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Abstract: 
In the present day online social media content is fast growing area, due to this the organization and retrieval of content has become 

increasingly challenging to its users; thus, hashtags are used. Hashtags are a powerful tool used for organizing and categorizing social media 

content, where users can search and navigate for content based on a given hashtag. The study presents the development and evaluation of a 

novel model architecture that combines both CNN and RNN (LSTM) to classify videos and predict the hashtags accordingly, which uses a 

modified version of the UFT101 dataset, where the normal labels have been replaced with hashtags. The hashtags for the label have been 

obtained from the web, by using the web scraping methodology to get hashtags for a given keyword. The model is prepared to learn complex 

relationships between visual substances and compare hashtags. Moreover, hyperparameter tuning, dropout layers, and regularization 

techniques are incorporated to enhance the model's accuracy and generalization capabilities. 
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I.     INTRODUCTION 

Social media is still a vital component of contemporary 

communication in 2024, fostering hitherto unheard-of 

connections between people, groups, and companies. The 

social media ecosystem has evolved dramatically in response 

to the swift advancement of technology and shifting societal 

norms, profoundly influencing our interactions, information 

sharing, and worldview. The number of social media users 

worldwide has surpassed the 4.5 billion marks, demonstrating 

the ubiquitous influence of these platforms around the world 

[1]. The users are presented with a wide range of options to 

interact with content and build connections, from immersive 

VR experiences to fleeting content on social media sites like 

Facebook, WeChat, TikTok, and Snapchat. As of 2024 

January, there are around 5.3 billion Internet users worldwide 

which covers over 66.2 percent of the global population [2]. 

The usage of social media extends far beyond mere 

communication, where it is impacting various other sectors 

such as education, fashion, transportation, entertainment, 

healthcare, agriculture, and numerous others. For instance, in 

the field of education, platforms like Twitter and Facebook 

are increasingly utilized by educators to foster collaboration, 

share resources, and engage students in innovative learning 

experiences[3].  

In addition, social media has transformed healthcare, 

enabling patients to access medical information, engage with 

healthcare professionals, and participate in online support 

communities[4]. In agriculture, platforms such as YouTube 

and WhatsApp have provided farmers with valuable insights, 

market information, and peer support networks, improving the 

productivity and sustainability of farming practices[5]. As a 

result, social media's multifarious effects highlight how 

essential it is as a spark for creativity and connection among 

many businesses. 

Hashtags have become indispensable tools for interaction, 

discovery, and classification in the ever-expanding world of 

online communication and social media. Initially, hashtags 

were first used in the Twitter platform, but now hashtags are 

popular on various other social media platforms like 

Instagram, Facebook, LinkedIn, TikTok, WeChat, etc. A 

hashtag is a word or expression went before by the pound (#) 

image, which effectively sorts out content and makes it easily 

searchable for users, for example, #StopSmoking, #HIV, or 

#WeStayTogether are used in social media posts[6]. 

Hashtags allow users to categorize their social media 

content or posts around a theme, that post could be an image, 

video, blog, tweet, or any message using a hashtag will 

connect that content with a word or phrase.  

 

Fig. 1 Usage of Hashtags in Social Media Platforms 

RESEARCH ARTICLE                                                  OPEN ACCESS 



International Journal of Scientific Research and E

ISSN : 2581-7175                                    

This study aims to develop a model to automate the process 

of generating hashtags for video clips shared on social media 

platforms. This will be accomplished using computer vision 

technologies to predict hashtags based on the given short 

video. These video clips, typically no longer than 15 seconds, 

are a common format on social media. The proposed model 

capitalizes on this format's brevity to provide succinct and 

meaningful hashtags. Users will find this model to be an 

invaluable tool as they share their videos online. Upon 

uploading a video, the model springs into action. It analyses 

the video's content and predicts hashtags that are closely 

aligned with the video's themes. This seamless integration of 

technology assists users in making their content more 

discoverable. 

II.     RELATED WORK 

Numerous publications and research works have 

conducted for video classification, using a variety of 

methodologies. These investigations span a wide array of use 

cases, including object detection, action detection, sports 

analysis, crime detection, among others. In this chapter, my 

objective is to review previous research works conducted 

• Video annotation: Labelling large amounts of video 

data is a very time-consuming and tedious task to be 

done. 

• Generalization: The majority of the video

algorithms are implemented to work on a specific 

dataset and are not generalized to work on other 

datasets. 

• Privacy and security: There are many privacy and 

security concerns when it comes to video data such as 

facial recognition and surveillance.  

• Video quality: Video clips come in diverse sizes and 

qualities, presenting challenges in handling them that 

may compromise the performance of the video classifier.

B. Convolutional Neural Networks (CNNs) 

Drawing inspiration from the visual perception

of animals and the McCulloch-Pitts model Fukushima 

introduced the “neocognitron” in 1980, which was the first 

computational model to use connectivity between neurons of a 

hierarchically transformed image (Fukushima 1980). 

Experiments were conducted by applying neurons with similar 

parameters to the patch from the previous layer at different 

locations, simultaneously this approach is considered as the 

precursor to convolutional neural networks (CNN). The 

modern framework of CNN and LeNet-5 showca

day performance. LeNet-5 uses multiple layers and is trained 

using the back-propagation algorithm in an end

This involves directly classifying visual patterns using raw 

images. However, due to constraints such as the scarcity of 

labelled training data and computational limitations, LeNet

and its variations struggled to achieve satisfactory 

performance on more intricate vision tasks until recent 

advancements. 
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conducted for video classification, using a variety of 

methodologies. These investigations span a wide array of use 

cases, including object detection, action detection, sports 

analysis, crime detection, among others. In this chapter, my 

ective is to review previous research works conducted 

prior to my study, delving into their methodologies and 

outcomes. 

A. Video Classification 

Video classification is a part of computer vision that 

automatically categorizes videos based on their content and 

sorts the videos into their respective categories. For example, 

actions can include various activities like dancing, walking, or 

running, while behavioural emotions may encompass feelings 

such as cheerfulness, sadness, or surprise. Image classification 

is done based on the spatial content, for example, a picture of 

a human being vs a picture of an animal, whereas video 

classification is done based on the spatial and temporal 

features. A normal video consists of many frames, each 

containing a large amount of information. The video also 

contains different lighting conditions, from different angles 

and different frame rates as well[7]. 

 

During video classification there few changes that need to 

be overcome: 

• Scalability: When the volume of data increases, it 

becomes challenging to process and classify them in a 

reasonable time frame. 
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Fig. 2 Basic CNN Architecture

Fig. 2 illustrates a convolutional mechanism used to dissect 

and categorize the distinct attributes of an image during the 

process known as Feature Extraction. This process involves a 

network comprised of numerous convolutional or pooling 

layer pairs. Subsequently, a fully connected layer utilizes the 

outcomes of the convolutional process to predict the image's 

class based on the features extracted in earlier stages. The 

objective of this CNN-based feature extraction model is to 

diminish the number of features within a dataset. It generates 

novel features that encapsulate the essence of the original set 

of features. 

C. Recurrent Neural Networks (RNNs)

To better inspect the temporal and sequential features 

recurrent connection structures have been added, forwarding 

to the emergence of recurrent neural networks (RNNs). 

RNN’s allow regular connections to form cycles, where 

enabling a memory of previous inputs to persist in the 

network's internal state [8]. 
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Fig. 3 Basic RNN Structure 

The architecture of an RNN consists of recurrent 

connections that allow information to grow over time, which 

allows the network to keep the memory of the past inputs 

while processing the current ones. The recurrent nature 

enables RNN’s to handle input sequences of differing lengths 

and extract meaningful patterns and features from them. This 

arcane prowess finds application in endeavours as diverse as 

the seamless deciphering of unsegmented, interconnected 

handwriting, where it claims the mantle of unrivalled 

achievement. 

D. Long-term memory (LSTM) 

It is implemented in LSTM networks in addition to using 

a portion of the prior output for new processing. When 

information is processed through all the inputs, it moves from 

cell to cell in long-term memory with little change in certain 

features. The long-term coherence of the forecasts is made 

possible by this continuous input[9]. 
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In the LSTM model, denoted by x())  and h())  for input 

and hidden vectors at time step t, respectively, activation 

vectors i()), f ()), c()), and o()) represent the input gate, forget 

gate, memory cell, and output gate. The weight matrix 

between two vectors is represented by Wαβ, where βand α 

denote the vectors. For instance, Wαβ denotes the weight 

matrix from input x()) to input gate i()) . 
Long-term memory is implemented in LSTM networks in 

addition to using a portion of the prior output for new 

processing. When information is processed through all the 

inputs, it moves from cell to cell in long-term memory with 

little change in certain features. The long-term coherence of 

the forecasts is made possible by this continuous input[9]. 

E. Sequence Learning 

Sequence learning is a fundamental concept in the field 

of artificial intelligence and machine learning, particularly in 

tasks involving data with a sequential nature, such as time 

series data, natural language processing, and video analysis. 

The objective of sequence learning algorithms is to understand 

and extract meaningful patterns or dependencies present in 

sequential data. 

One of the key components of sequence learning is 

Recurrent Neural Networks (RNNs), which are designed to 

process sequences of data by maintaining an internal state or 

memory. RNNs are particularly effective in capturing 

temporal dependencies within sequential data, making them 

well-suited for tasks such as language modelling, speech 

recognition, and video analysis. 

III. METHODOLOGY 

The methodology used in this study focuses on making use 

the power of video classification techniques to automate the 

process of hashtag prediction for video clips. In the 

contemporary digital landscape, where video content 

proliferates across various online platforms, the effective 

categorization and tagging of videos play a major role in 

enhancing discoverability and engagement. By leveraging 

advanced machine learning algorithms, particularly video 

classification models, this research aims to streamline the 

hashtag generation process, facilitating efficient content 

organization and retrieval in multimedia environments. 

F. Problem Identification 

In today's digital era characterized by the exponential 

growth of video content across online platforms, the process 

of organizing and categorizing vast amounts of video data 

presents significant challenges. Traditional methods of manual 

tagging and labelling are time-consuming, labour-intensive, 

and prone to inconsistencies. The process of manually 

assigning effective and trending hashtags to video clips on 

social media platforms remains laborious and inherently 

subjective[10]. While advancements have been made in 

automatic hashtag prediction for various content formats, such 

as text and images[11]. There is a critical gap in research 

specifically focusing on utilizing video classification for 

generating hashtags tailored to video clips. 

Considering these challenges, there is a critical need for a 

solution that harness the power of machine learning and video 

classification techniques to automate the generation of 

descriptive metadata, particularly hashtags, for video clips. 

The proposed methodology aims to bridge this gap by 

investigating the potential of leveraging video classification 

techniques to automatically generate relevant and trending 

hashtags specifically for video clips. By using video 

classification methodology, this research seeks to empower 

content creators with efficient hashtag generation tools, 

ultimately contributing to increased discoverability and 

engagement for their video content. 

G. Dataset Preparation 

The foundation of this experiment rests on the UFT 101 

dataset, The UFT 101 dataset serves as the cornerstone of 

numerous research endeavours in the field of video 

classification and analysis. Originally introduced for action 

recognition tasks, this dataset has been widely adopted and 

extended to explore various aspects of video understanding. 
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Which has been tailored for this study by integrating hashtags. 

Since there was no dataset set readily available f

action/scene detection that related with hashtags the dataset 

had to be modified, traditional labels have been substituted 

with hashtags that aptly capture the essence of each scene, 

thereby enriching the dataset with contextual information.

The hashtags for the relevant video label were obtained 

from the existing web sites and other internet resources. The 

process of hashtag scraping from the web involves extracting 

hashtags associated with specific keywords or topics from 

various online sources such as social media platforms, forums, 

or websites. This can be achieved using web scraping 

techniques, where automated scripts or tools are used to gather 

relevant information from web pages. 

Web scraping is a technique used to extract data from 

websites automatically. In the context of this study, web 

scraping is employed to collect hashtags from various online 

platforms. The process involves accessing web pages, parsing 

the HTML content, and extracting relevant information, such 

as hashtags, for further analysis. 

 

Fig. 4 Flow of Web Scraping for Hashtags

The scraping process begins with identifying the target 

platforms where hashtags are to be collected. Popular social 

media platforms like Twitter, Instagram, and Facebook are 

common sources of hashtags. Once the platforms are 

identified, appropriate web scraping tools and libraries are 

selected based on the nature of the platforms and project 

requirements. 

H. Video Loading and Processing 

Before the feature extraction the video clips from the 

dataset need to be resized and cropped, in order to perform 

this task OpenCV library has been used. 

First, a frame (image) is taken as input and crops it to form 

a square with its centre as the focal point. It calculates the 

dimensions of the input frame and determines th

dimension (either width or height). Then, it computes the 

starting coordinates for cropping based on the 

frame and the minimum dimension. Finally, it returns the 

cropped square frame. 

The video files are being loaded. It initializes

capture object using OpenCV's VideoCapture class. It then 

iterates through the video frames using a while loop, reading 

each frame using cap.read(). Inside the loop, it checks if the 

frame was successfully read (ret is True), and if so, it crops 

the frame to form a square using the crop_center_square 

function. After cropping, it resizes the frame to a specified 

size using OpenCV's resize function. Additionally, it reorders 

the colour channels of the frame from OpenCV's default order 
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selected based on the nature of the platforms and project 

Before the feature extraction the video clips from the 

be resized and cropped, in order to perform 

First, a frame (image) is taken as input and crops it to form 

as the focal point. It calculates the 

dimensions of the input frame and determines the minimum 

dimension (either width or height). Then, it computes the 

starting coordinates for cropping based on the centre of the 

frame and the minimum dimension. Finally, it returns the 

The video files are being loaded. It initializes a video 

capture object using OpenCV's VideoCapture class. It then 

iterates through the video frames using a while loop, reading 

each frame using cap.read(). Inside the loop, it checks if the 

frame was successfully read (ret is True), and if so, it crops 

he frame to form a square using the crop_center_square 

function. After cropping, it resizes the frame to a specified 

size using OpenCV's resize function. Additionally, it reorders 

channels of the frame from OpenCV's default order 

(BGR) to RGB. The processed frame is then appended to a list 

of frames. The max_frames are set to non

number of frames loaded reaches this limit.

I. Feature Extraction 

Feature extraction is a major role in computer vision tasks 

by transforming raw input data, such as images or videos, into 

a more compact and meaningful representation. These 

extracted features capture essential patterns, structures, or 

characteristics of the input data, enabling subsequent analysis, 

recognition, or classification tasks. Fea

algorithms aim to identify and represent relevant information 

present in the visual data efficiently. Raw data, in its 

unprocessed form, often contains irrelevant or redundant 

information that can hinder the performance of machine 

learning algorithms. 

This study proposes a convolutional neural network (CNN) 

architecture designed for feature extraction from video clips. 

The breakdown of the architecture is as follows:

• Input Layers: The input tensor, which represents the 

image data. It typically takes the form (height, width, 

channels).Height and width represent the dimensions of 

the input images.Channels denotes the number of color 

channels in the images (e.g., 3 for RGB images, 1 for 

grayscale). 

• Convolutional Layers: The model starts with a s

convolutional layers, each followed by a rectified linear 

unit (ReLU) activation function. Convolutional layers 

apply learnable filters to the input image, enabling the 

extraction of spatial features such as edges, textures, 

and patterns. 

(I ∗ K)(i, j) = 2 2 3(4,
56

Where: 

I represent the input image 

K denotes the filter/kernel. 

(I∗K)(i,j) denotes the result of the convolution 

operation at position (i,j)(i,j)

(m,n) iterates over the spatial dimensions of the input 

image. 

(i,j): denotes the spatial position in the output feature 

map. 

 

• Max Pooling: Partitions the input feature map into a set 

of non-overlapping rectangular pooling regions and, for 

each region, outputs the maximum value.
78!9%%:�;<(!, =) = 	48!�∈

Where: 

x,y denote the spatial coordinates of the pooling region.

(!� , =�)	represents the values within the pooling region.

MaxPooling(x,y) denotes the output of the MaxPooling 

operation at position (x,y)(x,y).

 

• Global Average Pooling Layer: This layer computes the 

average value of each feature map across all spatial 

locations, resulting in a fixed-length vector regardless 

of the input image size.  
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x,y denote the spatial coordinates of the pooling region. 

represents the values within the pooling region. 

MaxPooling(x,y) denotes the output of the MaxPooling 

operation at position (x,y)(x,y). 

Global Average Pooling Layer: This layer computes the 

average value of each feature map across all spatial 
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• Activation Function: After convolution, the output is 

passed through an activation function, typically the 

Rectified Linear Unit (ReLU) activation function, 

which introduces non-linearity into the model by 

mapping negative values to zero and leaving positive 

values unchanged. 
�(!) = 	48!(0, !)	#(4)

• Output Feature Maps: The output feature maps 

produced by the convolutional layers represent the 

presence of specific patterns or features within the input 

images. These feature maps are then passed.

• Model Compilation: Once the layers are defined, the 

model is compiled with appropriate loss function, 

optimizer, and metrics for training.to subsequent layers 

for further processing, such as pooling and 

classification. 

J. Label Processor 

The label processor is a crucial component in the 

preprocessing pipeline of deep learning models

tasks involving categorical data, such as classification.

layer plays a major role in converting categorical labels, often 

represented as strings, into a numerical format suitable for 

model training. By encoding labels into integer i

label processor ensures consistency in label representation 

across training samples and facilitates efficient handling of 

categorical data during model training. This introductory layer 

serves as a bridge between the raw categorical labels and 

numerical computations performed by deep learning models, 

laying the groundwork for effective model training and 

predictive accuracy. 

The label processor seamlessly integrates with deep 

learning architectures, providing a seamless transition from 

string-based labels to numerical inputs for the model. During 

training, the model receives integer-encoded labels as targets, 

enabling it to learn the mapping between input data and 

corresponding labels effectively. Furthermore, it serves as a 

foundational component in the preprocessing pipeline of deep 

learning models, ensuring the compatibility, efficiency, and 

effectiveness of categorical label data in various classification 

and prediction tasks. 

In this study the label processor layer is configured to map 

hashtags (strings) from the training data to integer indices, 

facilitating the encoding of categorical labels for training deep 

learning models. It ensures consistency in label representation 

across training samples and enables efficient handling of 

categorical data during model training. 
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Fig. 6 Custom CNN Model Architecture
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Fig. 5 Word Vocabulary Based on the Dataset

This is word vocabulary used in this experiment based on 

the dataset labels. The word vocabulary is utilized in the 

experiment to initialize the label processor, which is 

responsible for mapping string-based labels to numerical 

indices. The word vocabulary influences how labels are 

encoded into numerical representations during model training. 

During training, the model receives these encoded labels as 

targets, enabling it to predict the corresponding label indices 

for input data. 

K. Sequence Preparation 

This is a critical step in the pipeline of processing video 

data for training sequence models, such as recurrent neural 

networks (RNNs) or transformers. Video data, inherently 

sequential in nature, poses unique challenges due to variable

length sequences of frames in each video. The process 

involves organizing the extracted features from video frames 

into structured sequences of fixed length, ensuring 

compatibility with sequence model architectures. Additionally, 

sequence preparation involves the application of masking 

techniques to handle sequences of varying lengths, facilitating 

uniform input dimensions during training. This crucial 

preprocessing step lays the foundation for ef

and analysis of video data using sequence models, enabling 

tasks such as video classification, action recognition, and 

video captioning. 

In this study, we discuss the methodology and techniques 

involved in sequence preparation, illustratin

in the realm of video analysis and deep learning. 

the architecture of the CNN’s model: 

 

 

• Input Layers: Starting point of the model receiving 

input image data. Each pixel of the 

feature. Dimensions correspond to the image size (e.g., 

height, width, and color channels).

• Conv2D Layers:  
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Fig. 6 Custom CNN Model Architecture 
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This is word vocabulary used in this experiment based on 

the dataset labels. The word vocabulary is utilized in the 

experiment to initialize the label processor, which is 

based labels to numerical 

indices. The word vocabulary influences how labels are 

encoded into numerical representations during model training. 

During training, the model receives these encoded labels as 

o predict the corresponding label indices 

This is a critical step in the pipeline of processing video 

data for training sequence models, such as recurrent neural 

networks (RNNs) or transformers. Video data, inherently 

equential in nature, poses unique challenges due to variable-

length sequences of frames in each video. The process 

involves organizing the extracted features from video frames 

into structured sequences of fixed length, ensuring 

model architectures. Additionally, 

sequence preparation involves the application of masking 

techniques to handle sequences of varying lengths, facilitating 

uniform input dimensions during training. This crucial 

preprocessing step lays the foundation for effective training 

and analysis of video data using sequence models, enabling 

tasks such as video classification, action recognition, and 

In this study, we discuss the methodology and techniques 

involved in sequence preparation, illustrating its significance 

in the realm of video analysis and deep learning. Fig. 6shows 

 

 

Input Layers: Starting point of the model receiving 

input image data. Each pixel of the image is treated as a 

feature. Dimensions correspond to the image size (e.g., 

height, width, and color channels). 
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• Perform convolution operations using filters 

(kernels) to extract local patterns and create 

feature maps. 

• First Conv2D layer: 3x3 kernel, producing 32 

feature maps with 32 biases. 

• Second Conv2D layer: 3x3 kernel, outputting 64 

feature maps with 64 biases. 

• Third Conv2D layer: Continues process, 

resulting in 128 feature maps with 128 biases.

• Fourth Conv2D layer: Generates 256 

maps with 256 biases. 

• Fifth Conv2D layer: Applies filter to output 512 

feature maps. 

• Activation Layers: Introduce non-linearity using 

activation functions like ReLU (Rectified Linear Unit). 

ReLU sets negative values to zero, enabling learning of 

complex patterns. 

• MaxPooling2D Layers: Reduce spatial dimensions 

(width and height) of feature maps. Max-

maximum value within small window (e.g., 2x2) and 

down-samples feature maps. Makes detected features 

more robust to scale and orientation changes

• GlobalAveragePooling2D Layer: Further reduces each 

feature map to a single number by taking average of all 

values. Prepares features for final classification layer

L. LSTM Model Sequence Learning 

This chapter represents a fundamental approach to addr

such tasks, leveraging the inherent capability of LSTM 

networks to capture long-term dependencies in sequential data. 

This introduction aims to provide an overview of the LSTM 

model's role in sequence learning, highlighting its architecture, 

capabilities, and applications across various domains. 

 

Fig. 7Custom LSTM Architecture

Fig. 7 shows the flow of the LSTM model and layers 

which are used with the model training. Creat

LSTM layer for sequence learning, 

TensorFlow/Keras framework, essential for sequence learning 

tasks in deep learning. The CustomLSTM class encapsulates 

this custom layer definition, offering a flexible and 

configurable solution tailored to specific model requirements. 

Upon initialization, parameters such as the number of units, 

dropout rates, and regularization techniques are specified, 

enabling fine-tuning of the layer's behavior. During the 

building phase, the layer's weights, including kernel weights, 

recurrent kernel weights, and biases, are initialized based on 

the input shape. The forward pass of the layer, defined within 

the call method, iteratively processes input sequences, 

computes output sequences using LSTM equations, and 

applies dropout regularization to input and re

specified. Additionally, the compute_output_shape method 

ensures proper output shape calculation based on input 

dimensions and layer configurations. Overall, this custom 
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values. Prepares features for final classification layer 

This chapter represents a fundamental approach to address 

such tasks, leveraging the inherent capability of LSTM 

term dependencies in sequential data. 

This introduction aims to provide an overview of the LSTM 

model's role in sequence learning, highlighting its architecture, 

es, and applications across various domains.  

 

Architecture 

the flow of the LSTM model and layers 

reating a custom 

 within the 

TensorFlow/Keras framework, essential for sequence learning 

tasks in deep learning. The CustomLSTM class encapsulates 

this custom layer definition, offering a flexible and 

configurable solution tailored to specific model requirements. 

ialization, parameters such as the number of units, 

dropout rates, and regularization techniques are specified, 

tuning of the layer's behavior. During the 

building phase, the layer's weights, including kernel weights, 

, and biases, are initialized based on 

the input shape. The forward pass of the layer, defined within 

the call method, iteratively processes input sequences, 

computes output sequences using LSTM equations, and 

applies dropout regularization to input and recurrent units if 

specified. Additionally, the compute_output_shape method 

ensures proper output shape calculation based on input 

dimensions and layer configurations. Overall, this custom 

LSTM layer serves as a versatile building block for 

constructing deep learning models tailored to sequence 

learning tasks, facilitating the exploration and advancement of 

various applications, including natural language processing, 

time-series prediction, and video data analysis.

The get_sequence_model function encapsulates

construction of a Sequential model tailored for sequence 

classification tasks. Beginning with the definition of a L2 

regularization instance, the function establishes a strategy for 

penalizing large weights, thereby mitigating overfitting. 

Subsequently, the model architecture is built layer by layer 

within a Sequential container. The first layer instantiated is a 

custom LSTM layer configured with 64 units, set to return 

sequences to preserve temporal information, and adorned with 

L2 regularization on its kernel weights. Following this, 

another custom LSTM layer with 32 units is added, devoid of 

sequence return, yet similarly imbued with L2 regularization. 

Introducing a Dropout layer with a dropout rate of 0.5, the 

model incorporates a regularization mec

overfitting by randomly deactivating units during training. 

Subsequent to the LSTM layers, two Dense layers are 

appended to the model, each adorned with ReLU activation 

and L2 regularization, facilitating non

and contributing to the model's robustness. Finally, the 

function returns the assembled model, equipped to undertake 

sequence classification tasks with efficacy and generalization 

prowess. 

The class initializes the weights required for the LSTM 

layer based on the input shape. Firstly, the dimensionality of 

the input data, denoted as self.input_dim, is extracted from the 

last dimension of the input shape. This dimension represents 

the feature dimensionality of the input sequences. 

Subsequently, the kernel weights (self.kernel) are instantiated 

as trainable parameters, with a shape determined by the 

product of the input dimension and four times the number of 

units in the layer. The kernel weights are initialized using the 

He normal initializer, aiming to preserve 

activations through the layers. Additionally, a regularization 

term may be applied to the kernel weights to control 

overfitting, denoted by self.kernel_regularizer. The recurrent 

kernel weights (self.recurrent_kernel) are created with a

determined by the number of units in the layer, initialized 

using the orthogonal initializer to facilitate gradient flow 

during training. Similar to the kernel weights, a regularization 

term may be incorporated for the recurrent kernel weights 

(self.recurrent_regularizer). Finally, biases (self.bias) are 

introduced as trainable parameters, initialized with zeros to 

introduce a shift in the activation function. These weights and 

biases are essential components of the LSTM layer, governing 

the transformation and propagation of information through the 

recurrent network. Upon completion of weight initialization, 

the build method concludes by calling the superclass's build 

method to finalize the layer construction process.

IV. EXPERIMENTS AND RESULTS

The experiments were conducted using Pytorch, 

TensorFlow and Google Collab platform as the primary 
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LSTM layer serves as a versatile building block for 

learning models tailored to sequence 

learning tasks, facilitating the exploration and advancement of 

various applications, including natural language processing, 

series prediction, and video data analysis. 

The get_sequence_model function encapsulates the 

construction of a Sequential model tailored for sequence 

classification tasks. Beginning with the definition of a L2 

regularization instance, the function establishes a strategy for 

penalizing large weights, thereby mitigating overfitting. 

y, the model architecture is built layer by layer 

within a Sequential container. The first layer instantiated is a 

custom LSTM layer configured with 64 units, set to return 

sequences to preserve temporal information, and adorned with 

ts kernel weights. Following this, 

another custom LSTM layer with 32 units is added, devoid of 

sequence return, yet similarly imbued with L2 regularization. 

Introducing a Dropout layer with a dropout rate of 0.5, the 

model incorporates a regularization mechanism to stave off 

overfitting by randomly deactivating units during training. 

Subsequent to the LSTM layers, two Dense layers are 

appended to the model, each adorned with ReLU activation 

and L2 regularization, facilitating non-linear transformations 

contributing to the model's robustness. Finally, the 

function returns the assembled model, equipped to undertake 

sequence classification tasks with efficacy and generalization 

The class initializes the weights required for the LSTM 

the input shape. Firstly, the dimensionality of 

the input data, denoted as self.input_dim, is extracted from the 

last dimension of the input shape. This dimension represents 

the feature dimensionality of the input sequences. 

s (self.kernel) are instantiated 

as trainable parameters, with a shape determined by the 

product of the input dimension and four times the number of 

units in the layer. The kernel weights are initialized using the 

He normal initializer, aiming to preserve the variance of the 

activations through the layers. Additionally, a regularization 

term may be applied to the kernel weights to control 

overfitting, denoted by self.kernel_regularizer. The recurrent 

kernel weights (self.recurrent_kernel) are created with a shape 

determined by the number of units in the layer, initialized 

using the orthogonal initializer to facilitate gradient flow 

during training. Similar to the kernel weights, a regularization 

term may be incorporated for the recurrent kernel weights 

.recurrent_regularizer). Finally, biases (self.bias) are 

introduced as trainable parameters, initialized with zeros to 

introduce a shift in the activation function. These weights and 

biases are essential components of the LSTM layer, governing 

mation and propagation of information through the 

recurrent network. Upon completion of weight initialization, 

the build method concludes by calling the superclass's build 

method to finalize the layer construction process. 

ESULTS 

The experiments were conducted using Pytorch, 

TensorFlow and Google Collab platform as the primary 
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environment. The Google Collab was utilized for computing 

power with Nvidia GPUs for training and testing purposes.

The initial testing was done using the UFT101 dataset with 

the modified labels with hashtags. The below table shows 10 

random rows from the dataset before the data preprocessing 

stage. 

 

TABLE I 

UFT101 CLIP NAMES AND HASHTAG LABELS

Clip_name Hashtag

v_ShavingBeard_g16_c02.avi #ShavingBeard 

#Grooming #Razor

v_TennisSwing_g11_c01.avi #TennisSwing #Racket 

#Ace 

v_TennisSwing_g15_c03.avi #TennisSwing #Racket 

#Ace 

v_PlayingCello_g24_c05.avi #PlayingCello #Strings 

#Music 

v_Punch_g03_c03.avi #Punch #Strike 

#Combat 

v_Punch_g19_c07.avi #Punch #Strike 

#Combat 

v_PlayingCello_g25_c06.avi #PlayingCello #Strings 

#Music 

v_CricketShot_g16_c07.avi #CricketShot #Six 

#Boundary 

v_ShavingBeard_g17_c03.avi #ShavingBeard 

#Grooming #Razor

v_CricketShot_g21_c01.avi #CricketShot 

#Boundary 

 

Fig. 8 UFT101 Dataset Labels 

M. Dataset Splitting 

Training Dataset (714 video clips): This dataset consists of 

714 video clips that are used to train the machine learning 

model. Each video clip likely contains a sequence of frames 

representing certain actions such as shaving beard, basketball 

playing, cricket playing and etc. During training, the model 

learns from these video clips by adjusting its parameters to 

minimize a loss function, typically based on a comparison 

between its predictions and the ground truth labels associated 

with each video clip. 

Testing Dataset (344 video clips): This dataset, separate 

from the training data, comprises 344 video clips that are used 
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environment. The Google Collab was utilized for computing 

power with Nvidia GPUs for training and testing purposes. 

T101 dataset with 

the modified labels with hashtags. The below table shows 10 

random rows from the dataset before the data preprocessing 

UFT101 CLIP NAMES AND HASHTAG LABELS 

ashtag 

#ShavingBeard 

#Grooming #Razor 

#TennisSwing #Racket 

#TennisSwing #Racket 

#PlayingCello #Strings 

#Punch #Strike 

#Punch #Strike 

#PlayingCello #Strings 

#CricketShot #Six 

 

#ShavingBeard 

#Grooming #Razor 

#CricketShot #Six 

 

 

 

Training Dataset (714 video clips): This dataset consists of 

714 video clips that are used to train the machine learning 

model. Each video clip likely contains a sequence of frames 

representing certain actions such as shaving beard, basketball 

playing, cricket playing and etc. During training, the model 

learns from these video clips by adjusting its parameters to 

minimize a loss function, typically based on a comparison 

redictions and the ground truth labels associated 

Testing Dataset (344 video clips): This dataset, separate 

from the training data, comprises 344 video clips that are used 

to evaluate the trained model's performance. The model hasn't 

seen these video clips during training. 

N. Experiments and Results 

The training process was configured to run for a total of 30 

epochs (epochs=30), allowing the model to undergo multiple 

iterations over the training dataset, progressively refining its 

predictive capabilities. Additionally, to manage computational 

resources effectively and expedite the training process, I 

employed a batch size of 15 (batch_size=15). This parameter 

determined the number of samples processed by the model 

before updating its weights, facilitating efficient gradient 

descent optimization. 

Furthermore, to enhance training efficiency and prevent 

overfitting, I incorporated an early stopping mechanism. This 

was achieved through the inclusion of a callback function 

(early_stopping), which monitored the validation loss and 

halted training if no improvement was observed over a 

predefined number of epochs (patience=3). By implementing 

this mechanism, I ensured that the model's performance was 

optimized while mitigating the risk of overfittin

training data. 

The proposed model achieved a validation accuracy of 

71.43% during the training and validation process.

 

Fig. 9 Validation and Test Accuracy of the Hashtag Model

 

TABLE II 

ACCURACY AND LOSS OF EPOCHS AND 

VALIDATION SETS

Epoch Accuracy Loss Val_Accuracy

1 0.3684 4.4627 

2 0.4337 2.62 

3 0.441 2.1074 

4 0.4883 1.7638 

5 0.5711 1.5545 

6 0.4725 1.6274 

7 0.5055 1.558 
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to evaluate the trained model's performance. The model hasn't 

 

The training process was configured to run for a total of 30 

epochs (epochs=30), allowing the model to undergo multiple 

iterations over the training dataset, progressively refining its 

ive capabilities. Additionally, to manage computational 

resources effectively and expedite the training process, I 

employed a batch size of 15 (batch_size=15). This parameter 

determined the number of samples processed by the model 

ts, facilitating efficient gradient 

Furthermore, to enhance training efficiency and prevent 

overfitting, I incorporated an early stopping mechanism. This 

was achieved through the inclusion of a callback function 

h monitored the validation loss and 

halted training if no improvement was observed over a 

predefined number of epochs (patience=3). By implementing 

this mechanism, I ensured that the model's performance was 

optimized while mitigating the risk of overfitting to the 

The proposed model achieved a validation accuracy of 

71.43% during the training and validation process. 

 

Fig. 9 Validation and Test Accuracy of the Hashtag Model 

ACCURACY AND LOSS OF EPOCHS AND 

VALIDATION SETS 

Val_Accuracy Val_Loss 

0.5407 2.9259 

0.5494 2.2309 

0.561 1.8773 

0.6453 1.6674 

0.7151 1.4914 

0.6802 1.4332 

0.7093 1.3501 
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8 0.5813 1.3603 0.625 1.2879 

9 0.5092 1.4728 0.6948 1.3005 

10 0.5736 1.2638 0.6831 1.206 

11 0.6134 1.2604 0.7326 1.1656 

12 0.6501 1.1793 0.5436 1.278 

13 0.4959 1.3733 0.7035 1.2182 

14 0.6026 1.2051 0.6977 1.0913 

15 0.6541 1.1668 0.7151 1.0581 

16 0.6819 1.0713 0.7355 1.0928 

17 0.6645 1.1102 0.6977 1.1487 

18 0.7143 1.0018 0.6715 1.1437 

 

Table 2 shows the break drown of how the model 

performed in epoch. 

• The accuracy starts at around 36.84%, the loss is 

relatively high at 4.4627, but the validation accuracy is 

higher at 54.07% with a lower validation loss of 2.9259. 

• The accuracy improves slightly to 43.37% with a 

decrease in loss to 2.6200. Validation accuracy 

increases to 54.94%, and validation loss decreases 

further to 2.2309. 

• The accuracy continues to improve to 44.10%, with the 

loss decreasing to 2.1074. Validation accuracy increases 

to 56.10%, and validation loss decreases to 1.8773. 

This pattern continues across the epochs, with the model's 

accuracy and loss improving gradually. In the end, the model 

achieves an accuracy of approximately 71.43% with a loss of 

1.0018, while the validation accuracy is around 67.15% with a 

validation loss of 1.1437. 

 

Fig. 10 Epoch Accuracyddp8022 

Fig. 2 shows the epoch accuracy during the training 

process.On the x-axis, we observe the number of epochs, 

ranging from 0 to 30. The y-axis represents accuracy, which 

varies between approximately 0.4 and 0.6. Two lines are 

plotted on the graph: a yellow line characterized by 

fluctuations and a pink line that exhibits smoother progress. 

Both lines start with modest accuracy but steadily improve as 

training proceeds.  

 

Fig. 11 Epoch Loss 

 Fig. 3 shows the epoch loss during the training 

process.On the x-axis, we observe the number of epochs, 

ranging from 0 to 30. The y-axis represents the loss (also 

known as the error), which varies between approximately 0.4 

and 0.6. Three lines are plotted on the graph, each in a 

different colour. Initially, all lines start with higher loss values 

at epoch 0 and decrease sharply until around epoch 5. A 

pinkish-purple dot highlights an intersection point on one of 

the lines around epoch number five and a loss value of two. 

After epoch five, all lines show a more gradual decline or 

plateau in loss values. 

 

O. Test Results 

Table presents the final outcomes of the hashtag prediction 

model, wherein it forecasts hashtags corresponding to the 

provided video clips. This indicates the output or outcome of 

the model after it has been trained and tested. It represents the 

model's performance in predicting hashtags for the given 

video clips. The model offers three hashtags for each video, 

each accompanied by four associated probabilities. The model 

predicts three hashtag predictions for each video clip. This 

suggests that the model doesn't just output a single hashtag but 

provides a set of potential hashtags that could be relevant to 

the content of the video. Along with each predicted hashtag, 

the model assigns four probabilities. These probabilities 

indicate the likelihood or confidence of each hashtag being 

relevant to the video clip. Having four probabilities might 

suggest that the model incorporates some form of uncertainty 

estimation or confidence scoring for its predictions. 
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TABLE III 

VIDEO CLIP CLASSIFICATION RESULTS BY 

HASHTAGS 

Test Result 

Video clip of 

two people 

fighting  

 
Video clip of a 

cricket match 

 
Video clip of a 

kid playing a 

cello 

 
Video clip of a 

person shaving 

his beard 

 

P. Comparison with Existing Method 

The hashtag prediction model's performance was assessed 

through a comparative analysis against existing research on 

video classification methods, with accuracy as the primary 

metric for evaluation. Table 4 compares the proposed hashtag 

prediction model with existing research models related to 

video classification. 

 

TABLE IV 

COMPARISON WITH EXISTING VIDEO 

CLASSIFICATION APPROACHES 

Model Accuracy 

Hashtag Prediction Model – UFT101 71.51% 

FASTER32 - HMDB-51 [12] 75.70% 

T3D-Transfer - HMDB51[13] 61.10% 

T3D+TSN - HMDB5 [13] 63.50% 

DOVF- HMDB51 [14] 71.70% 

Objects2action - UCF101 [15] 63.90% 

 

The above test result for a different model compared with 

our hashtag prediction model, The hashtag prediction model 

achieved an accuracy of 71.51%, indicating that it correctly 

predicted approximately 71.51% of the hashtags for the given 

set of video clips. Comparative analysis reveals that the 

hashtag prediction model outperforms some existing methods 

(T3D-Transfer, T3D+TSN, Objects2action), achieving higher 

accuracy scores than these models. As illustrated the model 

has better accuracy compared to other research work which 

has been conducted with different datasets and various other 

approaches. 

V.  CONCLUSIONS 

This study has explored the task of predicting hashtags for 

video clips using video classification techniques, focusing on 

the utilization of Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs).  

Through experimentation conducted on the UTF101 dataset, 

we employed a combination of feature extraction and 

sequence learning methodologies. This approach allowed us to 

capture both spatial and temporal information inherent in 

video data, enabling a more comprehensive understanding of 

the content. The results demonstrate the potential of CNNs 

and RNNs in effectively discerning the semantic context of 

video clips and generating meaningful hashtags accordingly. 

In conclusion, while this study makes significant strides in 

leveraging video classification techniques for automated 

hashtag generation, several challenges and opportunities for 

future research remain. By addressing these challenges and 

fostering interdisciplinary collaboration, researchers can 

continue to push the boundaries of innovation in video 

understanding and content annotation, ultimately advancing 
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the field towards more intelligent and context-aware 

multimedia systems. 
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