
International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar-Apr 2024 

               Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 864 

 
S.Surappa*,   M. Chandra kireeti**, B.Vishnu Vardhan*** 

* Assistant Professor, Mechanical engineering, Vignan Institute of Technology and Science, Deshmukhi, Hyderabad. 

Email: mosesjayashali@gmail.com 

**student, Mechanical engineering, Vignan Institute of Technology and Science, Deshmukhi, Hyderabad. 

Email: madupuchandrakireeti04@gmail.com 

*** student,Mechanical engineering, Vignan Institute of Technology and Science, Deshmukhi, Hyderabad. 

Email: vishnubojja690@gmail.com 

 

 

----------------------------------------************************----------------------------------

Abstract: 
            This research paper explores the design, implementation, and functionality of a robotic arm utilizing 

Arduino hardware and software. Robotic arms find applications in various fields, including manufacturing, 

healthcare, and education. Arduino, an open-source electronics platform, provides an accessible and cost-

effective solution for designing robotic systems. The paper discusses the structural components, hardware 

requirements, software development, and functionality of a robotic arm controlled by Arduino. 

Additionally, it explores potential applications and future directions for advancements in this field. 

 

Keywords — Robotic Arm, Arduino, Hardware, Software, Control, Applications. 

----------------------------------------************************----------------------------------

I.     INTRODUCTION 

Robotic arms have become integral components 

in industrial automation, research laboratories, and 

educational settings. Their versatility in performing 

tasks such as material handling, assembly, and 

precise manipulations has led to widespread 

adoption across various industries. Designing 

robotic arms traditionally required sophisticated 

hardware and complex programming. However, 

with the advent of open-source platforms like 

Arduino, the barriers to entry have significantly 

reduced, enabling enthusiasts, students, and 

professionals to build and experiment with robotic 

systems. 

A robotic arm typically comprises several 

structural components, including the base, links, 

joints, and end effectors. The base provides stability 

and serves as the foundation for the arm. Links 

connect the joints and determine the arm's reach 

and maneuverability. Joints, equipped with 

actuators such as servo motors or stepper motors, 

facilitate movement along different axes. The end 

effectors, attached to the arm's terminus, performs 

specific tasks based on the application requirements. 

Banzi et al., provided a comprehensive 

introduction to programming with Arduino, a 

popular open-source hardware and software 

platform. While not specifically focused on robotics, 

it lays a crucial foundation for understanding 

Arduino-based projects, including those in robotics. 

Grimmett et al., delved into the practical aspects of 

building robots using Arduino. They discussed on 

motor control, sensors, and navigation algorithms, 

making it a valuable resource for both beginners 

and intermediate robotics enthusiasts. Pratt et al., 

discussed fundamental concepts in robotics, 

specifically forward and inverse kinematics. 

Understanding these concepts is essential for 

designing and controlling robotic manipulators, 

making this a pertinent resource for robotics 

engineers. Robinson et al., offered practical 

guidance on building robots using the LEGO 

Mindstorms NXT platform. It covers basic 

Robotic Arm Design using Arduino Hardware and Software 

RESEARCH ARTICLE                                     OPEN ACCESS 



International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar-Apr 2024 

         Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 865 

principles of robotics and provides hands-on 

projects, making it relevant for those interested in 

introductory robotics [1-4]. 

Zaldivar et al., explored the intersection of 

Arduino and the Internet of Things (IoT), 

showcasing projects that integrate sensors, actuators, 

and communication modules. While not exclusively 

focused on robotics, it offers insights into 

connecting Arduino-based devices to broader 

networks, which can be valuable in robotic 

applications. Corke's et al., proposed a 

comprehensive overview of robotics, covering 

topics such as robot kinematics, dynamics, and 

control. While MATLAB-centric, it offers valuable 

theoretical insights and practical implementations 

applicable to Arduino-based robotics. Siciliano et 

al., derived a seminal work in the robotics field, it 

covers a wide range of topics in robotics, from 

fundamentals to advanced research areas. It serves 

as a comprehensive reference for roboticists, 

including those interested in Arduino-based projects. 

Craig's et al., proposed foundational knowledge 

essential for understanding robotic systems, 

providing a thorough introduction to robot 

mechanics, kinematics, and control.  Spong et al., 

proposed modelling and control techniques for 

robotic systems, emphasizing both theoretical 

principles and practical implementation. While not 

Arduino-focused, it provides valuable insights into 

control strategies applicable to Arduino-based 

robots [5-9]. 

Ogata et al., proposed a comprehensive treatment 

of modern control theory, covering topics such as 

PID control, state-space analysis, and robust control 

techniques. While not Arduino-specific, it provides 

foundational knowledge applicable to designing 

control systems for robotic applications. Ljung et al., 

provides a comprehensive overview of system 

identification, a crucial aspect of robotics involving 

the modelling and characterization of dynamic 

systems. Understanding system identification 

techniques is essential for designing and controlling 

robotic systems effectively. Lynch et al., proposed a 

modern perspective on robotics, covering 

mechanics, motion planning, and control algorithms. 

Lynch and Park delve into advanced topics such as 

kinematics, dynamics, and trajectory optimization, 

making it a valuable resource for robotics 

researchers and practitioners [10-12]. 

The Atmel ATmega328/P is a microcontroller 

commonly used in Arduino boards. The datasheet 

provides detailed technical specifications and 

programming information, essential for 

understanding and utilizing the capabilities of the 

ATmega328/P in robotics projects. The SG90 micro 

servo is a compact and affordable servo motor 

commonly used in robotics projects for actuation 

and control tasks. Understanding its specifications 

and capabilities is crucial for integrating it 

effectively into Arduino-based robotic systems. 

Adafruit's motor/stepper/servo shield is an Arduino 

add-on board that simplifies the control of motors 

and servos. This kit provides a convenient solution 

for driving various types of motors in robotics 

applications, offering versatility and ease of use. 

The DRV8835 dual motor driver carrier is a 

compact module designed for driving two DC 

motors or one stepper motor. It offers features such 

as built-in protection circuitry and a small form 

factor, making it suitable for use in Arduino-based 

robotic projects requiring motor control. The 

official Arduino website serves as a central hub for 

resources related to the Arduino platform, including 

documentation, tutorials, and community forums. It 

provides valuable support for individuals interested 

in learning and experimenting with Arduino-based 

robotics projects [13-17]. 

Lewis et al., explored the evolution of robot 

behavior using a simulated 8-legged walker as a 

case study. It demonstrates the application of 

evolutionary algorithms to optimize the gait of a 

robotic system, showcasing innovative approaches 

to robotic design and control. Khatib et al., 

presented a real-time obstacle avoidance algorithm 

for manipulators and mobile robots based on 

potential fields. It introduces practical techniques 

for navigating complex environments, highlighting 

the importance of robust motion planning strategies 

in robotics applications. Zinn et al., proposed a 

novel actuation approach for designing human-

friendly robots with improved safety and dexterity. 

By integrating compliant mechanisms and advanced 

control strategies, they addressed key challenges in 



International Journal of Scientific Research and Engineering Development

©IJSRED: All Rights are Reserved

human-robot interaction, paving the way for safer 

and more versatile robotic systems  [18

 

II.     HARDWARE AND SOFTWARE DEV

To build a robotic arm using Arduino, several 

hardware components are necessary. Arduino 

Board: Acts as the central processing unit, 

controlling motor movements and receiving input 

from sensors. Servo Motors or Stepper Motors: 

Power the joints and enable controlled movement. 

Motor Drivers: Interface between the Arduino 

board and motors, regulating power and direction. 

Power Supply: Provides electrical power to the 

Arduino board, motor drivers, and motors. Sensors 

(optional): Encoders, limit switches, or proximity 

sensors can be integrated for feedback control and 

collision avoidance. 

Arduino's intuitive Integrated Development 

Environment (IDE) simplifies the software 

development process for controlling robotic arms. 

Writing code in Arduino programming language, 

based on C/C++, to define arm movements and 

behavior. Utilizing libraries such as Servo.h or 

Stepper.h to facilitate motor control and simplify 

coding. Implementing algorithms for forward and 

inverse kinematics to calculate joint angles for 

precise positioning. Developing user interfaces for 

controlling the arm, either through physical inputs 

(buttons, joysticks) or digital interfaces 

(smartphone apps, Bluetooth/Wi

communication). The functionality of a robotic arm 

controlled by Arduino encompasses various aspects.

Movement Control: Arduino code translates user 

inputs or commands into motor movements, 

facilitating desired arm motions. End Effector 

Control: The arm's end effector performs specific 

tasks such as gripping objects, painting, or 

performing precise manipulations. Feedback 

Control (optional): Sensors provide feedback on the 

arm's position and orientation, enabling adjustments 

for enhanced precision and accuracy. User Interface: 

Interfaces allow users to interact with the robotic 

arm, providing inputs for controlling movements 

and execution. Figure 1 shows the model developed 

of robotic arm. Program used for the controlling the 

movements of arm is shown below. 

International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 

         Available at 

©IJSRED: All Rights are Reserved 

robot interaction, paving the way for safer 

and more versatile robotic systems  [18-20] 

EVELOPMENT 

To build a robotic arm using Arduino, several 

hardware components are necessary. Arduino 

Board: Acts as the central processing unit, 

controlling motor movements and receiving input 

from sensors. Servo Motors or Stepper Motors: 

enable controlled movement. 

Motor Drivers: Interface between the Arduino 

board and motors, regulating power and direction. 

Power Supply: Provides electrical power to the 

Arduino board, motor drivers, and motors. Sensors 

s, or proximity 

sensors can be integrated for feedback control and 

Arduino's intuitive Integrated Development 

Environment (IDE) simplifies the software 

development process for controlling robotic arms. 

ng language, 

based on C/C++, to define arm movements and 

behavior. Utilizing libraries such as Servo.h or 

Stepper.h to facilitate motor control and simplify 

coding. Implementing algorithms for forward and 

inverse kinematics to calculate joint angles for 

ecise positioning. Developing user interfaces for 

controlling the arm, either through physical inputs 

(buttons, joysticks) or digital interfaces 

(smartphone apps, Bluetooth/Wi-Fi 

communication). The functionality of a robotic arm 

mpasses various aspects. 

Movement Control: Arduino code translates user 

inputs or commands into motor movements, 

facilitating desired arm motions. End Effector 

Control: The arm's end effector performs specific 

tasks such as gripping objects, painting, or 

erforming precise manipulations. Feedback 

Control (optional): Sensors provide feedback on the 

arm's position and orientation, enabling adjustments 

for enhanced precision and accuracy. User Interface: 

Interfaces allow users to interact with the robotic 

providing inputs for controlling movements 

and execution. Figure 1 shows the model developed 

of robotic arm. Program used for the controlling the 

 

#include <Servo.h> 

Servo baseServo; 

Servo shoulderServo; 

Servo elbowServo; 

Servo gripperServo; 

int baseAngle = 90; 

int shoulderAngle = 90; 

int elbowAngle = 90; 

int gripperAngle = 0; 

 

void setup() { 

  baseServo.attach(BASE_PIN);

  shoulderServo.attach(SHOULDER_PIN);

  elbowServo.attach(ELBOW_PIN);

  gripperServo.attach(GRIPPER_PIN);

} 

void loop() { 

  // Read input or receive commands

  // Adjust angles based on input

  // Move servos to desired angles

  baseServo.write(baseAngle);

  shoulderServo.write(shoulderAngle);

  elbowServo.write(elbowAngle);

  gripperServo.write(gripperAngle);

} 

 

Figure 1 Model of Robotic arm using a

 

III. APPLICATIONS AND FUTURE 

 

Robotic arms designed with Arduino hardware 

and software find applications across diverse 

Issue 2, Mar-Apr 2024 

Available at www.ijsred.com                                 

Page 866 

baseServo.attach(BASE_PIN); 

shoulderServo.attach(SHOULDER_PIN); 

elbowServo.attach(ELBOW_PIN); 

gripperServo.attach(GRIPPER_PIN); 

// Read input or receive commands 

// Adjust angles based on input 

// Move servos to desired angles 

baseServo.write(baseAngle); 

shoulderServo.write(shoulderAngle); 

elbowServo.write(elbowAngle); 

gripperServo.write(gripperAngle); 

 
Figure 1 Model of Robotic arm using arduino 

UTURE DIRECTIONS 

Robotic arms designed with Arduino hardware 

and software find applications across diverse 



International Journal of Scientific Research and Engineering Development-– Volume 7 Issue 2, Mar-Apr 2024 

         Available at www.ijsred.com                                 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 867 

domains. Education: Arduino-based robotic arms 

serve as educational tools for teaching robotics, 

programming, and mechatronics. Prototyping: 

Rapid prototyping capabilities of Arduino enable 

quick iteration and experimentation in developing 

robotic solutions. Research: Researchers utilize 

Arduino-based robotic arms for exploring advanced 

control algorithms, human-robot interaction, and 

autonomous systems. Home Automation: Arduino-

powered robotic arms can automate household tasks, 

such as picking up objects or assisting individuals 

with disabilities. 

IV. CONCLUSIONS 

Designing a robotic arm using Arduino hardware 

and software offers a cost-effective and accessible 

approach to developing robotic systems. By 

leveraging Arduino's simplicity and versatility, 

enthusiasts, students, and professionals can explore 

the fundamentals of robotics, experiment with 

different configurations, and innovate in various 

application domains. As technology continues to 

evolve, Arduino-based robotic arms are expected to 

play an increasingly significant role in shaping the 

future of automation and robotics. 

 

REFERENCES 
[1] Banzi, M. (2011). Arduino Programming in 24 Hours. Sams Publishing. 

[2] Grimmett, G. (2015). Arduino Robotics. Packt Publishing. 

[3] Pratt, G., & Williamson, M. (1995). Series of six articles on robotics: 

Part 5, Forward and Inverse Kinematics. Industrial Robot: An 
International Journal, 22(6), 21-24. 

[4] Robinson, R. S. (2009). Basic Robot Building With LEGO Mindstorms 

NXT 2.0. Que Publishing. 
[5] Zaldivar, D., & Gehani, A. (2019). Internet of Things with Arduino 

Blueprints. Packt Publishing. 

[6] Corke, P. (2017). Robotics, Vision and Control: Fundamental 

Algorithms in MATLAB® Second, Completely Revised, Extended and 

Updated Edition. Springer. 
[7] Siciliano, B., & Khatib, O. (Eds.). (2016). Springer Handbook of 

Robotics. Springer. 

[8] Craig, J. J. (2005). Introduction to Robotics: Mechanics and Control 

(3rd ed.). Pearson Prentice Hall. 

[9] Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2005). Robot 

Modeling and Control. John Wiley & Sons. 

[10] Ogata, K. (2010). Modern Control Engineering (5th ed.). Prentice Hall. 

[11] Ljung, L. (1999). System Identification: Theory for the User (2nd ed.). 

Prentice Hall. 
[12] Lynch, K. M., & Park, F. C. (2017). Modern Robotics: Mechanics, 

Planning, and Control. Cambridge University Press. 

[13] Atmel Corporation. (2016). Atmel ATmega328/P Datasheet. Retrieved 
from https://www.microchip.com/wwwproducts/en/ATmega328 

[14] Tower Pro. (2024). SG90 Micro Servo. Retrieved from 

https://www.towerpro.com.tw/product/sg90-7/ 
[15] Adafruit Industries. (2024). Adafruit Motor/Stepper/Servo Shield for 

Arduino v2 Kit. Retrieved from 

https://www.adafruit.com/product/1438 

[16] Pololu Corporation. (2024). DRV8835 Dual Motor Driver Carrier. 

Retrieved from https://www.pololu.com/product/2135 

[17] Arduino. (2024). Arduino - Home. Retrieved from 

https://www.arduino.cc/ 

[18] Lewis, M. A., & Langton, C. G. (1991). Evolving Robot Behavior in 

the Real World: The Gait of a Simulated 8-Legged Walker. In 
Proceedings of Artificial Life II (pp. 501-545). Addison-Wesley. 

[19] Khatib, O. (1986). Real-time obstacle avoidance for manipulators and 

mobile robots. International Journal of Robotics Research, 5(1), 90-98. 
[20] Zinn, M., Khatib, O., Roth, B., & Salisbury, J. K. (2004). A new 

actuation approach for human friendly robot design. The International 

Journal of Robotics Research, 23(4-5), 379-398.

 

 
 

 

 
 

 

 


