
International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar- Apr 2024           

                     Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 1450 

 

ARCHITECTURAL PATTERNS IN DISTRIBUTED SYSTEMS: 

MICROSERVICES, EVENT-ORIENTED SYSTEMS, AND CQRS 

 

Glumov Konstantin 
Senior Software Engineer, Alfa-Russia, Perm 

kglumov@alfabank.ru 

 

Abstract. The article discusses architectural patterns in distributed systems: 

microservices, event-driven systems, and CQRS. The research problem lies in the fact that 

during software creation, developers are faced with overloaded system code because the 

written code must be readable, which is why developers add the necessary details and 

explanations to the program code listing. The review of literature sources concerning the 

information systems architecture was performed, a multidisciplinary review of 

microservice architecture patterns was carried out, the CQRS pattern application features 

in event-driven architecture of high-volume distribution systems were considered, and the 

design features of microservice-event-driven architectures for high-volume distribution 

information processing systems were reviewed, which made it possible to conclude that 

insufficient attention had been paid to the architectural patterns in distribution systems in 

the literature, which points out the importance of research in this direction. Such 

architectural approaches to software development as microservices, event-driven systems, 

and CQRS were considered. Architectural patterns for software development approaches 

were reviewed. The study results show that architectural approaches and patterns are tools, 

the choice of which depends only on the developers, who must be guided by such 

selection criteria as efficiency, benefits, costs, and rationality. The conclusions drawn 

from the study may be useful to software developers who develop distributed systems to 

speed up information systems development, improve software quality, and simplify its 

support. 

 

Keywords: patterns, architecture, CQRS, distributed systems, microservices, event-driven 

systems. 

 

1. Introduction 

During software creation, developers face the problem of voluminous application 

code. This is because the written code has to be readable, due to which developers add 

necessary details and explanations in the program code listing. Ready templates, namely 

patterns, in applications eliminate code overflow. 

Application architecture provides application usability and extensibility, due to 

which choosing the optimal architecture is a non-trivial task. Significant aspects of 

architecture selection include detailed analysis of software feature requirements, 

development team experience, business requirements, and project timeframe. 

 

RESEARCH ARTICLE                                               OPEN ACCESS 



International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar- Apr 2024           

                     Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 1451 

 

2. Literature Review 
The work of M.V. Rybalchenko is devoted to the study of information systems 

architecture [1], a study by Kh.A. Valdia [2] provides a multidisciplinary review of 

microservice architecture patterns. The peculiarities of CQRS pattern application in the 

event-driven architecture of highly loaded distribution systems are considered in the 

works of N.O. Khitrov and M.A. Gorbachev [3]. The peculiarities of designing 

microservice-event-oriented architectures for highly loaded distribution systems of 

information processing are presented by M.N. Karpovich in his study. [4]. 

The consideration of architectural patterns in distribution systems has not received 

enough attention in the literature, suggesting the importance of research in this direction. 

The study aims to review architectural patterns in such distributed systems as 

microservices, event-driven systems, and CQRS. 

  

3. Methodology 
Today, some of the most popular architectural approaches to software development 

are microservices, event-driven systems, and CQRS (Figure 1). 

 

 
Figure 1 - Popular architectural approaches to software development 

 

Microservices is an architectural approach to information systems development, 

which means that the application consists of several independent services that are 

responsible for individual functions. These functions interact with each other due to 

certain APIs. 

Advantages of microservice architecture:  

● convenient application scalability; 



International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar- Apr 2024           

                     Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 1452 

 

● improved application security; 

● resistance to high parallelism levels; 

● relatively low level of labor costs. 

Besides, if some microservice architecture module fails or is attacked, the program 

will not become inaccessible; it will continue to function, and only the functionality of the 

damaged module will become inaccessible. 

Disadvantages of microservice architecture: 

● high maintenance requirements; 

● significant investment costs; 

● improved application security; 

● high operation requirements. 

Event-driven architecture is a software design pattern that involves events to trigger 

and pass changes between application components. 

Advantages of event-driven architecture: 

● ease of scalability since the software will consist of a few asynchronous 

modules; 

● high service performance. 

Disadvantages of event-driven architecture: 

● complexity of debugging, due to the asynchronous module nature; 

● possibility of failures when launching several chains of actions; 

● logging complexity;  

CQRS represents an architectural approach to information systems design that 

involves separating reading and writing operations to realize application scalability and 

security enhancements. This approach uses commands to write data to persistent storage 

and queries to discover and retrieve data. These commands and queries are handled by a 

control center that receives requests from users and subsequently executes them, stores 

them, and notifies the procedure. 

Advantages of CQRS architecture: 

● separation of responsibility; 

● small number of unpredictable changes to distributed data;  

● application complexity reduction through delegation; 

● reduction in the number of data-modifying entities;  

● realizes a clear separation of business logic and validation. 

Disadvantages of CQRS architecture: 

● latency potential when sending a large number of queries; 

● interaction between teams and queries continuously; 

● no means of communication between service processes. 

 

 

 

 

4. Research and Results 



International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar- Apr 2024           

                     Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 1453 

 

Microservice architectural patterns can create fault-tolerant, efficient, and easily 

scalable systems. Today, there are a large number of patterns available for distributed 

systems, but consider the most popular ones. 

The Universal IT Solution for API Gateway Pattern microservices (Figure 2) is a 

pattern that can be used as a single point of entry for client requests, thus providing 

seamless interaction between services and clients. 

 

 
Figure 2 - API Gateway Pattern 

 

 The API Gateway Pattern aggregates responses from multiple microservices, 

reducing the number of requests between clients and services, which will result in 

improved performance. This pattern also allows common functions to be organized in one 

place, resulting in consistency and reduced redundancy. 

Another popular pattern is the Strangler Pattern (Figure 3), which replaces a 

monolithic system with microservices while ensuring a smooth and secure transition. 

Since the transition from monolithic architecture to microservice architecture is a complex 

and risky process, the use of Strangler Pattern will enable implementing a phased 

replacement, minimizing downtime and preserving business continuity. 

 

 
Figure 3 - Strangler Pattern 



International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar- Apr 2024           

                     Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 1454 

 

 

Service Discovery Pattern (Figure 4) is a pattern that enables modules to search for 

each other, ensuring seamless communication and reducing manual configuration 

processes. 

 This pattern is important because as the application scales up, the module 

management becomes more complex, and using the pattern will allow the modules to 

react and search for each other automatically, increasing the service's flexibility and 

scalability. 

 

 
Figure 4 - Service Discovery Pattern 

 

The Circuit Breaker Pattern (Figure 5) is a pattern that protects against cascading 

failures. It constantly monitors service failures and prevents requests from reaching a 

service that is down for the entire system’s recovery and protection. 

 

 
Figure 5 - Circuit Breaker Pattern diagram 

 

This pattern is important because if a service in the application is not functioning 

properly, the domino principle can be triggered, i.e., services that do not depend on each 

other can be disrupted. The Circuit Breaker Pattern helps isolate the incorrectly 

functioning service, which will prevent further system destruction.  



International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar- Apr 2024           

                     Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 1455 

 

The Event-Driven Architecture Pattern is a pattern designed to trigger events in 

services for a real-time response. Figure 6 shows a diagram of the Event-Driven 

Architecture Pattern. 

 

 
Figure 5 - Event-Driven Architecture Pattern diagram 

 

The EDA uses events as triggers that minimize direct dependencies between 

services, which in turn leads to increased flexibility and easier service scaling. 

The CQRS Pattern is a pattern that aims to improve performance by separating 

tasks (Figure 6). This pattern separates reading and writing services, allowing the 

administrator to configure each aspect in a way that maximizes the impact. 

Traditional architectures combine reading and writing operations, which can result 

in degraded application performance as well as increased complexity. CQRS allows each 

operation to be optimized separately, which will have the opposite effect, i.e., will 

increase performance and simplify maintenance. 

This pattern’s implementation will divide the service into two parts. The first part 

will deal with the processing of writing commands, and the second part will deal with the 

processing of reading requests. Thus, this division helps use different scaling, caching, 

and database strategies for each operation type.  

 

 
Figure 7 - CQRS Pattern 

 



International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar- Apr 2024           

                     Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 1456 

 

Thus, it can be concluded that the need for fault-tolerant, efficient, and easily 

scalable systems is of paramount importance because, in the information technology era, 

preferences for information systems development environments are rapidly changing. 

 

Conclusion 
Each of the considered architectural approaches and patterns is a means of solving 

certain problems, and therefore, software developers do not need to treat them as a goal 

when writing code since there are cases when an IT solution without a complex 

architecture is simpler and more efficient. 

Architectural approaches and patterns are tools, the choice of which depends only 

on the developers, who must be guided by such selection criteria as efficiency, benefits, 

costs, and rationality. 

 

References 
1. Rybalchenko, M.V. Architecture of information systems: textbook for open 

source education / M.V. Rybalchenko. – M.: Yurayt, 2021. – 91 p. 

2. Valdivia H.A. Microservice architecture patterns: a multidisciplinary 

literature review / Kh.A. Valdivia, A. Laura-Gonzalez, C. Limón, C. Cortes-Verdin., J.O. 

Ocharan-Hernandez // Proceedings of ISP RAS. – Mexico: University of Veracruz, 2021. 

– P.81-96 

3. Khitrov, N.O. Features of the use of the CQRS pattern in the event-driven 

architecture of high-load distributed systems / N.O. Khitrov, M.A. Gorbachev // Scientific 

and educational magazine for students and teachers “StudNet” - M.: RTU, 2021. - P.1210-

1216 

4. Karpovich, M.N. Features of designing microservice-event architectures for 

distributed information processing systems // Proceedings of BSTU. Series 3: Physical 

and mathematical sciences and computer science. – Minsk: BSTU, 2023. – P. 89-95 


