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ABSTRACT~In the realm of marine robotics, underwater automatic target recognition (ATR) poses a significant challenge 

due to the intricate underwater environment. Current recognition techniques rely on manually crafted features and classifiers 

to identify targets, resulting in suboptimal recognition accuracy. Our study introduces an innovative approach to achieve 

precise multiclass underwater ATR using forward-looking sonar—Echoscope in conjunction with deep convolutional neural 

networks (dcnns). The entire recognition process, spanning from data preprocessing to network training and image 

recognition, was successfully executed. Initially, we curated a genuine Echoscope sonar image dataset. Leveraging the graph-

based manifold ranking method in image preprocessing, we extracted the suspected target region, inspired by the human 

visual attention mechanism. Subsequently, we devised an end-to-end dcnnsmodel, dubbed echonet, for Echoscope sonar 

image feature extraction and recognition. Lastly, we devised a network training strategy based on transfer learning to address 

the issue of limited training data, employing mini-batch gradient descent for network optimization. Our experimental findings 

showcase the efficiency of our approach, with a recognition accuracy of 80.3% achieved in a nine-class underwater ATR 

task, surpassing conventional feature-based methods. This proposed methodology holds promise as a cutting-edge technology 

for enhancing the intelligent perception capabilities of autonomous underwater vehicles

 

I.INTRODUCTION 

Accurate identification of targets is essential for 

underwater exploration and ocean development. Since the 

1960s, naval departments have placed great importance 

on underwater target recognition. In recent years, the need 

for advanced underwater target recognition technology 

has grown significantly in civil and commercial sectors 

due to the global economic recovery. This includes tasks 

such as tracking and protecting endangered aquatic 

species, salvage operations, aquaculture, and underwater 

archaeology. However, the complex underwater 

environment and limitations in marine sensing have made 

accurate multiclass underwater automatic target 

recognition (ATR) a challenging issue. 

The manuscript was reviewed and approved for 

publication by Changsheng Li, the associate editor 

overseeing the process. Various studies have focused on 

using sonar imaging systems, particularly side-scan sonar 

and synthetic aperture  

 

 

sonar (SAS), to recognize underwater targets through 

sonar images. Sonar images are preferred as they provide 

a clearer representation of underwater environments. The 

choice between side-scan sonar and SAS depends on the 

specific application. While side-scan sonar is suitable for 

imaging the seabed, it is not ideal for identifying floating 

objects or real-time recognition tasks. SAS faces 

challenges related to micro navigation and platform 

trajectory estimation, limiting its application due to high 

platform movement requirements. The real-time imaging 

sonar Echoscope has emerged as a significant innovation 

in underwater observation, enabling the generation of 

high-resolution images and the development of 

technologies for automatic underwater scene 

understanding. This paper addresses the complex task of 

underwater target recognition using the Echoscope sonar 

system. 

Previously, manual features were utilized for visual object 

classification tasks, such as Scale-Invariant Feature 

Transform (SIFT), Histogram of Oriented Gradient 

(HOG), and Fisher Vector. These features capture shape, 

texture, and color information and are combined with 

various classifiers as seen in previous works. While these 

features can perform well for specific data and tasks, they 

often lack generalization capability and require expertise 

and extensive trial and error for extraction. Underwater 

targets vary significantly in size, shape, texture, and 

background, even within the same class, posing 

challenges for conventional methods to accurately 

recognize multicass targets. 
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Deep learning has emerged as a prominent area of 

research in machine learning, aiming to automatically 

extract high-level features from large datasets through the 

learning process. The development of convolutional 

neural networks (CNNs) has been a major focus since the 

1990s, with notable advancements in recent years. The 

introduction of deep CNNs by Krizhevsky et al. in 2012 

demonstrated exceptional performance in image 

recognition tasks, leading to high expectations for their 

application in underwater target recognition. However, it 

is essential to consider the differences between sonar and 

optical images, as they present distinct characteristics that 

impact recognition processes. 

Despite the progress in utilizing deep learning for 

underwater target recognition, there is still much to 

explore in this field. The success of deep CNNs in image 

processing has laid a foundation for further 

advancements, but challenges remain in adapting these 

techniques to underwater environments. 

In this research article, we present an innovative approach 

for underwater automatic target recognition (ATR) using 

deep learning techniques. Our aim is to enhance the 

precision of multiclass target recognition tasks in 

underwater environments. We have developed a 

comprehensive methodology that encompasses data 

preprocessing, network training, and image recognition. 

To achieve this, we have designed a state-of-the-art deep 

convolutional neural network (DCNN) model called 

EchoNet, along with an effective training strategy. 

 

 

 

 

 

 

 

An outline of the proposed method for recognizing 

underwater targets is presented in Figure 1. The accurate 

identification of multiple target classes is achieved 

through the utilization of Echoscope sonar images and 

deep convolutional neural networks. Additionally, a 

training method based on transfer learning has been 

devised to address the issue of limited sonar image 

data.The purpose of this development is to address 

theissue of insufficient training data. Instead of relying on 

domain knowledge of sonar image feature extraction, the 

features are learned directly from the data itself. 

Additionally, we have created a dataset of Echoscope 

sonar images, which is accessible to the vision research 

community for testing sonar image recognition 

algorithms. To the best of our knowledge, this is the first 

work that utilizes Echoscope sonar images and DCNNs 

for underwater ATR. Through experimental results, we 

have demonstrated that our method significantly enhances 

the accuracy of underwater multiclass ATR in comparison 

to traditional feature-based classifiers.The remaining 

sections of this paper are organized as follows: Section II 

provides a detailed explanation of the EchoNet for sonar 

image recognition. In Section III and Section IV, we 

present and discuss the experimental results. Finally, in 

Section V, we offer concluding remarks and outline 

directions for future research. 

 

II. ACCURATE TARGETRECOGNITION 

 

The structure of the proposed precise underwater 

ATR technique is illustrated in Figure 1. The 

primary focus is on training our custom DCNNs for 

underwater target identification using Echoscope 

sonar images (depicted in the lower section of Figure 

1). The following three crucial aspects will be 

elaborated upon: sonar image preparation, DCNNs 

model development, and network training through 

transfer learning. The upper section of Figure 1 

involves training a DCNNs through conventional 

supervised learning using a vast image dataset (such 

as ImageNet [23]), with the trained model serving as 

the foundational network for transfer learning. The 

trained foundational network can be likened to the 

prior knowledge that a human acquires from past 

visual experiences, which aids in the learning 

process of the target network [24]. 

The Echoscope imaging sonar, created by Coda Octopus, 

stands as the most advanced commercial real-time sonar 

in the world. Boasting a horizontal and vertical resolution 

of 0.4◦, the Echoscope is capable of producing high 

definition images with an impressive maximum range. 

Figure 1 
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The imaging sonar utilizes phased-array techniques to 

produce over 16,000 discrete beams simultaneously, 

resulting in range measurements that gather data points 

with known position and intensity (x, y, z, i) to form a 

comprehensive sonar image. Operating at a ping rate of 

up to 12 Hz, the Echoscope is capable of delivering 

successive image frames akin to video footage for 

monitoring both moving and stationary targets. A 

schematic diagram illustrating the Echoscope imaging 

principle is depicted in Fig. 2, along with an Echoscope 

mounted on a remotely operated vehicle (ROV). 

By offering a high-resolution sonar image, the system 

presents a clear view of the underwater environment, 

facilitating the automatic identification of potential 

targets. The sonar data produced by the Echoscope allows 

for the creation of continuous underwater images. 

 

The network architecture consists of several convolutional 

layers and 2 fully connected layers, inspired by the 

structure of AlexNet. The raw input is processed through 

these layers, with the final fully connected layer 

outputting to Softmax to create a probability distribution 

across n class labels, where n represents the category 

number of underwater targets. AVE pooling is chosen 

over MAX pooling after the initial convolutional layer to 

better handle the speckle-like characteristics of sonar 

images. In order to minimize connection parameters, only 

two fully connected layers are utilized, with dropout 

implemented solely in FC1. 

 

1.CONVOLUTIONALLAYER 

The output feature map yj can be obtained by combining 

convolutions with multiple input maps. It can be 

expressed as yj = f .Σxi∗kij + bjΣ (1), where ∗ represents 

the two-dimensional discrete convolution operator 

and bj is an additive bias. The activationfunction f (x), 

known as Rectified Linear Units (ReLU), is applied to 

each convolutional layer and FC1 layer. It is important to 

note that both the convolution filter weights and biases are 

model parameters that require learning 

2.POOLINGLAYER 

The AVE pooling operation is employed to calculate the 

average value within a pixel's surrounding region, 

whereas the MAX pooling operation is utilized to 

determine the maximum value. By incorporating a 

pooling layer, the dimension of the feature maps can be 

reduced and a slight translation invariance can be 

introduced. 

 

3.FULLY CONNECTEDLAYERS 

Serves as a categorizer within the entire network. The 

fully connected layers are calculated as Y6 = f (W6Y5 + 

B6) and Y7 = ψ (W7Y6 + B7), where Wl and Bl are 

matrices of the trainable parameters, ψ (X ) [i] = eX[i]. 

 

C. NETWORK TRAINING WITH TRANSFER 

LEARNING 

FIGURE2.OverviewoftheEchoscope: 

(a)Beamenergydistributionof 

thephasedarrayimagingsonarsystem; 

(b)AnunderwaterROVequipped 

withanEchoscope(markedwitharectangle) 

FIGURE3.Extractionoftheinterestedimageregio
n.UnderwaterscenesarefirstrecordedbyE-

UIS,saliencydetectionmethodviagraph-based 
manifold ranking is then applied to each 

single frame to get the 
interestedimageregion.Thesesegmentationresult

sarefinallycollected 

fortrainingandtestingtheEchoNet. 
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The training procedure of EchoNet aims to minimize the 

classification error on the training dataset. In other words, 

the model parameters θ are learned in order to minimize 

the cross-entropy cost function. The segmentation results 

can be obtained by normalizing the RGB channels 

separately using min-max normalization. The pixel values 

of the scene-level sonar images are also normalized to a 

range of [0, 1] to reduce any unwanted influence on target 

recognition. Additionally, the training process involves a 

weight decay term, λR(θ), which is a form of L2 

regularization. Typically, the training process of DCNNs 

follows this pattern:

 

.   

III.EXPERIMENTS ANDRESULTS 

A. ECHOSCOPESONAR IMAGEDATASET 

Our underwater target recognition method's effectiveness 

is assessed using an actual, measured sonar image dataset. 

Coda Octopus has carried out sea experiments for this 

purpose. 

Resolution sonar image dataset. Table 1 provides a 

summary of each sea experiment and the corresponding 

number of sonar images obtained at the scene level. A 

total of 2,915 verified target images belonging to 9 classes 

were collected,resolution sonar image dataset. Table 1 

provides a summary of each sea experiment and the 

corresponding number of sonar images obtained at the 

scene level. A total of 2,915 verified target images 

belonging to 9 classes were collected, preprocessed, and 

manually labeled. These images were then divided into 3 

subsets: 900 images (100 images per class) for training, 

450 images (50 images per class) for validation, and the 

remaining 1565 images for testing. 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE1. Details of the Echoscope sonar image dataset 

We conducted experiments using the high-resolution 

imaging sonar Echoscope between 2009 and 2012 in 

different geographical locations with varying 

environmentalconditions. Eachexperiment focused on a 

specific underwater target such as a cornerstone, diver, 

ROV, sunken barge, shipwreck, sunken plane, and sunken 

military tank, as illustrated in Fig. 7. The results of these 

experiments were used to create a high- The original size 

of the sonar images ranged from 150x150x3 to 

240x240x3 pixels. To ensure consistency, all images were 

resized to 227x227x3 pixels before being inputted into 

EchoNet. The images presented in Fig. 7 were also 

resized to this standard size. The dataset contains sonar 

images that exhibit variations in target position, 

orientation, scale, colors, and textures within each class. 

C.TRAINING AND TESTING THEECHONET 

FIGURE4.ThearchitectureoftheEchoNet.Theredcu

boidrepresentstheconvolutionfilter,andthenumbern

exttoit 

specifiesthefiltersize;thebluecuboidsarefeaturemap

scorrespondingtotheoutputofthefirstfivelayers,andt

helight 

greenrectanglesrepresentthefullyconnectedlayers 

FIGURE5.ThetrainingmethodoftheEchoNet.Thelab

eledrectangles(e.g.WA1)representweightslearnedfore

achlayer,andcolorindicates 

whichdatasettheweightswereoriginallytrainedon.Th

eellipsoids 

betweenrectanglesrepresentthefeaturemapsateachla

yer     

FIGURE 7. High-resolution sonar images of 

interested underwater 

targets.Fromtoplefttobottomright:(a)Cornerstone;(b)D

iver(marked 

witharectangledottedline);(c)ROV;(d)Sunkenbarge

1;(e)Sunken 

barge2;(f)Sunkenbarge3;(g)Shipwreck;(h)Sunkenplan

e;(i)Sunken militarytank 
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In this section, we initially outline the training specifics 

and then present the experimental outcomes of the 

proposed target recognition technique on the Echoscope 

sonar image dataset. Our DCNNs models are built on

efficient and practical open-source Caffe framework [30], 

with the 

EchoNet architecture detailed in section II. B. 

The training procedure of EchoNet is extensively 

discussed in section II. C. The AlexNet architecture 

serves as the base network, trained on a subset of 1000 

optical images in each of 1000 categories from the 

ImageNet-2012 dataset, achieving a final top

of 42.6% on the validation set. Subsequently, the 

parameters (WA1 WA6) of AlexNet are transferred to 

EchoNet. The first 2 layers of EchoNet are frozen, while 

the remaining layers are trained on the Echoscope sonar 

image dataset. Mini-batch gradient descent with a batch 

size of 45 is utilized for training EchoNet by back

propagating the classification error. The learning rate is 

set at 0.001, reduced by a factor of 2 every 200 iterations, 

along with weight decay of 0.005 and momentum of 0.9. 

The total number of training iterations is fixed at 1000, 

equivalent to 50 epochs. 

To provide a precise depiction of the results, we 
conducted the EchoNet training and testing experiment 

five times (each lasting approximately 1 hour), yielding 
an average iterations.Accuracyrisesquicklyatthefirst 100 
iterations and tends to be stable after about 200 

iterationstesting accuracy of 96.4% on the nin
underwater target recognition task. The highest accuracy 
achieved was 97.3%, while the lowest was 94.4%. The 

validation loss versus training iterations curve and 
validation accuracy versus training iterations curve from 

one of the EchoNet training experiments are displayed in 
Fig. 8. Despite the substantial number of network 
parameters, overfitting is avoided due to the specialized 

training method developed, as well as the reduction of 
fully-connected layers. For instance, the confusion matrix 
for the best classification results is presented in Table 

2,indicating minimal misclassification of highly similar 
samples. 

We have observed some recent developments in this area.

 

C.METHODSCOMPARISON 

We conduct comprehensive experiments to assess the 

effectiveness of the proposed EchoNet using four 

traditional classifiers in pattern recognition, along with 

two cutting-edge deep neural networks. The four 

traditional classifiers consist of the k-nearest 

(KNN) classifier, the multi-layer perceptron (MLP), and 

the nearest.result. In MLPClassifier, we set one hidden 

layer with 80 neurons and use stochastic gradient descent 

(SGD) to update the model weights. The learning rate is 

set to 0.1, and the maximum iteration is 1000. In SVC, the 

maximum iteration is also set to 1000, and the class 

weight is set to 'balanced'. 
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In this section, we initially outline the training specifics 

and then present the experimental outcomes of the 

proposed target recognition technique on the Echoscope 

sonar image dataset. Our DCNNs models are built on the 

source Caffe framework [30], 

 

The training procedure of EchoNet is extensively 

discussed in section II. C. The AlexNet architecture 
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underwater target recognition task. The highest accuracy 
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validation accuracy versus training iterations curve from 
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Fig. 8. Despite the substantial number of network 
parameters, overfitting is avoided due to the specialized 

training method developed, as well as the reduction of 
connected layers. For instance, the confusion matrix 

he best classification results is presented in Table 

2,indicating minimal misclassification of highly similar 

We have observed some recent developments in this area. 

We conduct comprehensive experiments to assess the 

effectiveness of the proposed EchoNet using four 

traditional classifiers in pattern recognition, along with 

edge deep neural networks. The four 

nearest neighbor 

layer perceptron (MLP), and 

result. In MLPClassifier, we set one hidden 

layer with 80 neurons and use stochastic gradient descent 

(SGD) to update the model weights. The learning rate is 

aximum iteration is 1000. In SVC, the 

maximum iteration is also set to 1000, and the class 

 

When using raw pixel values as input, the accuracy of the 

KNN classifier is 72.0%, while the NN classifier achieves 

an accuracy of 91.4%. By using the widely used baseline 

method of HOG SVM, we obtain an accuracy of 92.7%.

 

FIGURE8.Training 

curvesofEchoNet:(a)Validationlossvs.trainingiterations.Loss

declinessharplyandtendsto 

be0afterabout300iterations;(b)Validationaccuracyvs.traini

ng 

 

TABLE 2. Confusion matrix of 9-class recognition 

results. 

 

 

 

 

 

The Scikit-learn machine learning module is commonly 

used to implement the neighbor 

support vector machine (SVM). In the case of the sonar 

image dataset, it is divided into two subsets: 1350 images 

for training (150 images for each of the 9 classes) and the 

remaining 1565 images for testing. Two types of features 

are used as input for the classifiers: the original pixel 

value of the image and the HOG feature.

To begin with, we define two preprocessing functions. 

The first function flattens a 227x227x3 image into a row 

of pixels. The second function extracts the HOG fea

from a resized 180x180x3 sonar image using the ft.hog 

function. The image is divided into 15x15 blocks, with 

each block containing 2x2 cells and each cell consisting 

of 6x6 pixels. We then extract the features from each 

image and store them in arrays. 

Finally, we apply the KNeighborsClassifier, 

MLPClassifier, and SVC functions to evaluate the data. 

80.
3 
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When using raw pixel values as input, the accuracy of the 

KNN classifier is 72.0%, while the NN classifier achieves 

%. By using the widely used baseline 

method of HOG SVM, we obtain an accuracy of 92.7%. 

 

curvesofEchoNet:(a)Validationlossvs.trainingiterations.Loss

be0afterabout300iterations;(b)Validationaccuracyvs.traini

class recognition 

learn machine learning module is commonly 

used to implement the neighbor (NN) classifier and 

support vector machine (SVM). In the case of the sonar 

image dataset, it is divided into two subsets: 1350 images 

for training (150 images for each of the 9 classes) and the 

remaining 1565 images for testing. Two types of features 

used as input for the classifiers: the original pixel 

value of the image and the HOG feature. 

To begin with, we define two preprocessing functions. 

The first function flattens a 227x227x3 image into a row 

of pixels. The second function extracts the HOG feature 

from a resized 180x180x3 sonar image using the ft.hog 

function. The image is divided into 15x15 blocks, with 

each block containing 2x2 cells and each cell consisting 

of 6x6 pixels. We then extract the features from each 

Finally, we apply the KNeighborsClassifier, 

MLPClassifier, and SVC functions to evaluate the data. 
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For the KNN method, we vary the number of neighbors 

and keep track of the best result. In MLPClassifier, we set 

one hidden layer with 80 neurons and use sto

gradient descent (SGD) to update the model weights. The 

learning rate is set to 0.1, and the maximum iteration is 

1000. In SVC, the maximum iteration is also set to 1000, 

and the class weight is set to 'balanced'. 

 

When using raw pixel values as input, the accuracy of the 

KNN classifier 

is 72.0%, while the NN classifier achieves an accuracy of 

91.4%. By using the widely used baseline method of 

HOG SVM, we obtain an accuracy of 92.7%. 

 

In addition, EchoNet is compared with two well

deep neural networks: AlexNet and GoogLeNet. We 

implement these networks using the Caffe framework and 

employ pre-trained models provided by Caffe. These 

models are then fine-tuned using our Echoscope sonar 

image training dataset. For the fine-tuning process, we use 

the same hyper-parameters as the EchoNet for AlexNet. 

As for GoogLeNet, each iteration of MBGD (Mini

Gradient Descent) uses a batch size of 45, a momentum of 

0.9, and a multiplicative weight decay of 0.005 per 

iteration. The learning rate is set to k=10. The accuracy of 

MLP is 

FIGURE9.TrainingcurvesoftheAlexNet 
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FIGURE9.TrainingcurvesoftheAlexNet

(a)Validationlossvs.trainingiterations

 

 

GoogLeNet attains comparable recognition accuracy to 

EchoNet, although the training duration for GoogLeNet
ten times lengthier than that of EchoNet. In general, the 
methods based on Deep Convolutional Neural Networks 

(DCNNs) outperform the traditional hand

based methods. 

TABLE3.Theresultsofcomparisonmethodsonthesonari
magedataset 

 

 

In addition to the accuracy of underwater multiclass target 

recognition, the real-time requirement is also a crucial 

aspect in ATR. Hence, we also evaluated the effectiveness 

of each method presented in Table 3.

 

FIGURE10.TrainingcurvesoftheGoogLe
Net:(a)Validationlossvs. 
trainingiterations;(b)Validationaccurac
yvs.trainingiterations 
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GoogLeNet attains comparable recognition accuracy to 

EchoNet, although the training duration for GoogLeNet is 
ten times lengthier than that of EchoNet. In general, the 
methods based on Deep Convolutional Neural Networks 

(DCNNs) outperform the traditional hand-crafted features 

TABLE3.Theresultsofcomparisonmethodsonthesonari

addition to the accuracy of underwater multiclass target 

time requirement is also a crucial 

aspect in ATR. Hence, we also evaluated the effectiveness 

of each method presented in Table 3. 

TrainingcurvesoftheGoogLe

trainingiterations;(b)Validationaccurac
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The classifier design typically comprises two 

components: training and test (inference). In practical 

terms, the focus is more on the inference efficiency of a 

classifier. Table 3 displays the average inference time 

taken by each recognition method on a single sonar 

image, calculated by averaging the total test time of 1565 

test images. The test platform utilized is based on a dual

core Intel processor. It is important to note that since the 

first four methods are developed in Python, and the last 

three methods run in Caffe, these runtimes cannot be 

directly compared, but they generally indicate the 

efficiency of each method. The Caffe framework 

primarily relies on C, which is significantly more efficient 

than Python. 

 

Regarding specifics, the time complexity of the KNN and 

NN algorithms increases with the growth of training 

sample size and feature dimension. Each test sample must 

be compared with all training samples, resulting in 

extensive distance calculations. The MLP method, with its 

shallow structure and straightforward computation, proves 

to be highly efficient. On the other hand, the

method requires independent feature extraction (50 ms) 

before utilizing SVM for image recognition, leading to 

reduced recognition efficiency. As for the last three 

DCNNs-based methods, their forward pass floati

operations (FLOPs) are approximately 720M, 1550M, and 

700M respectively. Although each model requires hours 

for training, they do not consume much time during 

testing due to the benefits of an end-to

structure and efficient numerical computation. As 

illustrated in Table 3, EchoNet only takes 60.6 ms to test 

one sonar image. Given that the maximum refresh rate of 

the Echoscope is 12 frames per second, EchoNet proves 

to be sufficiently fast to process each frame in real

 

IV.DISCUSSION 

In this section, we mainly discuss the impact of 

imagenoise, network architecture and training 

method on the recognition performance, and further 

analyze the reason for the success of transfer 

learning through parametervisualization 

 

A. EFFECT OF IMAGE NOISE 

ONRECOGNITION 

InFig.7,wehaveshownsomesonarimagesgenerated

bythe 

Echoscopeduringseaexperiments,whichareofgood

quality. 

TABLE 4.Recognition results of The image datasets 

polluted by noise. 

In this section, we aim to examine the impact of image 

noise on the accuracy of our method's recognition. We 

Research and Engineering Development-– Volume 7 Issue 2, Mar

         Available at www.ijsred.com

©IJSRED: All Rights are Reserved

The classifier design typically comprises two 

components: training and test (inference). In practical 

terms, the focus is more on the inference efficiency of a 
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method requires independent feature extraction (50 ms) 

before utilizing SVM for image recognition, leading to 

reduced recognition efficiency. As for the last three 

based methods, their forward pass floating-point 

operations (FLOPs) are approximately 720M, 1550M, and 

700M respectively. Although each model requires hours 

for training, they do not consume much time during 

to-end model 

putation. As 

illustrated in Table 3, EchoNet only takes 60.6 ms to test 

one sonar image. Given that the maximum refresh rate of 

the Echoscope is 12 frames per second, EchoNet proves 

to be sufficiently fast to process each frame in real-time. 

In this section, we mainly discuss the impact of 

network architecture and training 

method on the recognition performance, and further 

analyze the reason for the success of transfer 

InFig.7,wehaveshownsomesonarimagesgenerated

Echoscopeduringseaexperiments,whichareofgood

Recognition results of The image datasets 

In this section, we aim to examine the impact of image 

accuracy of our method's recognition. We 

introduce two types of zero-mean white Gaussian noises 

with variances of 0.01 and 0.1 respectively. These noises 

are artificially added to the normalized real

sonar images, resulting in two simulated sonar 

datasets that are contaminated by noise. Fig. 11 displays a 

selection of representative sonar images

 

To evaluate the performance of our method, EchoNet, as 

well as other comparison methods, we conduct 

experiments on the polluted image datasets. The

these experiments are presented in Table 4. The 

experimental settings remain consistent with

described in subsection III. C, and each data point 
represents the average value of five experimental results.

 

 

From Table 4, it is evident that

AlexNet are capable of achieving satisfactory recognition 

accuracy even in the presence of high levels of noise. 

Conversely, traditional feature-based methods are 

vulnerable to noise, leading to a significant reduction in 

their accuracy. This further highlights the advantage of 

using DCNNs. Additionally, as the noise level increases, 

the recognition accuracy of each method decreases. 

Therefore, it may be beneficial to consider employing 

image noise reduction techniques during sonar image 

preprocessing to enhance the effectiveness of our 

application. 

 

 

B.AVE POOLING VS. MAXPOOLING

In Section II, we have provided an overview of the 

architecture of the designed DCNNs. In this architecture, 

the first pooling layer utilizes the average approach 

instead of the commonly used maximum approach. Now, 

we aim to evaluate a network that shares 

structure with EchoNet, but with a modification in the 

first pooling layer to use MAX pooling. We conduct 

experiments using the same training method and hyper

parameters, and the results are presented in Fig. 12. With 

the MAX pooling approach, the average testing accuracy 

of the five experiments is 92.6%, with a maximum of 

96.2% and a minimum of 89.3%. On the other hand, the 

AVE pooling approach achieves an average testing 

accuracy of 96.4%, with a maximum of 97.3% and a 

minimum of 94.4%. These results indicate that utilizing 

AVE pooling in the first pooling layer is more effective 

for Echoscope sonar image processing in our method.

C.TRAINING WITH DIFFERENT LOCKED

 

In our training approach, we enforce the first two layers of 
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with variances of 0.01 and 0.1 respectively. These noises 

are artificially added to the normalized real-measured 

sonar images, resulting in two simulated sonar image 

datasets that are contaminated by noise. Fig. 11 displays a 

selection of representative sonar images. 

To evaluate the performance of our method, EchoNet, as 

well as other comparison methods, we conduct 

experiments on the polluted image datasets. The results of 

these experiments are presented in Table 4. The 

experimental settings remain consistent with those 

described in subsection III. C, and each data point 
represents the average value of five experimental results. 

From Table 4, it is evident that both EchoNet and 

AlexNet are capable of achieving satisfactory recognition 

accuracy even in the presence of high levels of noise. 

based methods are 

vulnerable to noise, leading to a significant reduction in 

This further highlights the advantage of 

using DCNNs. Additionally, as the noise level increases, 

the recognition accuracy of each method decreases. 

Therefore, it may be beneficial to consider employing 

image noise reduction techniques during sonar image 

reprocessing to enhance the effectiveness of our 

POOLING VS. MAXPOOLING 

In Section II, we have provided an overview of the 

architecture of the designed DCNNs. In this architecture, 

the first pooling layer utilizes the average approach 

instead of the commonly used maximum approach. Now, 

we aim to evaluate a network that shares a similar 

structure with EchoNet, but with a modification in the 

first pooling layer to use MAX pooling. We conduct 

experiments using the same training method and hyper-

parameters, and the results are presented in Fig. 12. With 

e average testing accuracy 

of the five experiments is 92.6%, with a maximum of 

96.2% and a minimum of 89.3%. On the other hand, the 

AVE pooling approach achieves an average testing 

accuracy of 96.4%, with a maximum of 97.3% and a 

sults indicate that utilizing 

AVE pooling in the first pooling layer is more effective 

for Echoscope sonar image processing in our method. 

C.TRAINING WITH DIFFERENT LOCKEDLAYERS 

In our training approach, we enforce the first two layers of 
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the EchoNet to remain fixed, while the remaining layers 

are permitted to adapt and learn throughout the training 

procedure. Presently, we utilize the notation NL to 

represent the number of locked layers, and we delve into 

the influence of NL value on the performance 

network. The NL values are selected from the set {0, 1, ..., 

6}, and we train new networks accordingly. 

 

(a)                                         (b) 

FIGURE11.Sonarimagespollutedbyzero-

meanwhiteGaussiannoise: 

Noise variance is 0.01; (b) Noise variance is 0.1.

FIGURE12.RecognitionresultsofAVEpoolingapproachan

dMAX poolingapproach 

Please take note that during NL 0, all layers are able to 

participate in training, while during NL 6, only the last 

fully connected layer is permitted to learn. We conduct 

four experiments for each NL value. Apart from varying 

training strategies, the structure of each network remains 

identical to what was mentioned in Section II. All 

experiments utilize training data and test data from the 

same dataset, as specified in Table 1. The experimental 

results are depicted in Fig. 13, where we observe that the 

average recognition accuracy varies with NL. 

FIGURE13.Experimentalresults 
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FIGURE14.Filterweightsvisualizationofthefirstconvoluti

onallayers. 

 

Filtersonlytrainedonopticalimages(N

onopticalimagesandfine-

tunedbysonarimages(NL=0tsoftheEchoNetwithdifferenttra

ining strategies 

Upon examining the designed DCNNs, it becomes 

evident that NL 2 yields the most favorable outcome. This 

implies that solely fine-tuning the target network (NL 0) 

may not yield optimal performance. The decision to lock 

or unlock the initial l layers of the target network may rely 

on the scale of the target dataset and the number of 

parameters in the first m layers [32].

 

D.VISULIZATION OF LEARNED

1. Based on the visualization technique proposed in 

[33], we showcase the filter weights of the initial 

convolutional layer from the EchoNet with NL values of 

0 and 2 in Figure 14. The comparison between the two 

sets of filters visually reveals minimal discrepancies. To 

quantitatively assess the similarity between the two sets 

of weights, we introduce the cor

matrices, which is computed using the formula 

provided. 

 

Matrix respectively. The correlation coefficient of 

these two matrixes is 0.99, which is consistent with the 

results shown in Fig. 14. 

Network parameters trained on optical im

similar to those used for sonar image recognition
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Upon examining the designed DCNNs, it becomes 

evident that NL 2 yields the most favorable outcome. This 

tuning the target network (NL 0) 

may not yield optimal performance. The decision to lock 

target network may rely 

on the scale of the target dataset and the number of 

parameters in the first m layers [32]. 

D.VISULIZATION OF LEARNED FILTERS 

1. Based on the visualization technique proposed in 

[33], we showcase the filter weights of the initial 

onvolutional layer from the EchoNet with NL values of 

0 and 2 in Figure 14. The comparison between the two 

sets of filters visually reveals minimal discrepancies. To 

quantitatively assess the similarity between the two sets 

of weights, we introduce the correlation coefficient of 

matrices, which is computed using the formula 

trix respectively. The correlation coefficient of 

these two matrixes is 0.99, which is consistent with the 

Network parameters trained on optical images are 

similar to those used for sonar image recognition, which 
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illustrates the generalization ability of DCNNs for 

image processing. The front layers of the DCNNs can be 

treated as a versatile 

featureextractor,soitisreasonabletotransfertheknowledge

of optical image recognition to sonar imagerecognition 

 

 

V.CONCULSION 

This paper introduces an ATR method that combines 

forward-looking sonar images with deep convolutional 

neural networks to enhance the accuracy of underwater 

multiclass target recognition tasks. The proposed end-

to-end DCNNs model, EchoNet, is specifically designed 

for this purpose, along with a corresponding training 

strategy that automatically extracts high-level features 

from sonar images during the learning process to 

facilitate target recognition. Additionally, a sonar image 

dataset comprising 2,915 images is created for testing 

sonar image recognition algorithms. 

A series of experiments are conducted to explore the 

impact of network architectureand training methods on 

recognition performance, as well as to analyze 

thesuccess of transfer learning. The results indicate that 

the proposed method outperforms traditional classifiers 

in terms of accuracy, real-time performance, and noise 

resistance. Notably, the method achieves an accuracy of 

80.3% in a nine-class underwater ATR task, surpassing 

four traditional classifiers and two deep neural 

networks. 

The research highlights the potential of utilizing 

imaging sonar and DCNNs for underwater ATR, which 

is crucial for enabling underwater vehicles to 

autonomously navigate and perceive the ocean 

environment. It is anticipated that deploying DCNNs on 

unmanned platforms will become more feasible in the 

future as network architecture continues to be optimized 

and hardware computing acceleration technology 

advances. 
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