
International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar- Apr 2024

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 1062

A Model to Determine Hashtags for Social Media

Video Clips Using Computer Vision Techniques
Jayanga Palihena

1
, W.A. Lahiru Randika

2

1(School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China

Email: jayanga.sl@gmail.com)
2(School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China

Email: lahirurandika@hotmail.com)

--************************----------------------------------

Abstract:
In the present day online social media content is fast growing area, due to this the organization and retrieval of content has become

increasingly challenging to its users; thus, hashtags are used. Hashtags are a powerful tool used for organizing and categorizing social media

content, where users can search and navigate for content based on a given hashtag. The study presents the development and evaluation of a

novel model architecture that combines both CNN and RNN (LSTM) to classify videos and predict the hashtags accordingly, which uses a

modified version of the UFT101 dataset, where the normal labels have been replaced with hashtags. The hashtags for the label have been

obtained from the web, by using the web scraping methodology to get hashtags for a given keyword. The model is prepared to learn complex

relationships between visual substances and compare hashtags. Moreover, hyperparameter tuning, dropout layers, and regularization

techniques are incorporated to enhance the model's accuracy and generalization capabilities.

Keywords — Video classification, RNN (Recurrent Neural Networks), CNN (Convolutional Neural Networks), LSTM, Hashtags,

Dropout layers, Feature extraction, UFT101, Video clips

--************************----------------------------------

I. INTRODUCTION

Social media is still a vital component of contemporary

communication in 2024, fostering hitherto unheard-of

connections between people, groups, and companies. The

social media ecosystem has evolved dramatically in response

to the swift advancement of technology and shifting societal

norms, profoundly influencing our interactions, information

sharing, and worldview. The number of social media users

worldwide has surpassed the 4.5 billion marks, demonstrating

the ubiquitous influence of these platforms around the world

[1]. The users are presented with a wide range of options to

interact with content and build connections, from immersive

VR experiences to fleeting content on social media sites like

Facebook, WeChat, TikTok, and Snapchat. As of 2024

January, there are around 5.3 billion Internet users worldwide

which covers over 66.2 percent of the global population [2].

The usage of social media extends far beyond mere

communication, where it is impacting various other sectors

such as education, fashion, transportation, entertainment,

healthcare, agriculture, and numerous others. For instance, in

the field of education, platforms like Twitter and Facebook

are increasingly utilized by educators to foster collaboration,

share resources, and engage students in innovative learning

experiences[3].

In addition, social media has transformed healthcare,

enabling patients to access medical information, engage with

healthcare professionals, and participate in online support

communities[4]. In agriculture, platforms such as YouTube

and WhatsApp have provided farmers with valuable insights,

market information, and peer support networks, improving the

productivity and sustainability of farming practices[5]. As a

result, social media's multifarious effects highlight how

essential it is as a spark for creativity and connection among

many businesses.

Hashtags have become indispensable tools for interaction,

discovery, and classification in the ever-expanding world of

online communication and social media. Initially, hashtags

were first used in the Twitter platform, but now hashtags are

popular on various other social media platforms like

Instagram, Facebook, LinkedIn, TikTok, WeChat, etc. A

hashtag is a word or expression went before by the pound (#)

image, which effectively sorts out content and makes it easily

searchable for users, for example, #StopSmoking, #HIV, or

#WeStayTogether are used in social media posts[6].

Hashtags allow users to categorize their social media

content or posts around a theme, that post could be an image,

video, blog, tweet, or any message using a hashtag will

connect that content with a word or phrase.

Fig. 1 Usage of Hashtags in Social Media Platforms

RESEARCH ARTICLE OPEN ACCESS

International Journal of Scientific Research and E

ISSN : 2581-7175

This study aims to develop a model to automate the process

of generating hashtags for video clips shared on social media

platforms. This will be accomplished using computer vision

technologies to predict hashtags based on the given short

video. These video clips, typically no longer than 15 seconds,

are a common format on social media. The proposed model

capitalizes on this format's brevity to provide succinct and

meaningful hashtags. Users will find this model to be an

invaluable tool as they share their videos online. Upon

uploading a video, the model springs into action. It analyses

the video's content and predicts hashtags that are closely

aligned with the video's themes. This seamless integration of

technology assists users in making their content more

discoverable.

II. RELATED WORK

Numerous publications and research works have

conducted for video classification, using a variety of

methodologies. These investigations span a wide array of use

cases, including object detection, action detection, sports

analysis, crime detection, among others. In this chapter, my

objective is to review previous research works conducted

• Video annotation: Labelling large amounts of video

data is a very time-consuming and tedious task to be

done.

• Generalization: The majority of the video

algorithms are implemented to work on a specific

dataset and are not generalized to work on other

datasets.

• Privacy and security: There are many privacy and

security concerns when it comes to video data such as

facial recognition and surveillance.

• Video quality: Video clips come in diverse sizes and

qualities, presenting challenges in handling them that

may compromise the performance of the video classifier.

B. Convolutional Neural Networks (CNNs)

Drawing inspiration from the visual perception

of animals and the McCulloch-Pitts model Fukushima

introduced the “neocognitron” in 1980, which was the first

computational model to use connectivity between neurons of a

hierarchically transformed image (Fukushima 1980).

Experiments were conducted by applying neurons with similar

parameters to the patch from the previous layer at different

locations, simultaneously this approach is considered as the

precursor to convolutional neural networks (CNN). The

modern framework of CNN and LeNet-5 showca

day performance. LeNet-5 uses multiple layers and is trained

using the back-propagation algorithm in an end

This involves directly classifying visual patterns using raw

images. However, due to constraints such as the scarcity of

labelled training data and computational limitations, LeNet

and its variations struggled to achieve satisfactory

performance on more intricate vision tasks until recent

advancements.

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue

 Available at

 ©IJSRED: All Rights are Reserved

This study aims to develop a model to automate the process

generating hashtags for video clips shared on social media

platforms. This will be accomplished using computer vision

technologies to predict hashtags based on the given short

video. These video clips, typically no longer than 15 seconds,

mat on social media. The proposed model

capitalizes on this format's brevity to provide succinct and

meaningful hashtags. Users will find this model to be an

invaluable tool as they share their videos online. Upon

action. It analyses

the video's content and predicts hashtags that are closely

aligned with the video's themes. This seamless integration of

technology assists users in making their content more

arch works have

conducted for video classification, using a variety of

methodologies. These investigations span a wide array of use

cases, including object detection, action detection, sports

analysis, crime detection, among others. In this chapter, my

ective is to review previous research works conducted

prior to my study, delving into their methodologies and

outcomes.

A. Video Classification

Video classification is a part of computer vision that

automatically categorizes videos based on their content and

sorts the videos into their respective categories. For example,

actions can include various activities like dancing, walking, or

running, while behavioural emotions may encompass feelings

such as cheerfulness, sadness, or surprise. Image classification

is done based on the spatial content, for example, a picture of

a human being vs a picture of an animal, whereas video

classification is done based on the spatial and temporal

features. A normal video consists of many frames, each

containing a large amount of information. The video also

contains different lighting conditions, from different angles

and different frame rates as well[7].

During video classification there few changes that need to

be overcome:

• Scalability: When the volume of data increases, it

becomes challenging to process and classify them in a

reasonable time frame.

large amounts of video

consuming and tedious task to be

Generalization: The majority of the video classification

algorithms are implemented to work on a specific

dataset and are not generalized to work on other

Privacy and security: There are many privacy and

security concerns when it comes to video data such as

Video quality: Video clips come in diverse sizes and

qualities, presenting challenges in handling them that

may compromise the performance of the video classifier.

Drawing inspiration from the visual perception mechanisms

Pitts model Fukushima

introduced the “neocognitron” in 1980, which was the first

computational model to use connectivity between neurons of a

Fukushima 1980).

cted by applying neurons with similar

parameters to the patch from the previous layer at different

locations, simultaneously this approach is considered as the

precursor to convolutional neural networks (CNN). The

5 showcased modern-

5 uses multiple layers and is trained

propagation algorithm in an end-to-end manner.

This involves directly classifying visual patterns using raw

images. However, due to constraints such as the scarcity of

abelled training data and computational limitations, LeNet-5

and its variations struggled to achieve satisfactory

performance on more intricate vision tasks until recent

Fig. 2 Basic CNN Architecture

Fig. 2 illustrates a convolutional mechanism used to dissect

and categorize the distinct attributes of an image during the

process known as Feature Extraction. This process involves a

network comprised of numerous convolutional or pooling

layer pairs. Subsequently, a fully connected layer utilizes the

outcomes of the convolutional process to predict the image's

class based on the features extracted in earlier stages. The

objective of this CNN-based feature extraction model is to

diminish the number of features within a dataset. It generates

novel features that encapsulate the essence of the original set

of features.

C. Recurrent Neural Networks (RNNs)

To better inspect the temporal and sequential features

recurrent connection structures have been added, forwarding

to the emergence of recurrent neural networks (RNNs).

RNN’s allow regular connections to form cycles, where

enabling a memory of previous inputs to persist in the

network's internal state [8].

Issue 2, Mar- Apr 2024

Available at www.ijsred.com

Page 1063

prior to my study, delving into their methodologies and

Video classification is a part of computer vision that

automatically categorizes videos based on their content and

sorts the videos into their respective categories. For example,

actions can include various activities like dancing, walking, or

emotions may encompass feelings

such as cheerfulness, sadness, or surprise. Image classification

done based on the spatial content, for example, a picture of

a human being vs a picture of an animal, whereas video

classification is done based on the spatial and temporal

features. A normal video consists of many frames, each

information. The video also

contains different lighting conditions, from different angles

During video classification there few changes that need to

Scalability: When the volume of data increases, it

ecomes challenging to process and classify them in a

Basic CNN Architecture

illustrates a convolutional mechanism used to dissect

and categorize the distinct attributes of an image during the

process known as Feature Extraction. This process involves a

network comprised of numerous convolutional or pooling

y, a fully connected layer utilizes the

outcomes of the convolutional process to predict the image's

class based on the features extracted in earlier stages. The

based feature extraction model is to

hin a dataset. It generates

novel features that encapsulate the essence of the original set

Recurrent Neural Networks (RNNs)

To better inspect the temporal and sequential features

recurrent connection structures have been added, forwarding

the emergence of recurrent neural networks (RNNs).

RNN’s allow regular connections to form cycles, where

enabling a memory of previous inputs to persist in the

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar- Apr 2024

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 1064

Fig. 3 Basic RNN Structure

The architecture of an RNN consists of recurrent

connections that allow information to grow over time, which

allows the network to keep the memory of the past inputs

while processing the current ones. The recurrent nature

enables RNN’s to handle input sequences of differing lengths

and extract meaningful patterns and features from them. This

arcane prowess finds application in endeavours as diverse as

the seamless deciphering of unsegmented, interconnected

handwriting, where it claims the mantle of unrivalled

achievement.

D. Long-term memory (LSTM)

It is implemented in LSTM networks in addition to using

a portion of the prior output for new processing. When

information is processed through all the inputs, it moves from

cell to cell in long-term memory with little change in certain

features. The long-term coherence of the forecasts is made

possible by this continuous input[9].

�(�) = 	��	
��(�) +		��ℎ(���) +		���(�) +	���,	
�(�) = 	��	
��(�) +		��ℎ(�) +		���(�) +	���,	

�(�) = 	���(���) + �, tanh(
�!(�) +		��!(���)) 	+ 	��),
"(�) = 	��	
#�(�) +		�#ℎ(���) +		�#�(�) +	�"�,	

$(�) = 	%� 	tanh��(�)�#(1)

In the LSTM model, denoted by x()) and h()) for input

and hidden vectors at time step t, respectively, activation

vectors i()), f ()), c()), and o()) represent the input gate, forget

gate, memory cell, and output gate. The weight matrix

between two vectors is represented by Wαβ, where βand α

denote the vectors. For instance, Wαβ denotes the weight

matrix from input x()) to input gate i()) .
Long-term memory is implemented in LSTM networks in

addition to using a portion of the prior output for new

processing. When information is processed through all the

inputs, it moves from cell to cell in long-term memory with

little change in certain features. The long-term coherence of

the forecasts is made possible by this continuous input[9].

E. Sequence Learning

Sequence learning is a fundamental concept in the field

of artificial intelligence and machine learning, particularly in

tasks involving data with a sequential nature, such as time

series data, natural language processing, and video analysis.

The objective of sequence learning algorithms is to understand

and extract meaningful patterns or dependencies present in

sequential data.

One of the key components of sequence learning is

Recurrent Neural Networks (RNNs), which are designed to

process sequences of data by maintaining an internal state or

memory. RNNs are particularly effective in capturing

temporal dependencies within sequential data, making them

well-suited for tasks such as language modelling, speech

recognition, and video analysis.

III. METHODOLOGY

The methodology used in this study focuses on making use

the power of video classification techniques to automate the

process of hashtag prediction for video clips. In the

contemporary digital landscape, where video content

proliferates across various online platforms, the effective

categorization and tagging of videos play a major role in

enhancing discoverability and engagement. By leveraging

advanced machine learning algorithms, particularly video

classification models, this research aims to streamline the

hashtag generation process, facilitating efficient content

organization and retrieval in multimedia environments.

F. Problem Identification

In today's digital era characterized by the exponential

growth of video content across online platforms, the process

of organizing and categorizing vast amounts of video data

presents significant challenges. Traditional methods of manual

tagging and labelling are time-consuming, labour-intensive,

and prone to inconsistencies. The process of manually

assigning effective and trending hashtags to video clips on

social media platforms remains laborious and inherently

subjective[10]. While advancements have been made in

automatic hashtag prediction for various content formats, such

as text and images[11]. There is a critical gap in research

specifically focusing on utilizing video classification for

generating hashtags tailored to video clips.

Considering these challenges, there is a critical need for a

solution that harness the power of machine learning and video

classification techniques to automate the generation of

descriptive metadata, particularly hashtags, for video clips.

The proposed methodology aims to bridge this gap by

investigating the potential of leveraging video classification

techniques to automatically generate relevant and trending

hashtags specifically for video clips. By using video

classification methodology, this research seeks to empower

content creators with efficient hashtag generation tools,

ultimately contributing to increased discoverability and

engagement for their video content.

G. Dataset Preparation

The foundation of this experiment rests on the UFT 101

dataset, The UFT 101 dataset serves as the cornerstone of

numerous research endeavours in the field of video

classification and analysis. Originally introduced for action

recognition tasks, this dataset has been widely adopted and

extended to explore various aspects of video understanding.

International Journal of Scientific Research and E

ISSN : 2581-7175

Which has been tailored for this study by integrating hashtags.

Since there was no dataset set readily available f

action/scene detection that related with hashtags the dataset

had to be modified, traditional labels have been substituted

with hashtags that aptly capture the essence of each scene,

thereby enriching the dataset with contextual information.

The hashtags for the relevant video label were obtained

from the existing web sites and other internet resources. The

process of hashtag scraping from the web involves extracting

hashtags associated with specific keywords or topics from

various online sources such as social media platforms, forums,

or websites. This can be achieved using web scraping

techniques, where automated scripts or tools are used to gather

relevant information from web pages.

Web scraping is a technique used to extract data from

websites automatically. In the context of this study, web

scraping is employed to collect hashtags from various online

platforms. The process involves accessing web pages, parsing

the HTML content, and extracting relevant information, such

as hashtags, for further analysis.

Fig. 4 Flow of Web Scraping for Hashtags

The scraping process begins with identifying the target

platforms where hashtags are to be collected. Popular social

media platforms like Twitter, Instagram, and Facebook are

common sources of hashtags. Once the platforms are

identified, appropriate web scraping tools and libraries are

selected based on the nature of the platforms and project

requirements.

H. Video Loading and Processing

Before the feature extraction the video clips from the

dataset need to be resized and cropped, in order to perform

this task OpenCV library has been used.

First, a frame (image) is taken as input and crops it to form

a square with its centre as the focal point. It calculates the

dimensions of the input frame and determines th

dimension (either width or height). Then, it computes the

starting coordinates for cropping based on the

frame and the minimum dimension. Finally, it returns the

cropped square frame.

The video files are being loaded. It initializes

capture object using OpenCV's VideoCapture class. It then

iterates through the video frames using a while loop, reading

each frame using cap.read(). Inside the loop, it checks if the

frame was successfully read (ret is True), and if so, it crops

the frame to form a square using the crop_center_square

function. After cropping, it resizes the frame to a specified

size using OpenCV's resize function. Additionally, it reorders

the colour channels of the frame from OpenCV's default order

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue

 Available at

 ©IJSRED: All Rights are Reserved

Which has been tailored for this study by integrating hashtags.

Since there was no dataset set readily available for with

action/scene detection that related with hashtags the dataset

had to be modified, traditional labels have been substituted

with hashtags that aptly capture the essence of each scene,

thereby enriching the dataset with contextual information.

shtags for the relevant video label were obtained

from the existing web sites and other internet resources. The

process of hashtag scraping from the web involves extracting

hashtags associated with specific keywords or topics from

ch as social media platforms, forums,

or websites. This can be achieved using web scraping

techniques, where automated scripts or tools are used to gather

Web scraping is a technique used to extract data from

utomatically. In the context of this study, web

scraping is employed to collect hashtags from various online

platforms. The process involves accessing web pages, parsing

the HTML content, and extracting relevant information, such

Fig. 4 Flow of Web Scraping for Hashtags

The scraping process begins with identifying the target

platforms where hashtags are to be collected. Popular social

media platforms like Twitter, Instagram, and Facebook are

Once the platforms are

identified, appropriate web scraping tools and libraries are

selected based on the nature of the platforms and project

Before the feature extraction the video clips from the

be resized and cropped, in order to perform

First, a frame (image) is taken as input and crops it to form

as the focal point. It calculates the

dimensions of the input frame and determines the minimum

dimension (either width or height). Then, it computes the

starting coordinates for cropping based on the centre of the

frame and the minimum dimension. Finally, it returns the

The video files are being loaded. It initializes a video

capture object using OpenCV's VideoCapture class. It then

iterates through the video frames using a while loop, reading

each frame using cap.read(). Inside the loop, it checks if the

frame was successfully read (ret is True), and if so, it crops

he frame to form a square using the crop_center_square

function. After cropping, it resizes the frame to a specified

size using OpenCV's resize function. Additionally, it reorders

channels of the frame from OpenCV's default order

(BGR) to RGB. The processed frame is then appended to a list

of frames. The max_frames are set to non

number of frames loaded reaches this limit.

I. Feature Extraction

Feature extraction is a major role in computer vision tasks

by transforming raw input data, such as images or videos, into

a more compact and meaningful representation. These

extracted features capture essential patterns, structures, or

characteristics of the input data, enabling subsequent analysis,

recognition, or classification tasks. Fea

algorithms aim to identify and represent relevant information

present in the visual data efficiently. Raw data, in its

unprocessed form, often contains irrelevant or redundant

information that can hinder the performance of machine

learning algorithms.

This study proposes a convolutional neural network (CNN)

architecture designed for feature extraction from video clips.

The breakdown of the architecture is as follows:

• Input Layers: The input tensor, which represents the

image data. It typically takes the form (height, width,

channels).Height and width represent the dimensions of

the input images.Channels denotes the number of color

channels in the images (e.g., 3 for RGB images, 1 for

grayscale).

• Convolutional Layers: The model starts with a s

convolutional layers, each followed by a rectified linear

unit (ReLU) activation function. Convolutional layers

apply learnable filters to the input image, enabling the

extraction of spatial features such as edges, textures,

and patterns.

(I ∗ K)(i, j) = 2 2 3(4,
56

Where:

I represent the input image

K denotes the filter/kernel.

(I∗K)(i,j) denotes the result of the convolution

operation at position (i,j)(i,j)

(m,n) iterates over the spatial dimensions of the input

image.

(i,j): denotes the spatial position in the output feature

map.

• Max Pooling: Partitions the input feature map into a set

of non-overlapping rectangular pooling regions and, for

each region, outputs the maximum value.
78!9%%:�;<(!, =) = 	48!�∈

Where:

x,y denote the spatial coordinates of the pooling region.

(!� , =�)	represents the values within the pooling region.

MaxPooling(x,y) denotes the output of the MaxPooling

operation at position (x,y)(x,y).

• Global Average Pooling Layer: This layer computes the

average value of each feature map across all spatial

locations, resulting in a fixed-length vector regardless

of the input image size.

Issue 2, Mar- Apr 2024

Available at www.ijsred.com

Page 1065

he processed frame is then appended to a list

of frames. The max_frames are set to non-zero value and the

number of frames loaded reaches this limit.

Feature extraction is a major role in computer vision tasks

ata, such as images or videos, into

a more compact and meaningful representation. These

extracted features capture essential patterns, structures, or

characteristics of the input data, enabling subsequent analysis,

recognition, or classification tasks. Feature extraction

algorithms aim to identify and represent relevant information

present in the visual data efficiently. Raw data, in its

unprocessed form, often contains irrelevant or redundant

information that can hinder the performance of machine

This study proposes a convolutional neural network (CNN)

architecture designed for feature extraction from video clips.

The breakdown of the architecture is as follows:

he input tensor, which represents the

ly takes the form (height, width,

channels).Height and width represent the dimensions of

the input images.Channels denotes the number of color

channels in the images (e.g., 3 for RGB images, 1 for

Convolutional Layers: The model starts with a series of

convolutional layers, each followed by a rectified linear

unit (ReLU) activation function. Convolutional layers

apply learnable filters to the input image, enabling the

extraction of spatial features such as edges, textures,

(;) ⋅ @(� A 4, B A ;)		 #(2)

K)(i,j) denotes the result of the convolution

operation at position (i,j)(i,j)

(m,n) iterates over the spatial dimensions of the input

denotes the spatial position in the output feature

Max Pooling: Partitions the input feature map into a set

overlapping rectangular pooling regions and, for

each region, outputs the maximum value.

∈D##E�5F	GHF�#5(!�, =�)		#(3)

x,y denote the spatial coordinates of the pooling region.

represents the values within the pooling region.

MaxPooling(x,y) denotes the output of the MaxPooling

operation at position (x,y)(x,y).

Global Average Pooling Layer: This layer computes the

average value of each feature map across all spatial

length vector regardless

International Journal of Scientific Research and E

ISSN : 2581-7175

• Activation Function: After convolution, the output is

passed through an activation function, typically the

Rectified Linear Unit (ReLU) activation function,

which introduces non-linearity into the model by

mapping negative values to zero and leaving positive

values unchanged.
�(!) = 	48!(0, !)	#(4)

• Output Feature Maps: The output feature maps

produced by the convolutional layers represent the

presence of specific patterns or features within the input

images. These feature maps are then passed.

• Model Compilation: Once the layers are defined, the

model is compiled with appropriate loss function,

optimizer, and metrics for training.to subsequent layers

for further processing, such as pooling and

classification.

J. Label Processor

The label processor is a crucial component in the

preprocessing pipeline of deep learning models

tasks involving categorical data, such as classification.

layer plays a major role in converting categorical labels, often

represented as strings, into a numerical format suitable for

model training. By encoding labels into integer i

label processor ensures consistency in label representation

across training samples and facilitates efficient handling of

categorical data during model training. This introductory layer

serves as a bridge between the raw categorical labels and

numerical computations performed by deep learning models,

laying the groundwork for effective model training and

predictive accuracy.

The label processor seamlessly integrates with deep

learning architectures, providing a seamless transition from

string-based labels to numerical inputs for the model. During

training, the model receives integer-encoded labels as targets,

enabling it to learn the mapping between input data and

corresponding labels effectively. Furthermore, it serves as a

foundational component in the preprocessing pipeline of deep

learning models, ensuring the compatibility, efficiency, and

effectiveness of categorical label data in various classification

and prediction tasks.

In this study the label processor layer is configured to map

hashtags (strings) from the training data to integer indices,

facilitating the encoding of categorical labels for training deep

learning models. It ensures consistency in label representation

across training samples and enables efficient handling of

categorical data during model training.

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue

 Available at

 ©IJSRED: All Rights are Reserved

Fig. 6 Custom CNN Model Architecture

Activation Function: After convolution, the output is

ough an activation function, typically the

Rectified Linear Unit (ReLU) activation function,

linearity into the model by

mapping negative values to zero and leaving positive

()

e output feature maps

produced by the convolutional layers represent the

presence of specific patterns or features within the input

images. These feature maps are then passed.

Model Compilation: Once the layers are defined, the

appropriate loss function,

optimizer, and metrics for training.to subsequent layers

for further processing, such as pooling and

The label processor is a crucial component in the

preprocessing pipeline of deep learning models, particularly in

tasks involving categorical data, such as classification. This

layer plays a major role in converting categorical labels, often

represented as strings, into a numerical format suitable for

model training. By encoding labels into integer indices, the

label processor ensures consistency in label representation

across training samples and facilitates efficient handling of

categorical data during model training. This introductory layer

serves as a bridge between the raw categorical labels and the

numerical computations performed by deep learning models,

laying the groundwork for effective model training and

The label processor seamlessly integrates with deep

learning architectures, providing a seamless transition from

based labels to numerical inputs for the model. During

encoded labels as targets,

enabling it to learn the mapping between input data and

corresponding labels effectively. Furthermore, it serves as a

onent in the preprocessing pipeline of deep

learning models, ensuring the compatibility, efficiency, and

effectiveness of categorical label data in various classification

In this study the label processor layer is configured to map

shtags (strings) from the training data to integer indices,

facilitating the encoding of categorical labels for training deep

learning models. It ensures consistency in label representation

across training samples and enables efficient handling of

Fig. 5 Word Vocabulary Based on the Dataset

This is word vocabulary used in this experiment based on

the dataset labels. The word vocabulary is utilized in the

experiment to initialize the label processor, which is

responsible for mapping string-based labels to numerical

indices. The word vocabulary influences how labels are

encoded into numerical representations during model training.

During training, the model receives these encoded labels as

targets, enabling it to predict the corresponding label indices

for input data.

K. Sequence Preparation

This is a critical step in the pipeline of processing video

data for training sequence models, such as recurrent neural

networks (RNNs) or transformers. Video data, inherently

sequential in nature, poses unique challenges due to variable

length sequences of frames in each video. The process

involves organizing the extracted features from video frames

into structured sequences of fixed length, ensuring

compatibility with sequence model architectures. Additionally,

sequence preparation involves the application of masking

techniques to handle sequences of varying lengths, facilitating

uniform input dimensions during training. This crucial

preprocessing step lays the foundation for ef

and analysis of video data using sequence models, enabling

tasks such as video classification, action recognition, and

video captioning.

In this study, we discuss the methodology and techniques

involved in sequence preparation, illustratin

in the realm of video analysis and deep learning.

the architecture of the CNN’s model:

• Input Layers: Starting point of the model receiving

input image data. Each pixel of the

feature. Dimensions correspond to the image size (e.g.,

height, width, and color channels).

• Conv2D Layers:

Issue 2, Mar- Apr 2024

Available at www.ijsred.com

Page 1066

Fig. 6 Custom CNN Model Architecture

Fig. 5 Word Vocabulary Based on the Dataset

This is word vocabulary used in this experiment based on

the dataset labels. The word vocabulary is utilized in the

experiment to initialize the label processor, which is

based labels to numerical

indices. The word vocabulary influences how labels are

encoded into numerical representations during model training.

During training, the model receives these encoded labels as

o predict the corresponding label indices

This is a critical step in the pipeline of processing video

data for training sequence models, such as recurrent neural

networks (RNNs) or transformers. Video data, inherently

equential in nature, poses unique challenges due to variable-

length sequences of frames in each video. The process

involves organizing the extracted features from video frames

into structured sequences of fixed length, ensuring

model architectures. Additionally,

sequence preparation involves the application of masking

techniques to handle sequences of varying lengths, facilitating

uniform input dimensions during training. This crucial

preprocessing step lays the foundation for effective training

and analysis of video data using sequence models, enabling

tasks such as video classification, action recognition, and

In this study, we discuss the methodology and techniques

involved in sequence preparation, illustrating its significance

in the realm of video analysis and deep learning. Fig. 6shows

Input Layers: Starting point of the model receiving

input image data. Each pixel of the image is treated as a

feature. Dimensions correspond to the image size (e.g.,

height, width, and color channels).

International Journal of Scientific Research and E

ISSN : 2581-7175

• Perform convolution operations using filters

(kernels) to extract local patterns and create

feature maps.

• First Conv2D layer: 3x3 kernel, producing 32

feature maps with 32 biases.

• Second Conv2D layer: 3x3 kernel, outputting 64

feature maps with 64 biases.

• Third Conv2D layer: Continues process,

resulting in 128 feature maps with 128 biases.

• Fourth Conv2D layer: Generates 256

maps with 256 biases.

• Fifth Conv2D layer: Applies filter to output 512

feature maps.

• Activation Layers: Introduce non-linearity using

activation functions like ReLU (Rectified Linear Unit).

ReLU sets negative values to zero, enabling learning of

complex patterns.

• MaxPooling2D Layers: Reduce spatial dimensions

(width and height) of feature maps. Max-

maximum value within small window (e.g., 2x2) and

down-samples feature maps. Makes detected features

more robust to scale and orientation changes

• GlobalAveragePooling2D Layer: Further reduces each

feature map to a single number by taking average of all

values. Prepares features for final classification layer

L. LSTM Model Sequence Learning

This chapter represents a fundamental approach to addr

such tasks, leveraging the inherent capability of LSTM

networks to capture long-term dependencies in sequential data.

This introduction aims to provide an overview of the LSTM

model's role in sequence learning, highlighting its architecture,

capabilities, and applications across various domains.

Fig. 7Custom LSTM Architecture

Fig. 7 shows the flow of the LSTM model and layers

which are used with the model training. Creat

LSTM layer for sequence learning,

TensorFlow/Keras framework, essential for sequence learning

tasks in deep learning. The CustomLSTM class encapsulates

this custom layer definition, offering a flexible and

configurable solution tailored to specific model requirements.

Upon initialization, parameters such as the number of units,

dropout rates, and regularization techniques are specified,

enabling fine-tuning of the layer's behavior. During the

building phase, the layer's weights, including kernel weights,

recurrent kernel weights, and biases, are initialized based on

the input shape. The forward pass of the layer, defined within

the call method, iteratively processes input sequences,

computes output sequences using LSTM equations, and

applies dropout regularization to input and re

specified. Additionally, the compute_output_shape method

ensures proper output shape calculation based on input

dimensions and layer configurations. Overall, this custom

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue

 Available at

 ©IJSRED: All Rights are Reserved

Perform convolution operations using filters

(kernels) to extract local patterns and create

3x3 kernel, producing 32

Second Conv2D layer: 3x3 kernel, outputting 64

Third Conv2D layer: Continues process,

resulting in 128 feature maps with 128 biases.

Fourth Conv2D layer: Generates 256 feature

Fifth Conv2D layer: Applies filter to output 512

linearity using

activation functions like ReLU (Rectified Linear Unit).

ReLU sets negative values to zero, enabling learning of

MaxPooling2D Layers: Reduce spatial dimensions

-pooling selects

maximum value within small window (e.g., 2x2) and

samples feature maps. Makes detected features

changes

GlobalAveragePooling2D Layer: Further reduces each

feature map to a single number by taking average of all

values. Prepares features for final classification layer

This chapter represents a fundamental approach to address

such tasks, leveraging the inherent capability of LSTM

term dependencies in sequential data.

This introduction aims to provide an overview of the LSTM

model's role in sequence learning, highlighting its architecture,

es, and applications across various domains.

Architecture

the flow of the LSTM model and layers

reating a custom

 within the

TensorFlow/Keras framework, essential for sequence learning

tasks in deep learning. The CustomLSTM class encapsulates

this custom layer definition, offering a flexible and

configurable solution tailored to specific model requirements.

ialization, parameters such as the number of units,

dropout rates, and regularization techniques are specified,

tuning of the layer's behavior. During the

building phase, the layer's weights, including kernel weights,

, and biases, are initialized based on

the input shape. The forward pass of the layer, defined within

the call method, iteratively processes input sequences,

computes output sequences using LSTM equations, and

applies dropout regularization to input and recurrent units if

specified. Additionally, the compute_output_shape method

ensures proper output shape calculation based on input

dimensions and layer configurations. Overall, this custom

LSTM layer serves as a versatile building block for

constructing deep learning models tailored to sequence

learning tasks, facilitating the exploration and advancement of

various applications, including natural language processing,

time-series prediction, and video data analysis.

The get_sequence_model function encapsulates

construction of a Sequential model tailored for sequence

classification tasks. Beginning with the definition of a L2

regularization instance, the function establishes a strategy for

penalizing large weights, thereby mitigating overfitting.

Subsequently, the model architecture is built layer by layer

within a Sequential container. The first layer instantiated is a

custom LSTM layer configured with 64 units, set to return

sequences to preserve temporal information, and adorned with

L2 regularization on its kernel weights. Following this,

another custom LSTM layer with 32 units is added, devoid of

sequence return, yet similarly imbued with L2 regularization.

Introducing a Dropout layer with a dropout rate of 0.5, the

model incorporates a regularization mec

overfitting by randomly deactivating units during training.

Subsequent to the LSTM layers, two Dense layers are

appended to the model, each adorned with ReLU activation

and L2 regularization, facilitating non

and contributing to the model's robustness. Finally, the

function returns the assembled model, equipped to undertake

sequence classification tasks with efficacy and generalization

prowess.

The class initializes the weights required for the LSTM

layer based on the input shape. Firstly, the dimensionality of

the input data, denoted as self.input_dim, is extracted from the

last dimension of the input shape. This dimension represents

the feature dimensionality of the input sequences.

Subsequently, the kernel weights (self.kernel) are instantiated

as trainable parameters, with a shape determined by the

product of the input dimension and four times the number of

units in the layer. The kernel weights are initialized using the

He normal initializer, aiming to preserve

activations through the layers. Additionally, a regularization

term may be applied to the kernel weights to control

overfitting, denoted by self.kernel_regularizer. The recurrent

kernel weights (self.recurrent_kernel) are created with a

determined by the number of units in the layer, initialized

using the orthogonal initializer to facilitate gradient flow

during training. Similar to the kernel weights, a regularization

term may be incorporated for the recurrent kernel weights

(self.recurrent_regularizer). Finally, biases (self.bias) are

introduced as trainable parameters, initialized with zeros to

introduce a shift in the activation function. These weights and

biases are essential components of the LSTM layer, governing

the transformation and propagation of information through the

recurrent network. Upon completion of weight initialization,

the build method concludes by calling the superclass's build

method to finalize the layer construction process.

IV. EXPERIMENTS AND RESULTS

The experiments were conducted using Pytorch,

TensorFlow and Google Collab platform as the primary

Issue 2, Mar- Apr 2024

Available at www.ijsred.com

Page 1067

LSTM layer serves as a versatile building block for

learning models tailored to sequence

learning tasks, facilitating the exploration and advancement of

various applications, including natural language processing,

series prediction, and video data analysis.

The get_sequence_model function encapsulates the

construction of a Sequential model tailored for sequence

classification tasks. Beginning with the definition of a L2

regularization instance, the function establishes a strategy for

penalizing large weights, thereby mitigating overfitting.

y, the model architecture is built layer by layer

within a Sequential container. The first layer instantiated is a

custom LSTM layer configured with 64 units, set to return

sequences to preserve temporal information, and adorned with

ts kernel weights. Following this,

another custom LSTM layer with 32 units is added, devoid of

sequence return, yet similarly imbued with L2 regularization.

Introducing a Dropout layer with a dropout rate of 0.5, the

model incorporates a regularization mechanism to stave off

overfitting by randomly deactivating units during training.

Subsequent to the LSTM layers, two Dense layers are

appended to the model, each adorned with ReLU activation

and L2 regularization, facilitating non-linear transformations

contributing to the model's robustness. Finally, the

function returns the assembled model, equipped to undertake

sequence classification tasks with efficacy and generalization

The class initializes the weights required for the LSTM

the input shape. Firstly, the dimensionality of

the input data, denoted as self.input_dim, is extracted from the

last dimension of the input shape. This dimension represents

the feature dimensionality of the input sequences.

s (self.kernel) are instantiated

as trainable parameters, with a shape determined by the

product of the input dimension and four times the number of

units in the layer. The kernel weights are initialized using the

He normal initializer, aiming to preserve the variance of the

activations through the layers. Additionally, a regularization

term may be applied to the kernel weights to control

overfitting, denoted by self.kernel_regularizer. The recurrent

kernel weights (self.recurrent_kernel) are created with a shape

determined by the number of units in the layer, initialized

using the orthogonal initializer to facilitate gradient flow

during training. Similar to the kernel weights, a regularization

term may be incorporated for the recurrent kernel weights

.recurrent_regularizer). Finally, biases (self.bias) are

introduced as trainable parameters, initialized with zeros to

introduce a shift in the activation function. These weights and

biases are essential components of the LSTM layer, governing

mation and propagation of information through the

recurrent network. Upon completion of weight initialization,

the build method concludes by calling the superclass's build

method to finalize the layer construction process.

ESULTS

The experiments were conducted using Pytorch,

TensorFlow and Google Collab platform as the primary

International Journal of Scientific Research and E

ISSN : 2581-7175

environment. The Google Collab was utilized for computing

power with Nvidia GPUs for training and testing purposes.

The initial testing was done using the UFT101 dataset with

the modified labels with hashtags. The below table shows 10

random rows from the dataset before the data preprocessing

stage.

TABLE I

UFT101 CLIP NAMES AND HASHTAG LABELS

Clip_name Hashtag

v_ShavingBeard_g16_c02.avi #ShavingBeard

#Grooming #Razor

v_TennisSwing_g11_c01.avi #TennisSwing #Racket

#Ace

v_TennisSwing_g15_c03.avi #TennisSwing #Racket

#Ace

v_PlayingCello_g24_c05.avi #PlayingCello #Strings

#Music

v_Punch_g03_c03.avi #Punch #Strike

#Combat

v_Punch_g19_c07.avi #Punch #Strike

#Combat

v_PlayingCello_g25_c06.avi #PlayingCello #Strings

#Music

v_CricketShot_g16_c07.avi #CricketShot #Six

#Boundary

v_ShavingBeard_g17_c03.avi #ShavingBeard

#Grooming #Razor

v_CricketShot_g21_c01.avi #CricketShot

#Boundary

Fig. 8 UFT101 Dataset Labels

M. Dataset Splitting

Training Dataset (714 video clips): This dataset consists of

714 video clips that are used to train the machine learning

model. Each video clip likely contains a sequence of frames

representing certain actions such as shaving beard, basketball

playing, cricket playing and etc. During training, the model

learns from these video clips by adjusting its parameters to

minimize a loss function, typically based on a comparison

between its predictions and the ground truth labels associated

with each video clip.

Testing Dataset (344 video clips): This dataset, separate

from the training data, comprises 344 video clips that are used

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue

 Available at

 ©IJSRED: All Rights are Reserved

environment. The Google Collab was utilized for computing

power with Nvidia GPUs for training and testing purposes.

T101 dataset with

the modified labels with hashtags. The below table shows 10

random rows from the dataset before the data preprocessing

UFT101 CLIP NAMES AND HASHTAG LABELS

ashtag

#ShavingBeard

#Grooming #Razor

#TennisSwing #Racket

#TennisSwing #Racket

#PlayingCello #Strings

#Punch #Strike

#Punch #Strike

#PlayingCello #Strings

#CricketShot #Six

#ShavingBeard

#Grooming #Razor

#CricketShot #Six

Training Dataset (714 video clips): This dataset consists of

714 video clips that are used to train the machine learning

model. Each video clip likely contains a sequence of frames

representing certain actions such as shaving beard, basketball

playing, cricket playing and etc. During training, the model

learns from these video clips by adjusting its parameters to

minimize a loss function, typically based on a comparison

redictions and the ground truth labels associated

Testing Dataset (344 video clips): This dataset, separate

from the training data, comprises 344 video clips that are used

to evaluate the trained model's performance. The model hasn't

seen these video clips during training.

N. Experiments and Results

The training process was configured to run for a total of 30

epochs (epochs=30), allowing the model to undergo multiple

iterations over the training dataset, progressively refining its

predictive capabilities. Additionally, to manage computational

resources effectively and expedite the training process, I

employed a batch size of 15 (batch_size=15). This parameter

determined the number of samples processed by the model

before updating its weights, facilitating efficient gradient

descent optimization.

Furthermore, to enhance training efficiency and prevent

overfitting, I incorporated an early stopping mechanism. This

was achieved through the inclusion of a callback function

(early_stopping), which monitored the validation loss and

halted training if no improvement was observed over a

predefined number of epochs (patience=3). By implementing

this mechanism, I ensured that the model's performance was

optimized while mitigating the risk of overfittin

training data.

The proposed model achieved a validation accuracy of

71.43% during the training and validation process.

Fig. 9 Validation and Test Accuracy of the Hashtag Model

TABLE II

ACCURACY AND LOSS OF EPOCHS AND

VALIDATION SETS

Epoch Accuracy Loss Val_Accuracy

1 0.3684 4.4627

2 0.4337 2.62

3 0.441 2.1074

4 0.4883 1.7638

5 0.5711 1.5545

6 0.4725 1.6274

7 0.5055 1.558

Issue 2, Mar- Apr 2024

Available at www.ijsred.com

Page 1068

to evaluate the trained model's performance. The model hasn't

The training process was configured to run for a total of 30

epochs (epochs=30), allowing the model to undergo multiple

iterations over the training dataset, progressively refining its

ive capabilities. Additionally, to manage computational

resources effectively and expedite the training process, I

employed a batch size of 15 (batch_size=15). This parameter

determined the number of samples processed by the model

ts, facilitating efficient gradient

Furthermore, to enhance training efficiency and prevent

overfitting, I incorporated an early stopping mechanism. This

was achieved through the inclusion of a callback function

h monitored the validation loss and

halted training if no improvement was observed over a

predefined number of epochs (patience=3). By implementing

this mechanism, I ensured that the model's performance was

optimized while mitigating the risk of overfitting to the

The proposed model achieved a validation accuracy of

71.43% during the training and validation process.

Fig. 9 Validation and Test Accuracy of the Hashtag Model

ACCURACY AND LOSS OF EPOCHS AND

VALIDATION SETS

Val_Accuracy Val_Loss

0.5407 2.9259

0.5494 2.2309

0.561 1.8773

0.6453 1.6674

0.7151 1.4914

0.6802 1.4332

0.7093 1.3501

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar- Apr 2024

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 1069

8 0.5813 1.3603 0.625 1.2879

9 0.5092 1.4728 0.6948 1.3005

10 0.5736 1.2638 0.6831 1.206

11 0.6134 1.2604 0.7326 1.1656

12 0.6501 1.1793 0.5436 1.278

13 0.4959 1.3733 0.7035 1.2182

14 0.6026 1.2051 0.6977 1.0913

15 0.6541 1.1668 0.7151 1.0581

16 0.6819 1.0713 0.7355 1.0928

17 0.6645 1.1102 0.6977 1.1487

18 0.7143 1.0018 0.6715 1.1437

Table 2 shows the break drown of how the model

performed in epoch.

• The accuracy starts at around 36.84%, the loss is

relatively high at 4.4627, but the validation accuracy is

higher at 54.07% with a lower validation loss of 2.9259.

• The accuracy improves slightly to 43.37% with a

decrease in loss to 2.6200. Validation accuracy

increases to 54.94%, and validation loss decreases

further to 2.2309.

• The accuracy continues to improve to 44.10%, with the

loss decreasing to 2.1074. Validation accuracy increases

to 56.10%, and validation loss decreases to 1.8773.

This pattern continues across the epochs, with the model's

accuracy and loss improving gradually. In the end, the model

achieves an accuracy of approximately 71.43% with a loss of

1.0018, while the validation accuracy is around 67.15% with a

validation loss of 1.1437.

Fig. 10 Epoch Accuracyddp8022

Fig. 2 shows the epoch accuracy during the training

process.On the x-axis, we observe the number of epochs,

ranging from 0 to 30. The y-axis represents accuracy, which

varies between approximately 0.4 and 0.6. Two lines are

plotted on the graph: a yellow line characterized by

fluctuations and a pink line that exhibits smoother progress.

Both lines start with modest accuracy but steadily improve as

training proceeds.

Fig. 11 Epoch Loss

 Fig. 3 shows the epoch loss during the training

process.On the x-axis, we observe the number of epochs,

ranging from 0 to 30. The y-axis represents the loss (also

known as the error), which varies between approximately 0.4

and 0.6. Three lines are plotted on the graph, each in a

different colour. Initially, all lines start with higher loss values

at epoch 0 and decrease sharply until around epoch 5. A

pinkish-purple dot highlights an intersection point on one of

the lines around epoch number five and a loss value of two.

After epoch five, all lines show a more gradual decline or

plateau in loss values.

O. Test Results

Table presents the final outcomes of the hashtag prediction

model, wherein it forecasts hashtags corresponding to the

provided video clips. This indicates the output or outcome of

the model after it has been trained and tested. It represents the

model's performance in predicting hashtags for the given

video clips. The model offers three hashtags for each video,

each accompanied by four associated probabilities. The model

predicts three hashtag predictions for each video clip. This

suggests that the model doesn't just output a single hashtag but

provides a set of potential hashtags that could be relevant to

the content of the video. Along with each predicted hashtag,

the model assigns four probabilities. These probabilities

indicate the likelihood or confidence of each hashtag being

relevant to the video clip. Having four probabilities might

suggest that the model incorporates some form of uncertainty

estimation or confidence scoring for its predictions.

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar- Apr 2024

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 1070

TABLE III

VIDEO CLIP CLASSIFICATION RESULTS BY

HASHTAGS

Test Result

Video clip of

two people

fighting

Video clip of a

cricket match

Video clip of a

kid playing a

cello

Video clip of a

person shaving

his beard

P. Comparison with Existing Method

The hashtag prediction model's performance was assessed

through a comparative analysis against existing research on

video classification methods, with accuracy as the primary

metric for evaluation. Table 4 compares the proposed hashtag

prediction model with existing research models related to

video classification.

TABLE IV

COMPARISON WITH EXISTING VIDEO

CLASSIFICATION APPROACHES

Model Accuracy

Hashtag Prediction Model – UFT101 71.51%

FASTER32 - HMDB-51 [12] 75.70%

T3D-Transfer - HMDB51[13] 61.10%

T3D+TSN - HMDB5 [13] 63.50%

DOVF- HMDB51 [14] 71.70%

Objects2action - UCF101 [15] 63.90%

The above test result for a different model compared with

our hashtag prediction model, The hashtag prediction model

achieved an accuracy of 71.51%, indicating that it correctly

predicted approximately 71.51% of the hashtags for the given

set of video clips. Comparative analysis reveals that the

hashtag prediction model outperforms some existing methods

(T3D-Transfer, T3D+TSN, Objects2action), achieving higher

accuracy scores than these models. As illustrated the model

has better accuracy compared to other research work which

has been conducted with different datasets and various other

approaches.

V. CONCLUSIONS

This study has explored the task of predicting hashtags for

video clips using video classification techniques, focusing on

the utilization of Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs).

Through experimentation conducted on the UTF101 dataset,

we employed a combination of feature extraction and

sequence learning methodologies. This approach allowed us to

capture both spatial and temporal information inherent in

video data, enabling a more comprehensive understanding of

the content. The results demonstrate the potential of CNNs

and RNNs in effectively discerning the semantic context of

video clips and generating meaningful hashtags accordingly.

In conclusion, while this study makes significant strides in

leveraging video classification techniques for automated

hashtag generation, several challenges and opportunities for

future research remain. By addressing these challenges and

fostering interdisciplinary collaboration, researchers can

continue to push the boundaries of innovation in video

understanding and content annotation, ultimately advancing

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar- Apr 2024

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 1071

the field towards more intelligent and context-aware

multimedia systems.

ACKNOWLEDGMENT

We would like to thank all who helped us with their time

and dedication. Their insightful feedback and guidance greatly

improved the quality of my work. We also extend my heartfelt

gratitude to my family, friends and batchmates for their

unwavering support and encouragement throughout this

journey.We would also like to express our gratitude to

Mr.LalinduWeerakkody for support given to us through out

this research.

Thank you all for your contributions to this research.

REFERENCES

[1] Statista, “Number of social media users worldwide from 2017 to

2025.,” https://www.statista.com/.

[2] “Internet and social media users in the world 2024 | Statista.”

Accessed: Feb. 27, 2024. [Online]. Available:

https://www.statista.com/statistics/617136/digital-population-

worldwide/

[3] E. E. Smith, “Social media in undergraduate learning: categories
and characteristics,” International Journal of Educational

Technology in Higher Education, vol. 14, no. 1, Dec. 2017, doi:

10.1186/S41239-017-0049-Y.
[4] S. A. Moorhead, D. E. Hazlett, L. Harrison, J. K. Carroll, A. Irwin,

and C. Hoving, “A New Dimension of Health Care: Systematic

Review of the Uses, Benefits, and Limitations of Social Media for

Health Communication,” J Med Internet Res 2013;15(4):e85

https://www.jmir.org/2013/4/e85, vol. 15, no. 4, p. e1933, Apr.

2013, doi: 10.2196/JMIR.1933.

[5] A. Kamilaris, A. Fonts, and F. X. Prenafeta-Boldύ, “The rise of

blockchain technology in agriculture and food supply chains,”

Trends Food Sci Technol, vol. 91, pp. 640–652, Sep. 2019, doi:

10.1016/J.TIFS.2019.07.034.

[6] R. Goyena, “#AdvocatingForChange: The Strategic Use of

Hashtags in Social Media Advocacy 1,” J Chem Inf Model, vol. 53,
no. 9, pp. 1689–1699, 2019, doi: 10.1017/CBO9781107415324.004.

[7] “Video Classification: Methods, Use Cases, Tutorial.” Accessed:

Mar. 03, 2024. [Online]. Available:
https://www.v7labs.com/blog/video-classification-guide

[8] A. Graves, “Supervised Sequence Labelling with Recurrent Neural

Networks,” vol. 385, 2012, doi: 10.1007/978-3-642-24797-2.

[9] M. Camargo, “Learning Accurate LSTM Models of Business

Processes,” 2019.

[10] B. Knowles and J. T. Richards, “ACM TechBrief: Trusted AI,”

ACM TechBrief: Trusted AI, Jan. 2024, doi: 10.1145/3641524.

[11] W. Zaremba, I. Sutskever, O. Vinyals, and G. Brain, “Recurrent

Neural Network Regularization,” Sep. 2014, Accessed: Mar. 07,

2024. [Online]. Available: https://arxiv.org/abs/1409.2329v5

[12] L. Zhu et al., “FASTER Recurrent Networks for Efficient Video

Classification,” 2020. [Online]. Available: www.aaai.org
[13] A. Dibaet al., “Temporal 3D ConvNets: New Architecture and

Transfer Learning for Video Classification,” 2018, Accessed: Mar.

13, 2024. [Online]. Available:
https://github.com/MohsenFayyaz89/T3D

[14] Z. Lan, Y. Zhu, A. G. Hauptmann, and S. Newsam, “Deep Local
Video Feature for Action Recognition,” IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) Workshops,

2017.
[15] M. Jain, J. C. van Gemert, T. Mensink, and C. G. M Snoek,

“Objects2action: Classifying and localizing actions without any

video example,” IEEE Xplore, 2015.

