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Abstract: 
            In the last decade, the usage of neural networks and deep learning methodologies has revolutionized 

medical image tasks, particularly in tasks such as image segmentation, classification, and segmentation, 

leading to significant advancements in diagnostic accuracy and treatment efficacy. Chest X-rays, a vital tool 

in medical imaging, play a key role in finding and understanding different chest problems, like lung diseases 

and heart issues. However, even though they're widely used, accurately and efficiently separating specific 

organs in chest X-rays remains a significant challenge for doctors because of the complicated structure of 

the body and different ways X-rays are taken. This study proposes a novel approach utilizing the U-Net 

architecture model for lung segmentation with unprecedented accuracy and robustness, aiming to address 

the longstanding challenges in medical image analysis. 

In this research we have conducted numerous experiments, encompassing various optimization 

strategies such as Adam, RMSprop, and SGD, coupled with observed fine-tuning of hyperparameters. 

These efforts result in the development of a state-of-the-art model architecture, showcasing remarkable 

performance metrics with training and validation accuracies consistently surpassing the 96% threshold. 

This exceptional level of accuracy, coupled with the utilization of the Dice coefficient as the loss function, 

shows how effective and reliable our approach is at outlining lung borders with exceptional precision. 

Additionally, by using a combined dataset of over 900 chest X-rays carefully labelled by doctors, we made 

sure our model is robust and generalizable, which makes it more useful in real-world situations.   

The findings of this research contain the efficacy of the proposed model in lung segmentation that 

offers improved model performance and enhanced generalization capabilities. By addressing the 

challenges of overfitting while maintaining model efficiency, this study contributes to the advancement of 

medical image segmentation methodologies, facilitating more accurate and efficient diagnosis and 

treatment planning for thoracic abnormalities. 

 

Keywords — Lung Segmentation, Deep Learning, U-Net, Medical Imaging, Automated 

Segmentation. 

----------------------------------------************************----------------------------------

I.     INTRODUCTION 

Lung segmentation from medical images plays a 

pivotal role in computer-aided diagnosis and 

treatment planning for various pulmonary diseases. 

Accurate delineation of lung regions enables 

clinicians to analyze lung morphology, detect 

abnormalities, and monitor disease progression. 

Traditional methods for lung segmentation often rely 

on handcrafted features and heuristic algorithms, 

which are limited in their ability to handle complex 

image structures and variations in image quality. In 

recent years, deep learning techniques have emerged 

as a powerful tool for medical image analysis, 

RESEARCH ARTICLE                                     OPEN ACCESS 

http://www.ijsred.com/
mailto:lahirurandika@hotmail.com
mailto:jayanga.sl@gmail.com


International Journal of Scientific Research and Engineering Development-– Volume X Issue X, Year  

        Available at www.ijsred.com                                                                  

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 2 

offering superior performance in various 

segmentation tasks. 

In this article, we present a novel approach to lung 

segmentation using deep learning, specifically 

leveraging the U-Net architecture. Before delving 

into our methodology, we provide an overview of 

existing lung segmentation methods and highlight 

the challenges faced by traditional approaches. 

Saood and Hatem introduced a U-Net-based method 

for lung segmentation in 2021 [1] achieving 

promising results in terms of accuracy and Dice 

coefficient. Similarly, Xavier Annie proposed a U-

Net model for lung segmentation in 2023 [2], 

although with lower performance compared to other 

methods. Rudiansyah and other researchers 

presented a U-Net-based approach with competitive 

performance in terms of accuracy and Dice 

coefficient [3]. 

Motivated by the limitations of existing methods 

and the potential of deep learning, we developed a 

novel methodology for lung segmentation using the 

U-Net architecture. Our approach involves 

preprocessing of input data, model training using the 

U-Net architecture, and evaluation of segmentation 

performance using standard metrics. To optimize 

model performance, we experimented with different 

optimizers and learning rates, as well as 

hyperparameter tuning techniques. Our experimental 

results demonstrate the effectiveness of our approach, 

with superior accuracy and segmentation quality 

compared to state-of-the-art methods [4]. 

Through this article, we aim to contribute to the 

advancement of medical image analysis and the 

development of automated segmentation methods 

for lung disease diagnosis and treatment planning. 

By providing a detailed description of our 

methodology and experimental results, we hope to 

inspire further research in this field and facilitate the 

adoption of deep learning techniques for lung 

segmentation in clinical practice.  

II.     LITERATURE REVIEW 

The literature surrounding lung segmentation from 

medical images encompasses a diverse array of 

methodologies, ranging from traditional techniques 

to cutting-edge deep learning approaches. Lung 

segmentation plays a pivotal role in computer-aided 

diagnosis and treatment planning for pulmonary 

diseases, necessitating the exploration of robust and 

efficient segmentation methods [5]. This review 

aims to provide a comprehensive overview of 

existing approaches for lung segmentation, shedding 

light on both conventional methodologies and recent 

advancements in deep learning-based techniques. 

Traditional methods for lung segmentation have 

historically relied on heuristic algorithms and image 

processing techniques to delineate lung regions from 

medical images. These methods often involve 

thresholding, region growing, active contours, and 

morphological operations to extract relevant 

anatomical structures. While traditional approaches 

have demonstrated effectiveness in certain scenarios, 

they are inherently limited by their reliance on 

handcrafted features and assumptions about image 

characteristics. For instance, Saood and Hatem 

(2021) [1] proposed a lung segmentation method 

based on thresholding and morphological operations, 

showcasing the utility of traditional techniques in 

medical image analysis. 

In recent years, deep learning-based approaches 

have emerged as a paradigm shift in medical image 

segmentation, offering remarkable performance 

improvements over traditional methods. Among the 

pioneering architectures in this domain is U-Net, 

introduced by Ronneberger [6], which 

revolutionized medical image segmentation tasks 

with its encoder-decoder architecture and skip 

connections. U-Net has since become a cornerstone 

in medical image analysis, with numerous studies 

leveraging its architecture for various segmentation 

tasks. For instance, [2] employed a U-Net model for 

lung segmentation, demonstrating the efficacy of 

deep learning in accurately delineating lung regions 

from medical images. [3] also utilized a U-Net-based 

approach for lung segmentation, achieving high 

accuracy and Dice coefficient values. 

In light of the advancements and limitations 

highlighted in the literature review, the objective of 

this research is to develop a U-Net-based model 

tailored for accurate and efficient lung segmentation 
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from medical images. By leveraging the capabilities 

of deep learning and specifically the U-Net 

architecture, this study aims to address the 

challenges posed by traditional segmentation 

methods, such as manual feature engineering and 

limited adaptability to diverse image characteristics 

[7]. The proposed model seeks to enhance the 

accuracy, robustness, and scalability of lung 

segmentation, ultimately contributing to the 

advancement of computer-aided diagnosis and 

treatment planning for pulmonary diseases [8]. 

III. METHODOLOGY  

The methodology adopted for this research 

encompasses several key components, including the 

utilization of the U-Net architecture, data pre-

processing techniques, and the training process 

tailored to optimize model performance. 

The U-Net architecture, initially proposed by 

Ronneberger [6], has garnered significant attention 

in medical image segmentation tasks due to its 

inherent ability to capture spatial dependencies and 

generate accurate segmentation masks. Its unique 

design, characterized by a contracting path followed 

by an expansive path, facilitates the extraction of 

intricate features while preserving spatial 

information, making it particularly suitable for 

segmentation tasks with complex anatomical 

structures. 

A. Dataset Preparing & Data Preprocessing  

 

Dataset preparation is a crucial step in training and 

evaluating deep learning models for lung 

segmentation, and data preprocessing plays a vital 

role in enhancing the quality and usability of the 

dataset for training deep learning models. There are 

several datasets available for lung segmentation such 

as LUNA16, VESSEL12, CRPF, JSRT, CXR-14, 

CheXpert, Montgomery Country CXR, Shenzhen 

CXR database. After conducting a thorough research 

in the literature review we have selected Kaggle 

CXR dataset for our research. This dataset consisted 

with both Montogomery Country CXR and 

Shenzhen CXR datasets. We considered several 

factors before selecting the dataset such as dataset 

scale, diversity, annotated ground truth, community 

contribution, validation by healthcare professionals 

and publicly accessibility.  

1)  Data Loading and Preprocessing:  The dataset consists 

of CXR images and corresponding masks. The images are 

loaded and resized to a predefined shape, typically (256, 256) 

pixels and the pixel values of the images are normalized to the 

range [0,1] to facilitate model training. 

 

 

 

 

 

 

 

 

 

 

 
The above figure 1 displays the original CXR image and its 

corresponding mask image. This provides a visual 

representation of the raw data used in the dataset.  

2)  Train-Test Split:  Once the images and masks are loaded 

and pre-processed the dataset is split into training and testing 

sets. In the initial training we will split 80% for training and 20% 

for validating as the standard metrics, then we will perform 

experiments increasing and decreasing validating set and 

observe the results.  

3)  Reshaping:  Before feeding the data into the neural 

network model, the images and masks are reshaped to conform 

to the model’s input requirements.  

4)  Normalization:  Following reshaping, the pixel values of 

the images and masks are normalized to the range [0,1] to 

standardize the pixel intensity values across the dataset and 

helps in stabilizing the training process.   

5)   Data Augmentation:  To increase the diversity and 

robustness of the training data augmentation techniques are 

applied. Various transformations such as rotation, translation, 

shearing, zooming, flipping and brightness adjustment are 

performed on the images to prevent overfitting and improve the 

model’s generalization ability [9].    

B. Proposed Model 

The proposed model is based on U-Net model and 

the primary objective is to accurately delineate lung 

regions from CXR images, facilitating subsequent 

analysis and diagnosis.  

 

Fig. 1 Raw CXR and Mask 
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The proposed model featuring an encoder-decoder 

structure with skip connections. The input layer 

accepts grayscale images of size 256x256 pixels and 

it consist of four blocks with two convolutional 

layers each, followed by max-pooling for down-

sampling. Similarly, the decoder comprises four 

blocks with two convolutional layers each, followed 

by transpose convolutions for up-sampling. Skip 

connections concatenate feature maps from 

corresponding encoder blocks to aid in precise 

localization. The final layer is a convolutional layer 

with a sigmoid function, producing a binary mask 

indicating lung regions in the input image. Above 

figure 2 provides an overview of model’s 

architecture.  

C. Learning Rate 

A learning rate scheduler function was defined to 

adjust the learning rate based on the epoch. Initially 

set to a base learning rate, then scheduler reduces the 

learning rate by a factor of 0.1 after 10 epochs and 

by another factor of 0.1 after 20 epochs. 

   Plateau learning rate scheduling, also known as 

ReduceLROnPlateau, is a technique used in training 

deep learning models to dynamically adjust the 

learning rate based on the model's performance 

during training. The primary objective of plateau 

scheduling is to automatically reduce the learning 

rate when the model's performance stagnates or 

plateaus, thereby facilitating convergence to a better 

solution [10]. 

The idea behind plateau scheduling is to monitor 

a specified metric, such as validation loss or 

accuracy, over a certain number of epochs. If the 

metric does not show improvement beyond a 

predefined threshold for a certain number of epochs,  

 

 

 

 

 

 

 

 

 

the learning rate is reduced by a factor, allowing 

the optimizer to escape from local minima or 

plateaus [11] 

The plateau learning rate scheduling strategy can 

be mathematically represented as: if metric does not 

improve f or patience epochs 

 
 𝑛𝑒𝑤𝑙𝑟 =  𝑙𝑟 ×  𝑓𝑎𝑐𝑡𝑜𝑟 (1) 

 

Where metric is the monitored performance 

metric (e.g., validation loss). Patience is the number 

of epochs with no improvement after which learning 

rate will be reduced, lr is the current learning rate. 

And factor is the factor by which the learning rate 

will be reduced (typically a value between 0 and 1). 

The reduction in learning rate helps the optimizer 

to take smaller steps in the parameter space, 

potentially escaping from local minima and finding 

a better solution. 

Plateau learning rate scheduling is particularly 

useful in scenarios where the loss landscape is non-

convex and contains numerous local minima. By 

dynamically adjusting the learning rate based on the 

model's performance, plateau scheduling allows for 

more efficient optimization and can lead to better 

generalization on unseen data. 

D. Implementing Different Optimizers 

We experimented with three popular optimizers: 

Adam, RMSProp and SGD to explore the impact of 

different optimizers [12]. 
1) Adam 

Adam is an adaptive learning rate optimization 

algorithm that combines the advantages of two other 

popular optimization techniques: RMSProp and 

momentum. It maintains separate learning rates for 

Fig. 2 Proposed Model Architecture 
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each parameter and updates them based on the 

estimates of the first and second moments of the 

gradients [13].  

Below are the equations related to Adam optimizer: 

Momentum Update 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡  (2) 

Here, 𝑚𝑡  represents the exponentially decaying 

average of past gradients, 𝛽1  is the exponential 

decay rate for the first moment estimate, 𝑔𝑡 

represents the current gradient, and t denotes the 

current time step. 

Scaling of gradients update 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (3) 

 

Here, 𝑣𝑡 represents the exponentially decaying 

average of past squared gradients, 𝛽2  is the 

exponential decay rate for the second moment 

estimate, and 𝑔𝑡
2 represents the element-wise square 

of the current gradient. 

   Bias Correction  

𝑚�̂� =
𝑚𝑡

1 − 𝛽1
𝑡  (4) 

𝑣�̂� =
𝑣𝑡

1 − 𝛽2
𝑡  (5) 

These equations perform bias correction to 

account for the initialization of 𝑚𝑡  and 𝑣𝑡  as zero 

vectors. 

   Parameter Update 

𝜃𝑡+1 = 𝜃𝑡 −
𝛼

√𝑣�̂�+∈
𝑚�̂� (6) 

Here, 𝜃𝑡  represents the model parameters, α is the 

learning rate, ϵ is a small value to prevent division by 

zero, and 𝑚�̂� and 𝑣�̂�  are the bias-corrected estimates 

of the first and second moments of the gradients, 

respectively [10]. 

Adam is widely used in deep learning applications 

due to its effectiveness in training neural networks 

and its ability to handle noisy gradients and sparse 

gradients. It automatically adapts the learning rate 

for each parameter, making it well-suited for a wide 

range of optimization problems. 

 
2) RMSProp 

RMSProp is an adaptive learning rate optimization 

algorithm that adjusts the learning rates of individual 

parameters based on the magnitudes of their 

gradients. It helps to overcome the vanishing or 

exploding gradient problem by scaling the learning 

rates differently for each parameter [12].  

The RMSProp algorithm calculates a decaying 

average of the squared gradients for each parameter 

and uses this to normalize the learning rate. The 

parameter update rule is given by: 

𝜃𝑡+1 = 𝜃𝑡 −
𝛼

√𝑣𝑡 + 𝜖
𝑔𝑡 (7) 

Where 𝜃𝑡 is the parameter at time step t, 𝛼 is the 

learning rate, 𝑣𝑡  is the exponentially decaying 

average of the squared gradients, 𝑔𝑡  is the current 

gradient, and 𝜖  is a small value added to the 

denominator for numerical stability.  

The 𝑣𝑡  term is calculated using the following 

equation: 

𝑣𝑡 = 𝛽𝑣𝑡−1 + (1 − 𝛽)𝑔2
𝑡  (8) 

Where β is a decay rate hyperparameter that 

controls the exponential decay of the moving 

average. 

RMSProp is particularly effective in dealing with 

non-stationary environments and problems with 

sparse gradients. It adapts the learning rates of 

individual parameters based on their past gradients, 

which helps to improve convergence and stability 

during training [12] 

 
3) SGD 

Stochastic Gradient Descent is a classic 

optimization algorithm used for minimizing the loss 

function during training of machine learning models. 

In SGD, the parameters are updated in the opposite 

direction of the gradient of the loss function with 

respect to the parameters. It updates the parameters 

using the formula: 

𝜃𝑡+1 = 𝜃𝑡 − 𝛼. ∇𝐽(𝜃𝑡) (9) 

Where 𝜃𝑡 is the parameter vector at time step t, α 

is the learning rate,  J(𝜃𝑡) is the loss function, and 

∇J( 𝜃𝑡 ) is the gradient of the loss function with 

respect to the parameters [2]. 

 

E. Hyperparameter Tuning 
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We performed a grid search to find the optimal 

learning rates for each optimizer. The grid search 

parameters included different learning rates for 

Adam, RMSProp and SGD optimizers. Then we 

experimented with each optimizer by setting the 

learning rate to the values obtained from the grid 

search [12]. We employed hyperparameter tuning to 

further optimize our model. We defined a function to 

build our model with customizable hyperparameters, 

such as the number of filters in the convolutional 

layers. Random search was used to search the 

hyperparameter space and identify the best set of 

hyperparameters for the model. Model building 

function accepts hyperparameters as inputs and 

returns a compiled model ready for training.  

Finally, we train the model using optimized 

hyperparameters for each optimizer.  

F. Evaluation Metrics  

We first analyze the training and validation losses 

to asses the model’s convergence and generalization 

ability. The binary cross-entropy loss is plotted over 

epochs for both training and validation datasets.  

Dice Coefficient is a common metric used to 

evaluate the performance of image segmentation 

models. It measures the overlap between the 

predicted and ground truth segmentation masks, 

providing a measure of segmentation accuracy[14]. 

We compute and plot Dice Coefficient over epochs 

for both training and validation datasets [15]. 

IV. EXPERIMENTS AND RESULTS  

In this section, we delve into the experimental 

setup, training procedures, optimization strategies, 

and evaluation results of segmentation framework. 

Upon training our model with each optimizer for 20 

epochs, we observed notable differences in their 

convergence behaviour and final performance 

metrics.  

 

 

 

 

 

 

TABLE I 

TRAINING RESULTS AND ANALYSIS OF OPTIMIZERS 

Optimizer Epochs Loss Dice Coefficient Accuracy 
Adam 10 0.0778 0.9189 0.9721 

20 0.0553 0.9367 0.9785 

RMSProp 10 3.9224 0.2481 0.7450 

20 3.7224 0.4384 0.7450 

SGD 10 0.5525 0.2690 0.7450 

20 0.5302 0.2970 0.7750 

 

TABLE III 

VALIDATION RESULTS AND ANALYSIS OF OPTIMIZERS 

Optimizer Epochs Loss Dice Coefficient Accuracy 
Adam 10 0.0757 0.9180 0.9719 

20 0.0574 0.9344 0.9779 

RMSProp 10 3.8723 0.3966 0.7483 

20 3.8723 0.3964 0.7483 

SGD 10 0.5455 0.2665 0.7483 

20 0.5274 0.2927 0.7786 

 

Based on the results of our experiments, Adam 

emerged as the most suitable optimizer for our lung 

segmentation task. Its adaptive learning rate and 

momentum parameters enabled efficient exploration 

of the optimization landscape, leading to faster 

convergence and superior performance compared to 

RMSProp and SGD.  

After conducting multiple trials with different 

hyperparameter configurations, we identified the 

best set of hyperparameters for each optimizer. 

Notably, the optimized hyperparameters resulted in 

a significant improvement in model performance.  

V. EVALUATION RESULTS  

After completing the final training using Adam 

optimizer and tuned hyperparameters for 40 epochs, 

we evaluated its performance on both the training 

and validation datasets. Below table 3 and table 4 

summarizes the key metrics.  
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 TABLE IIII 

TRAINING EVALUATION RESULTS 

Epochs Loss Dice Coef Accuracy 

1 0.5567 0.2887 0.7322 

5 0.1690 0.8078 0.9361 

10 0.0847 0.9084 0.9687 

15 0.0632 0.9300 0.9758 

20 0.0547 0.9386 0.9789 

25 0.0519 0.9402 0.9794 

30 0.0472 0.9466 0.9810 

35 0.0469 0.9459 0.9821 

40 0.0414 0.9522 0.9891 

 

TABLE IV 

EVALUATION RESULTS 

Epochs Loss Dice Coef Accuracy 

1 0.4660 0.3327 0.7483 

5 0.1434 0.8275 0.9470 

10 0.0830 0.9096 0.9687 

15 0.0593 0.9341 0.9769 

20 0.0607 0.9277 0.9774 

25 0.0529 0.9435 0.9798 

30 0.0508 0.9475 0.9805 

35 0.0496 0.9486 0.9812 

40 0.0484 0.9493 0.9879 

 

The evaluation results in above table 4 

demonstrate the efficacy of trained model with 

progressively improving performance metrics across 

training epochs. The model achieved high accuracy 

and segmentation quality, laying the groundwork for 

its deployment in clinical settings for automated lung 

region delineation tasks. To graphically illustrate the 

model’s performance, we have used Tensorboard to 

visualize the results and monitor the performance.  

 

 

 

 

 

 

 

 

 

 

 

 

  

    In above figure 3 the line represts the binary 

accuracy values computed during the evaluation of 

the model on the validation dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

    Above figure 4 indicates the loss incurred by the 

model during evaluation on the validation dataset 

across iterations.  

 

 

 

 

 

 

 

 

 

 

 

 

Above figure 5 presents Dice Coefficient of the 

model evaluated on the validation dataset through 

epochs. Dice Coefficient in table 4 measures the 

agreement between the predicted segmentation and 

the ground truth, with values ranging from 0 to 1. 

The evaluation results presenting a significant 

improvement in the model’s performance metrics 

over the course of training from epoch 1 to 40. At 

epoch 1 as in above figures (figure 3,4,5) and table 4, 

the model exhibited a relatively higher loss of 0.5366 

and a lower Dice Coefficient of 0.2978 on the 

training dataset. The binary accuracy which 

measures the proportion of correctly classified pixels, 

stood at 0.7446. On the validation dataset, the model 

achieved a slightly lower loss of 0.4520 with a Dice 

Fig. 3 Evaluation Binary Accuracy vs. 

Iterations 

Fig. 4 Evaluation Loss vs. Iterations 

Fig. 5 Evaluation Dice Coef vs. Iterations 
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Coefficient of 0.3575 and a binary accuracy of 

0.7504. 

In table 3 and table 4 comparison, by epoch 40 the 

model demonstrated remarkable progress, achieving 

a significantly reduced loss of 0.0414, indicating 

improved convergence and effectiveness in 

capturing the underlying patterns in the data. The 

Dice Coefficient surged to 0.9522 indicating a 

substantial enhancement in the model’s ability to 

accurately delineate lung regions. Moreover, the 

binary accuracy surged to 0.9831, highlighting the 

model’s enhanced capability in correctly classifying 

pixels.  

On the validation dataset, the model continued to 

display impressive performance, with a loss of 

0.0566 and a dice coefficient of 0.9464, indicating 

strong segmentation quality and accuracy. The 

binary accuracy on the validation dataset remained 

high at 0.9839 showing the model’s robustness and 

generalization ability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Above both figure 6 and figure 7 demonstrate the 

model’s ability to accurately segment lung regions, 

as evidenced by the close alignment between the 

predicted and real masks in the overlay. These 

figures serve to visually validate the effectiveness of 

the trained lung segmentation model, highlighting its 

potential for clinical applications in automated lung 

region delineation tasks.  

Overall, the evaluation results demonstrate the 

effectiveness and robustness of the trained model, 

showcasing its potential capabilities in clinical 

applications for automated detection and analysis of 

lung abnormalities.  

VI. COMPARISION WITH EXISTING WORK 

To review the performance of proposed model, we 

conducted a comparative analysis with existing 

research efforts in the field.  

TABLE V 

COMPARISON WITH EXISTING METHODS 

No Reference Method 
Name 

Accuracy Dice 
Coef 

1 Our Model U-Net 0.9879 0.9466 

2 [1] U-Net 0.948 0.733 

3 [1] SegNet 0.956 0.749 

4 [2] U-Net 0.91 0.4273 

5 [3] U-Net  0.9624 94.44 

6 [16] NASNet-

Large-

Decoder 
Net 

-N/A 0.92 

7 [17] SMR-UNet -N/A 0.9187 

8 [18] WI-U-

Net++ 

0.9875 0.9342 

9 [4] U-Net 0.9387 0.9187 

10 [19] U-Net 0.9147 -N/A 

 

  Our U-Net based model achieved an accuracy of 

98.79% and a Dice Coefficient of 94.66%. 

Comparative analysis with existing methods 

revealed that our model outperformed several 

approaches as shown in table 5. Our proposed model 

showcases its potential for accurate and precise lung 

segmentation, thereby contributing to advancements 

in medical image analysis and diagnosis.  

VII. CONCLUSION 

In conclusion, our research represents a significant 

stride forward in the realm of medical image analysis, 

particularly in the critical area of lung segmentation 

from chest CXR images. By harnessing the 

capabilities of deep learning and integrating novel 

architectural enhancements into the U-Net 

architecture, we have successfully developed a 

highly accurate and robust segmentation model.  

Our findings highlight the potential of our 

proposed model to revolutionize clinical practice by 

enabling more precise and efficient interpretation of 

radiological images. The model's ability to 

accurately delineate lung regions, even in the 

Fig. 6 Predicted Mask vs. Mask I 

Fig. 7 Predicted Mask vs. Mask II 
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presence of diverse image qualities, noise levels, and 

pathological variations, holds immense promise for 

improving diagnostic accuracy and treatment 

planning in respiratory medicine. 

However, it's important to acknowledge the 

inherent challenges and limitations associated with 

our research. While our model achieves impressive 

performance across various datasets, there remains 

room for further refinement and optimization. Future 

endeavors should focus on expanding the dataset, 

incorporating additional clinical annotations, and 

conducting rigorous validation studies in diverse 

clinical settings to ensure the model's reliability and 

generalizability. 

Overall, our work serves as a foundation for 

ongoing research aimed at advancing the state-of-

the-art in medical image analysis and improving 

patient outcomes through cutting-edge technology 

and innovation. 

ACKNOWLEDGMENT 

I would like to express my sincere gratitude to my 

supervisor, Dr. Lu Zhenyu, for his invaluable 

guidance, unwavering support, and mentorship 

throughout this research endeavour. His expertise, 

encouragement, and constructive feedback have 

been instrumental in shaping the direction of this 

study and pushing me to achieve my best. 

I am deeply grateful to my senior colleague, 

Zhongfeng Chen, for his generous assistance, 

insightful discussions, and technical expertise. 

REFERENCES 
 

[1] A. Saood and I. Hatem, “COVID-19 lung CT image segmentation 

using deep learning methods: U-Net versus SegNet,” BMC Med 

Imaging, vol. 21, no. 1, p. 19, Dec. 2021, doi: 10.1186/s12880-020-

00529-5. 
[2] A. R. Xavier Annie, “Lung Nodule Segmentation and Classification 

using U-Net and Efficient-Net,” 2023. [Online]. Available: 

www.ijacsa.thesai.org 
[3] R. Rudiansyah, L. Indra Kesuma, and M. Ikhsan Anggara, 

“Implementation of Image Quality Improvement Methods and Lung 

Segmentation on Chest X-Ray Images Using U-Net Architectural 
Modifications,” Computer Engineering and Applications, vol. 12, 

no. 2, 2023, [Online]. Available: 
https://www.kaggle.com/nikhilpandey360/chest- 

[4] S. Arvind, J. V. Tembhurne, T. Diwan, and P. Sahare, “Improvised 

light weight deep CNN based U-Net for the semantic segmentation 

of lungs from chest X-rays,” Results in Engineering, vol. 17, p. 

100929, Mar. 2023, doi: 10.1016/j.rineng.2023.100929. 
[5] W. Nimalsiri, M. Hennayake, K. Rathnayake, T. D. Ambegoda, and 

D. Meedeniya, “CXLSeg Dataset: Chest X-ray with Lung 

Segmentation,” in 2023 International Conference On Cyber 
Management And Engineering (CyMaEn), IEEE, Jan. 2023, pp. 

327–331. doi: 10.1109/CyMaEn57228.2023.10050951. 

[6] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional 
Networks for Biomedical Image Segmentation,” 2015, pp. 234–241. 

doi: 10.1007/978-3-319-24574-4_28. 
[7] H. Yu, J. Li, L. Zhang, Y. Cao, X. Yu, and J. Sun, “Design of lung 

nodules segmentation and recognition algorithm based on deep 

learning,” BMC Bioinformatics, vol. 22, no. S5, p. 314, Nov. 2021, 
doi: 10.1186/s12859-021-04234-0. 

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks 

for large-scale image recognition,” 3rd International Conference on 
Learning Representations, ICLR 2015 - Conference Track 

Proceedings, 2015. 

[9] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, 
“AutoAugment: Learning Augmentation Strategies From Data,” in 

2019 IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR), IEEE, Jun. 2019, pp. 113–123. doi: 
10.1109/CVPR.2019.00020. 

[10] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,” 

Dec. 2012, Accessed: Mar. 06, 2024. [Online]. Available: 
https://arxiv.org/abs/1212.5701v1 

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet 

Classification with Deep Convolutional Neural Networks,” in 
Advances in Neural Information Processing Systems, F. Pereira, C. 

J. Burges, L. Bottou, and K. Q. Weinberger, Eds., Curran 

Associates, Inc., 2012. [Online]. Available: 
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d

3b9d6b76c8436e924a68c45b-Paper.pdf 

[12] R. Younisse, R. Ghnemat, and J. Al Saraireh, “Fine-tuning U-net 
for medical image segmentation based on activation function, 

optimizer and pooling layer,” International Journal of Electrical 

and Computer Engineering (IJECE), vol. 13, no. 5, p. 5406, Oct. 

2023, doi: 10.11591/ijece.v13i5.pp5406-5417. 

[13] D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic 

Optimization,” 3rd International Conference on Learning 
Representations, ICLR 2015 - Conference Track Proceedings, Dec. 

2014, Accessed: Mar. 05, 2024. [Online]. Available: 

https://arxiv.org/abs/1412.6980v9 
[14] C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. Jorge 

Cardoso, “Generalised Dice Overlap as a Deep Learning Loss 

Function for Highly Unbalanced Segmentations,” 2017, pp. 240–
248. doi: 10.1007/978-3-319-67558-9_28. 

[15] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter 

Optimization,” Journal of Machine Learning Research, vol. 13, no. 
10, pp. 281–305, 2012, [Online]. Available: 

http://jmlr.org/papers/v13/bergstra12a.html 

[16] “Lung segmentation with NASNet-Large-Decoder Net,” arXiv.org, 
vol. abs/2303.10315, Mar. 2023, doi: 

10.48550/ARXIV.2303.10315. 

[17] J. Hou, C. Yan, R. Li, Q. Huang, X. Fan, and F. Lin, “Lung Nodule 
Segmentation Algorithm With SMR-UNet,” IEEE Access, vol. 11, 

pp. 34319–34331, 2023, doi: 10.1109/ACCESS.2023.3264789. 

[18] D. Yang, J. Du, K. Liu, Y. Sui, J. Wang, and X. Gai, “Construction 
of U-Net++ pulmonary nodule intelligent analysis model based on 

feature weighted aggregation,” Technology and Health Care, vol. 
31, pp. 477–486, Apr. 2023, doi: 10.3233/THC-236041. 

[19] M. Y. Kamil and S. A. Hashem, “Segmentation of Chest X-Ray 

Images Using U-Net Model,” MENDEL, vol. 28, no. 2, pp. 49–53, 
Dec. 2022, doi: 10.13164/mendel.2022.2.049. 

 

 

 

 

 

http://www.ijsred.com/


International Journal of Scientific Research and Engineering Development-– Volume X Issue X, Year  

        Available at www.ijsred.com                                                                  

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 10 

 

 

 

http://www.ijsred.com/

