through semantic 

segmentation, a highly promising field with potential  

 

Fig 1. Autonomous Driving Control System. 

 

 

benefits including enhanced safety, reduced costs, 

comfortable travel, increased mobility, and a decreased 

environmental footprint[1]. Semantic segmentation is 

the process of assigning each pixel of the received image 
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Fig 2. The ADE20K dataset highlights various scene parsing 

challenges. In the first row, a mismatched relationship is 

observed, where cars crossing water are less common 

compared to boats. The second row illustrates categories 

prone to confusion, like mistaking "building" for "skyscraper." 

In the third row, there are classes that remain unseen, such as 

a pillow blending with a bedsheet due to similar color and 

texture, a situation where FCN may misclassify such elements. 

 

 

to one of the predefined classes. These classes represent 

the segment labels of the image, e.g., roads, cars, signs, 

traffic lights, or pedestrians [2]. Hence, semantic 

segmentation is often described as "pixel-wise 

classification." Its primary advantage lies in facilitating 

situation understanding. Scene comprehension offers 

various advantages in robotics applications. [3] and the 

most prominent benefit is in autonomous driving [1], [4], 

[5]. For Autonomous Vehicles (AVs) to effectively 

perceive and recognize their surrounding environment, 

the perception module of the self-driving system must 

gather extensive environmental data from various 

sensors such as cameras, LiDAR, radars, etc. This 

includes information on the vehicle's status, traffic flow, 

road conditions, pedestrians, and more. Segmentation 

has also been used in medical applications  and 

augmented reality [6]. The first prominent work in deep 

[2] semantic segmentation was fully convolutional 

networks (FCNs) [7], This method introduced an end-to-

end approach for pixel-wise classification, which 

subsequently paved the way for advancements in 

segmentation accuracy. Multi-scale approaches [8], 

context-aware models, and temporal models [9], 

introduced different directions for improving accuracy. 

The aforementioned approaches prioritized segmentation 

accuracy and robustness. Despite the improvement in 

dynamic object perception achieved by deep 

convolutional neural network (CNN)-based algorithms, 

challenges arise when handling diverse scenarios and a 

large vocabulary. This paper examined various 

challenges in parsing complex scenes by analyzing the 

prediction outcomes of the FCN baseline provided in 

ADE20K [10].  

 

(i) Mismatched Relationships: Comprehending complex 

scenarios depends on essential contextual interactions. 

Visual patterns, portrayed in the top row of Figure 2, can 

lead to misclassification without contextual information. 

For example, despite cars rarely crossing rivers, FCN 

mistakenly categorizes a boat as a "car" within the 

highlighted yellow region. 

 

(ii) Category Confusion: The ADE20K dataset includes 

challenging class label pairs, like field and earth, 

mountain and hill, and various structures such as wall, 

home, building, and skyscraper. In Figure 2's second 

row, FCN labels an object as both 'skyscraper' and 

'building,' stressing the need to consider category 

relationships for better classification accuracy. 

 

(iii) Inconspicuous Classes: Conventional FCNs fail to 

consider size differences among objects in scenes, 

resulting in inconsistent predictions across scales. In 

Figure 2's third row, the similarity between the pillow 

and the sheet highlights this issue. Neglecting the global 

scene category may lead to missing the pillow. To 

enhance detection for objects of varied sizes, target sub-

regions with less prominent-category data. The 

network's narrow receptive field, focusing on specific 

sub-regions while ignoring the overall scene category, 

exacerbates the problem. The lack of contextual linkage, 

narrow receptive field, and limited global knowledge are 

key factors. Accurate scene perception requires correctly 

predicting image context, especially in identifying a 

boathouse by a river. Existing FCN-based models face a 

challenge in utilizing global scene category hints. The 

traditional spatial pyramid pooling method, used for 

complex scene comprehension, lacked proper techniques. 

The proposed Improved encoder-decoder UNet 

overcomes this by incorporating global properties, 

enhancing precise localization functionality. The 

combination of local and global clues improves 

prediction accuracy, supported by a supervised loss 

optimization technique. This work outlines three key 

contributions, emphasizing the importance of 

establishing objectives before delving into the paper. 

 

1. In an encoder-decoder based pixel prediction 

framework, reduces the spatial size of the 
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input to capture the context to include 

complex scenery context data.  

2. Build an efficient deep ResNet optimization 

approach based on Deformable Convolutional 

Network, it helps the CNN model to detecting 

different size of objects in various objects and 

complex scenes.  

3. Integrated Efficient Channel Attention (ECA) 

module with ResNet to guide our model what 

and where should focus on. 

 

 

II.     RELATED WORKS 

     Autonomous driving has gained popularity, with 

semantic segmentation playing a crucial role in barrier 

detection and road condition identification. Traditional 

pixel classification methods in images typically rely on 

creating strong handcrafted features and utilizing 

classifiers like Random Forest or boosting-based models. 

To refine initial segmentation outcomes and enhance 

accuracy by minimizing per-pixel prediction noise from 

classifiers, post-processing techniques like conditional 

random fields (CRF) have been introduced. Deep 

learning, especially with deep convolutional neural 

networks (DCNN), has notably improved segmentation 

accuracy, surpassing traditional methods and excelling 

in various visual tasks. Semantic image segmentation 

involves assigning class labels to each pixel based on its 

corresponding class to [11]. It has multiple applications 

in the fields of medical imaging and autonomous 

vehicles. Segmentation has been widely used to classify 

biomedical images to segment neuron structures. 

Ronneberger et al. [12] introduced an encoder-decoder 

(U-Net) type of architecture for biomedical image 

segmentation to improve localization accuracy, and 

detect brain tumours [11], for the purpose of colon crypt 

segmentation, etc. In recent years, autonomous driving 

has gained much popularity and semantic segmentation 

has played an important role in perceiving obstacles and 

recognizing road conditions [1]. Traditional methods 

emphasize designing robust handcrafted features and 

employing classifiers like random forest or boosting-

based models to predict image pixel classes. The 

adoption of DCNN has enabled the attainment of state-

of-the-art performance across diverse visual tasks. 

Supervised training on the ImageNet dataset, using large 

networks, has been a common approach. Various deep 

architectures tailored for specific domains have emerged 

alongside the progress of deep learning-based 

segmentation methods. A network with a sliding 

window setup to predict pixel labels was suggested by 

[13] which was slow in processing and less accurate. 

Various other implementations involved the use of 

features from different layers of the architecture as 

discussed in [14]. Relevant work done by[15], to add 

fully-connected random fields to CNNs led to a 

significant upgrade in the segmentation performance. 

Various other approaches involving the use of a pyramid 

architecture to concatenate various feature maps also 

proved well. The DeepLab v1 and DeepLab v2 paved 

the way for DeepLab v3+ [16] which integrates 

advanced elements from prior implementations. 

Additionally, recent advancements in scene parsing and 

semantic segmentation have been notable. Tasks 

involving pixel-level prediction, such as scene parsing 

and semantic segmentation, have made significant 

strides due to robust deep neural networks [9], which 

were inspired by replacing the fully-connected layer in 

classification with the convolution layer [17]. [18] As 

mentioned earlier, several potential methods can be 

employed for semantic segmentation tasks. 

 

 

III.    Proposed method 
      In this part we discussed about our proposed 

improved UNet model. 

A. UNet Overall Architecture 

With the encoder-decoder module, the proposed UNet 

[11] is illustrated in Figure 2. Given an input image in 

Figure 2(a), I use a pre-trained ResNet152 [19] model 

with the dilated network strategy [20] to extract the 

feature map. the network architecture, which consists of 

3 × 3 convolutions performed three times, then a 

Rectified Linear Unit (ReLU) and a 2×2 max pooling 

operation for downsampling. The number of feature 

channels doubles with each downsampling step. 

Upsampling is accomplished via 2×2 convolution (up-

convolution), which reduces the number of feature 

channels supplied as input to that layer by half. It also 

has to skip connections that concatenate the encoder 

architecture's output (downsampling), as well as two 

3 × 3 convolutions and a ReLU layer. These skip 

connections transfer localization data from the design's 

downsampling component to the upsampling section. 

The U-Net architecture uses an overlap-tile approach for 

training and prediction. The output size is smaller than 

the input size due to the use of unpadded convolutions. 

The input image is divided into patches of a size that the 

model can handle. Every patch's segmentation map is 

predicted by the model, which is then concatenated to  
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generate the final segmentation output. U-Net also 

performs well with data augmentation as it can 

generalize well to random deformations applied to 

the input image and the corresponding output 

segmentation map the U-Net implementation also 

includes a weight map that is applied to the output 

of the network which is helpful in the separation of 

class boundaries touching each other. The weight 

map is computed as shown below: 

𝑤(𝑥) = 𝑤𝑐(𝑥) + 𝑤0. exp (−
(𝑑1(𝑥) + 𝑑2(𝑥))2

2𝜎2
 

  

Where 𝑤𝑐: 𝛺 → ℝ is the weight map to balance the 

class frequencies 𝑑1: 𝛺 → ℝ denotes the distance to 

the border of the nearest cell and 𝑑2: 𝛺 → ℝ  the 

distance to the border of the second nearest cell. 

 

B. Dilated Residual Networks (DRNs) 

This paper introduces a distinctive dilated residual 

network as the foundational network in UNet. Typically, 

convolutional networks for image classification reduce 

image resolution gradually, resulting in small feature 

maps lacking clear spatial organization. Such loss of 

spatial sharpness can potentially reduce image 

classification accuracy and complicate model transfer to 

downstream applications requiring precise scene details. 

Dilation, which increases the resolution of output feature 

maps without compromising the receptive field of 

individual neurons, offers a solution to these challenges. 

It shows that dilated residual networks (DRN) [20] 

outperform their non-dilated counterparts in image 

classification without increasing the model’s depth or  

 

 
Fig 4. In left, Standard Convolution (l=1), in right side, Dilated 

Convolution (l=2). 

 

 

complexity. then gridding artifacts introduced by 

dilation, develop an approach to removing these artifacts 

(‘degridding’), and show that these further increases the 

performance of DRNs. In addition, it also shows that the 

accuracy advantage of DRN's is further magnified in 

downstream applications such as object localization and 

semantic segmentation.  Here, equation 1 is Standard 

Convolution and equation 2 is Dilated Convolution. 

 

(𝐹 × 𝑘)(𝑝) = ∑ 𝐹(𝑠)𝑘(𝑡)

𝑠+𝑡=𝑝

                         (1) 

(𝐹 × 𝑙𝑘)(𝑝) = ∑ 𝐹(𝑠)𝑘(𝑡)

𝑠+𝑙𝑡=𝑝

                        (2) 

 
Where, 𝐹(𝑠)  = Input, 𝑘(𝑡)  = Applied Filter, ∗ 𝑙 =
 𝑙 −dilated convolution, (𝐹 × 𝑙𝑘)(𝑝)= Output. 

The left one is the standard convolution. The right one is 

the dilated convolution. We can see that at the 

summation, it is 𝑠 + 𝑙𝑡 = 𝑝 that we will skip some  

Fig 3. Architecture of the Encoder-Decoder Network (UNet). 
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Fig 5. Converting a ResNet into a Dilated Residual network (DRN) 

 

 

Fig 6. Diagram of Receptive Field Mechanism. 

 

points during convolution. field is larger compared with 

the standard one. 

 

C. Efficient Channel Attention (ECA) 

To reduce computing expenses, a deep learning and 

computer vision method known as the Efficient Channel 

Attention (ECA) [21]module enhances feature maps 

inside particular channels. The ECA module exhibits 

potential in mitigating overfitting and enhancing the 

discriminative capacity of neural networks. It is 

adaptable and compatible with various network 

architectures, including deep residual networks and 

CNNs. Noteworthy for its lightweight nature and 

minimal computational burden, the Efficient Channel 

Attention (ECA) module stands out as a valuable 

addition to deep neural networks, particularly for real-

time applications. Its dynamic channel-wise 

recalibration function enables networks to adjust channel 

importance according to input feature maps, thereby 

enhancing the model's ability to capture subtle details. 

Its versatility is another key attribute, as ECA 

seamlessly integrates into different CNN designs, 

facilitating straightforward experimentation to evaluate 

its impact on overall performance. Moreover, ECA's 

localized attention mechanism stands out for effectively 

capturing local channel-wise dependencies, particularly  

 
Fig 7. Diagram of our efficient channel attention (ECA) module. 

Given the aggregated features obtained by global average pooling 

(GAP), ECA generates channel weights by performing a fast 1D 

convolution of size k, where k is adaptively determined via a 

mapping of channel dimension C. 

 

Fig 8. Architecture of Deformable Network. 

 

 
focusing on specific regions along the channel 

dimension. Crucially, it prioritizes efficiency without 

compromising the network's representational capacity, 

all while maintaining a less parameterized attention 

mechanism. The primary goal of the ECA module is to 

enhance the efficiency of attention mechanisms in CNNs, 

thereby enabling models to be more effective and 

computationally economical. Due to its versatility and 

lightweight nature, it is a favoured option for enhancing 

diverse CNN designs in computer vision tasks. ECA 

module can be expressed by mathematically: The first 

step is to apply global average pooling on the feature 

map 𝑌 ∈ 𝑅𝑊×𝐻×𝑐  to gain the vector 𝑌𝑎𝑣𝑔 ∈ 𝑅1×1×𝑐  in 

order to aggregate the channel information. 

 

 𝑌𝑎𝑣𝑔 = 𝐺𝐴𝑃(𝑦) =
1

𝐻×𝑊
∑ ∑ 𝑌𝑖,𝑗

𝑊
𝑗=1

𝐻
𝑖=1                  (3)               
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Fig 9: Real image frame (left) vs Ground Truth (middle) vs Predicted 

Segmentation (right). 

 

 

Where 𝐺𝐴𝑃(. )  apprises global average pooling. 𝑌 

apprises the input feature map. 𝐻  and 𝑊  apprises the 

length and width of the feature map. 

 

 𝑊 = 𝜎(𝐶1𝐷𝑘(𝑌))                                   (4) 

  

Where 𝜎 apprises the sigmoid activation function. 𝐶1𝐷 

apprises the one-dimensional convolution. 𝑘  apprises 

convolution kernel size. 

 

𝐶 = ∅(𝑘) = 2(𝑦×𝑘−𝑏)                               (5)  

 

Where 𝐶 apprises the channel size of feature map. 𝑦 & 𝑏 

apprises parameters to 2 and 1. 𝑘 apprises convolution 

kernel. 

𝑘 = 𝜑(𝑐) = |
𝑙𝑜𝑔2(𝑐)

𝑦
+

𝑏

𝑦
|

𝑜𝑑𝑑

 

  

Where |𝑡|𝑜𝑑𝑑 apprises nearest odd number of 𝑡. 

 

D. Deformable Convolutional Network (DCN) 

Deformable Convolutional Networks (DCNs) 

augment conventional convolutional neural networks 

(CNNs) by incorporating deformable convolutional 

layers, which dynamically adjust sampling positions  

 

Fig 10: Training mIoU vs number of Training images. 

 

 

Fig 11: Validation mIoU vs number of Validation images. 

 

 

based on learned offsets. In a deformable convolutional 

layer, the output feature map 𝑌𝑖,𝑗 at spatial location (𝑖, 𝑗) 

is computed as: 

𝑌𝑖,𝑗 = ∑ 𝑋𝑖+𝑚+∆𝑖+𝑚,𝑗+𝑛
𝑥 ,𝑗+𝑛+∆𝑖+𝑚,𝑗+𝑛

𝑦
.𝑊𝑚,𝑛

𝑚,𝑛

 

 

Here, 𝑋 represents the input feature map, 𝑊 denotes the 

convolutional filter weights, and ∆𝑖+𝑚,𝑗+𝑛
𝑥  and ∆𝑖+𝑚,𝑗+𝑛

𝑦
 

denote the learned offsets for each spatial location in the 

feature map. Both the filter weights and offsets are 

optimized during training using methods such as 

stochastic gradient descent (SGD). DCNs (Fig 8) exhibit 

enhanced performance in tasks like object detection and 

semantic segmentation, offering promising 

advancements in the field of computer vision. 
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Table 1: Overall Training and Validation Result. 

 

 Training Set Validation Set 

Accuracy 0.977 0.964 

mIoU 0.743 0.698 

Loss value 0.118 0.142 

 
Table 2: Initialization Parameters Settings for Training. 

 

Shape Batch 

size 

Momen 

-tum 

LR Epochs Weight 

decay 

400 × 380 8 0.9 0.01 50 1𝑒−4 

 

 

IV.    Experiments 
       In this section, we will demonstrate the 

experimental results and relevant topics. 

 
A. Dataset, Evaluation Metrics and Experimental Setup 

     Cityscapes [22] is a semantic urban scene 

understanding dataset. It contains 5,000 high-quality 

dataset comprises finely annotated images from 50 cities, 

divided into 2,975 training, 500 validation, and 1,525 

testing images. It includes 19 categories, covering both 

stuff and objects, and offers 20,000 coarsely annotated 

images for comparison between training with fine data 

only and using both fine and coarse data. The dataset 

captures various seasons and weather conditions, 

providing a comprehensive benchmark for semantic 

segmentation tasks. Furthermore, all images have a fixed 

resolution of 2048 × 1024 pixels. The detection model 

we trained and tested on a workstation whose parameters 

were as follows: Intel(R) Xeon(R) Gold 6226R 

CPU@2.90GHz 2.89 GHz (2 processors) CPU, 128 GB 

DDR4 random-access memory (RAM), NVIDIA 

GeForce RTX 3090 with 24 GB VRAM GPU, and 

Ubuntu 20.04 OS. The initialization parameters of the 

network are shown in. To build a comparable basis, we 

focus on the same metrics as described in the work of 

[7]. IoU is defined as the ratio of intersection of ground 

truth and predicted segmentation outputs over their 

union. If we are calculating for multiple classes, the IoU 

of each class is calculated and their mean is taken. 

 
B. Results and Discussion 

     The proposed UNet demonstrates effectiveness in 

scene parsing and semantic segmentation for traffic 

images, as illustrated in Figure 9. Evaluation was 

conducted on Cityscapes datasets, yielding promising 

results. The pixel accuracy improved as the model had 

access to a larger volume of images, facilitating better 

Table 3: Comparison of Results with Existing Methods. 

 

Methods FCN Dilation CRF-RNN PSPNet 

mIoU 58.3 60.3 57.6 65.8 

Methods DeepLab UNet UPerNet Ours 

mIoU 66.1 65.4 64.2 69.8 

 

 

learning and generalization of scene objects. The 

training pixel accuracy was found to be about 97.7% 

whereas the validation pixel accuracy was more than 

96.4%. It first starts training the network with a large 

learning rate and then slowly reducing/decaying it until 

local minima are obtained. The learning rate is reducing 

over time (represented with a green line), since the 

learning rate is large initially, we still have relatively fast 

learning toward as tending toward minima learning rate 

gets smaller and smaller, end up oscillating in a tighter 

region around minima rather than wandering far away 

from it. It is empirically observed to help both 

optimization and generalization. The loss curves for both 

training and validation sets illustrate a decreasing trend 

as the number of images increases, indicating improved 

model learning and memorization with larger datasets, 

leading to fewer errors and reduced loss. Specifically, 

the training loss decreased to approximately 12%, while 

the validation loss stabilized around 14%. To prevent 

overfitting, rigorous fine-tuning and debugging of the 

UNet model were undertaken before training. The model 

underwent training and validation for 50 epochs, 

resulting in metrics such as mean Intersection over 

Union (IoU) and accuracy for both training and 

validation images, as well as per-class IoU accuracy, 

detailed in Table 4. Higher IoU accuracy suggests more 

accurate segmentation of objects in images and videos. 

Additionally, we included essential class labels, with 

potential for further expansion to enhance scene 

understanding. Figures 9 and 10 depict the Mean IoU 

against the number of images in the training and 

validation sets, respectively. The graphs demonstrate 

that as the number of images increases, the mean 

Intersection over Union (IoU) also increases, reflecting 

the model's improved ability to learn and generalize 

objects in the scene for more accurate segmentation in 

test images and videos. The training mean IoU surpassed 

74.3%, while validation pixel accuracy exceeded 69.8%. 

Subsequent segmentation results on test image frames, 

depicted in Figure 8, showcase the UNet model's 

performance. While the model effectively segments 

most objects in traffic scenes, some misclassifications 

occur. Enhanced fine-tuning, augmented training data, 
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and additional class labels offer avenues for 

improvement. Notably, accurate segmentation is 

achieved for visible objects like cars, pedestrians, roads, 

buildings, and signs, despite challenges posed by 

unlabelled objects and adverse weather conditions. 

Overall, the segmentation outcome is satisfactory for 

traffic scene analysis. 

 

 

III. CONCLUSIONS 

       In summary, our improved UNet demonstrates 

exceptional pixel-level categorization capabilities across 

varied urban environments. Leveraging a novel 

Encoder-Decoder module, advanced scene parsing 

network with ECA mechanism, and Deformable 

Network, the model showcases superior performance on 

the Cityscapes Dataset, attaining 74.3% mIoU in the 

training set and 69.8% mIoU in the validation set. This 

study represents a significant contribution to semantic 

segmentation models, particularly in the domain of 

urban scene analysis.  
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