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ABSTRACT 
This research is aimed at conducting a sensitivity study, evaluating the performance of Bayesian 

estimators against Bayesian ridge methods under conditions of multicollinearity. The Bayesian schemes 

involves the introduction of a prior together with the likelihood which resulted in the posterior 

distribution that is not tractable, hence the use of numerical method i.e Gibbs sampler. Different ridge 

parameters k were introduced to remedy the effect of multicollinearity .Pena data was used  to carry out 

Sensitivity analysis varying the priors with Bayesian estimate only ,Bayesian with Hoerl and Kennard 

ridge, Bayesian with Fayose and Ayinde ridge and Lukman and Ayinde ridge. The trace plot was draw 

for convergence.The sensitivity of the different priors were examined  to know the impact of the priors, 

how sensitive the estimators are in the presence of multicollinearity. The introduction of Bayesian ridge 

estimators using different ridge parameter estimators shows promising improvement since the values of 

the estimates become more stable than the Bayesian estimator without multicolinearity, especially, for 

Lukman and Ayinde (2017) estimators which makes a good estimator to be used. The Trace plot shows 

relatively stable horizontal mean and variance, indicating convergence. 
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INTRODUCTION 
Multicollinearity is a statistical phenomenon that 

occurs when two or more predictor variables in a 

regression model are highly correlated with each 

other. In other words, it is a condition in which 

there is a strong linear relationship between two 

or more independent variables in a regression 

analysis. 

There are many research scenarios within the 

Bayesian context where informative (or user-

specified) priors have an impact on final model 

estimates. Some examples include research with 

models such as the latent growth mixture model 

(Depaoli et al., 2017b; van de Schoot et al., 2018), 

the confirmatory factor analytic model (Golay et 

al., 2013), and logistic regression (Heitjan et al., 

2008). 

Van Erp, S., Mulder, J., &Oberski, D. L. (2018).. 

In their paper, examine the effectiveness of three 

distinct default priors: empirical Bayes priors, 

which are unique, noninformative improper 

priors, and ambiguous proper priors. They 

discover that these three default Bayesian 

structural equation modeling( BSEM) algorithms 

may perform substantially differently, especially 

with small samples, based on a simulation 

research. For this reason, a default BSEM study 

requires a thorough preceding sensitivity analysis 

Depaoli, S.et al (2020). In their paper emphasizes 

the importance of conducting prior sensitivity 

analysis, even when using so-called "diffuse" 

priors. A small simulation study demonstrates 

how priors can significantly affect estimates and 

help to  understand the role of priors and the 

importance of sensitivity analysis in Bayesian 

methods. 
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 Likelihood-Based Methods and Bayesian 

Method: 
Comparative studies between Bayesian and 

likelihood-based methods have been conducted in 

various contexts. Gelman et al. (2014) and Albert 

(2009) provide comprehensive overviews of 

Bayesian data analysis, while Agresti (2002) and 

Cameron and Trivedi (2013) delve into 

likelihood-based methods for logistic and negative 

binomial regression. 

However, the specific focus on comparing 

Bayesian estimators with likelihood-based 

methods in the presence of multicollinearity is 

limited. This research objective aims to bridge 

this gap by conducting a sensitivity study, 

evaluating the performance of Bayesian 

estimators against likelihood-based methods 

under conditions of multicollinearity 

 

 

Sensitivity of Bayesian Posterior Simulation 

Method: 
Sensitivity analysis is a useful tool for researchers 

to compare final model findings based on the 

original (or reference) prior to results obtained 

with alternative priors. Sensitivity analyses are 

generally advised, and a checklist (Depaoli and 

van de Schoot, 2017) has been produced to help 

with the transparent interpretation and conduct of 

such analyses. Numerous Bayesian experts (e.g., 

Muthén and Asparouhov, 2012; Kruschke, 2015) 

support this recommendation. The following 

publications provide applicable works that use a 

sensitivity analysis of priors: Müller (2012), 

Depaoli et al. (2017a), or van de Schoot et al 

(2014). 

The sensitivity of Bayesian posterior simulation 

methods to multicollinearity is an underexplored 

area. While research by Gelman et al. (2013) and 

Brooks and Gelman (1998) provides foundational 

insights into Bayesian posterior simulation 

methods, their robustness in the context of 

generalized linear models under multicollinearity 

remains to be systematically investigated. 

An important component of any Bayesian analysis 

is the prior distribution of the unknown model 

parameters. Often, researchers rely on default 

priors, which are constructed in an automatic 

fashion without requiring substantive prior 

information. However, the prior can have a 

serious influence on the estimation of the model 

parameters, which affects the mean squared error, 

bias, coverage rates, and quantiles of the 

estimates. 

 

 

Materials and Methodology. 
Bayesian Ridge Regression: In Bayesian ridge 

regression, a prior distribution is specified for the 

regression coefficients. The prior distribution 

shrinks the coefficients towards zero, effectively 

reducing the impact of multicollinearity. The 

strength of the shrinkage is controlled by 

hyperparameters, which can be estimated from the 

data or set based on prior knowledge. 

Bayesian Logistic Regression is a variation of 

logistic regression that incorporates Bayesian 

principles for estimating the model parameters 

and making probabilistic inferences about them. 

Unlike traditional (frequentist) logistic regression, 

which uses maximum likelihood estimation 

(MLE) to estimate the parameters, Bayesian 

Logistic Regression provides a probability 

distribution over the parameters themselves. This 

makes it possible to express uncertainty about the 

parameter estimates and to perform Bayesian 

model selection and hypothesis testing.  

Prior Distribution: In Bayesian Logistic 

Regression, a prior distribution for the model 

parameters is gotten. This prior reflects the beliefs 

about the parameters before observing any data. It 

encapsulates any prior knowledge or assumptions 

gotten about the values. We assume a normal 

prior on β.      ��	~	�(��,
��) 
Likelihood: Like the traditional logistic 

regression, Bayesian Logistic Regression uses a 

likelihood function that models the probability of 

observing the data given the model parameters. 

For binary classification, the likelihood is 

typically the binomial likelihood. 

Likelihood =    
(��)���1 − 
(��)�����(1) 

where  
(��)represents the probability of the 

event for i with covariate vector �� 	����� 
indicates the presence of �� = 1, or absence  y=0  
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of the event i.From the classical logistic 

regression 
(��) is given by: 


(��) = 	 ��� �!"! ⋯ �$"$�%��� �!"! ⋯ �$"$               (2) 

In effect the likelihood contribution from ith 

subject i 

  Likelihood = & ��� �!"! ⋯ �$"$�%��� �!"! ⋯ �$"$'
�� &1 −

		 ��� �!"! ⋯ �$"$�%��� �!"! ⋯ �$"$(
(����)

(3) 

Given that individual subjects are assumed 

independent from each other, the likelihood 

function over a data set of n subject is the 

Likelihood =  ∏ *& ��� �!"! ⋯ �$"$�%��� �!"! ⋯ �$"$'
�� &1 −+�,�

		 ��� �!"! ⋯ �$"$�%��� �!"! ⋯ �$"$(
(����)'(4)     

Posterior Distribution: The goal of Bayesian 

Logistic Regression is to compute the posterior 

distribution over the model parameters. This 

posterior distribution represents the updated 

beliefs about the parameters after observing the 

data. It is proportional to the product of the prior 

distribution and the likelihood function.  

  Posterior ∝ Likelihood × Prio 

   Posterior  =  ∏ *& ��� �!"! ⋯ �$"$�%��� �!"! ⋯ �$"$'
�� &1 −+�,�

		 ��� �!"! ⋯ �$"$�%��� �!"! ⋯ �$"$(
(����)'    

x∏ �
./0
� 1�2 3− �

/ 45����
� 6
/7+�,� (5) 

Bayesian Logistic Regression offers a more 

principled and flexible approach to logistic 

regression modeling, especially when dealing 

with small sample sizes or when prior information 

is available. It provides a richer understanding of 

parameter uncertainty and allows for more 

comprehensive probabilistic inference. However, 

it typically requires more computational resources 

and expertise in Bayesian methods compared to 

traditional logistic regression. 

Bayesian methods allow for the estimation of 

these hyperparameters as well, which can lead to 

more robust model tuning. 

Logistic Regression Using Pólya-Gamma Latent 

Variables was used in this paper to address the 

presence of multicollinearity. Polson et al. (2012) 

proposed an alternative Gibbs sampler for logistic 

and negative binomial models.The approach 

introduces a vector of latent variables, Zi, that are 

scale mixtures of normals with independent 

Pólya-Gamma precision terms rather than Gamma 

precision terms as in the t-link model 

A random variable ω is said to have a Polya-

Gamma distribution with parameters b>0 and 

c∈ ℜ, if 

:~	;<(=, >) ≞ �
/0�∑ A$

(B�� /⁄ )�%D� (E0�)⁄FB,� (6) 

where�B′H are independently distributed 

according to a Ga(b,1) distribution giving an 

important property of the PG(b,c) density –

namely that for a∈ ℜ	and IJℜ 
(�K)L
(�%�K)M =	2�O1BP Q 1�RP� /⁄ S(: =, 0⁄ )F

U �:(7) 

          Where k = a-b/2 and S(: =, 0⁄ ) denotes a 

PG (b,0) density. 

 

Here the ridge – type estimator of ꞵ was 

examined for logistic model. Different levels of 

ridge-type parameter (V), namely Hoerl and 

Kennard (1970), Lukman and Ayinde (2015) and 

Fayose and Ayinde (2019) was introduced, and 

the posterior mean was examined.   

Likelihood: 
This is the joint probability density function 

(p.d.f) for the model  

 

Logistic   f (W; Y, H)                  
ℯ[(\[]) ^⁄

_��%ℯ[(\[]) ^⁄ �� 																									W ∈ (−∞, +∞)			H >0 
A Gibbs sampler for logistic models was proposed 

by Polson et al. (2012). This involves the use of a 

vector of latent random variablesc� that are scale 

mixtures of normal with independent polya-

gamma precision terms rather than Gamma 

precision terms as in t-link models. A polya-

gamma random variable d with parameters (�, =) 
with � > 0 and = ∈ 	ℜ is given  

e(�|�, =) = �
/0�∑ R$

gB�!�h
�% M�

ij�
FB,�             (8) 

Where:B’s are independently distributed 

according to a <�kk�(=, 1) distribution. 

They further established a germane property of 

polya-gamma density that made it useful as a 

sampler for logistic model: 
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(�K)L
(�%�K)M = 2�O1lP Q 1�mK�� 2(:|=, 0)�:,F

U     (9)

     

Here, n = � − O
/ and 2(:|=, 0) denotes a polya-

gamma density with parameters(=, 0). 
The integrand on the right hand side is the kernel 

of a normal density with precision : (i.e the 

conditional density of դ ) times the prior for	:. 

Hence, we can 

The LHS of equation (1) has the same function 

form as the probability parameter logistic 

regression model.  

Hence, from the likelihood of binary response 

vector, the Bernoulli likelihood has the same form 

as the LHS of equation (1). So, with these 

properties of polya-gamma and its connection 

with logistic regression model, Polson et al (2012) 

shows that the full conditional distribution of � 

given c and : is 		2(�|c = �,:) 	∝

(�) exp r− �

/ (s − d�)tu(s − d�)( (10) 
It is clear that the random variable v follows 

Normal distribution with mean w and a 

varianceu�� = xy. 
Thus, assuming a z{(βU, }U��) prior for �, the full 

conditional for � given v = s and u is  z{(k, ~), 
where ~ = (}U + dtud)��, k = ~(}U�U +dtus), different �  in the ridge used namely. 

Ridge Estimator (HoerlAnd Kennard, (1970a) 

Hoerl and Kennard                                    

2

2

ˆ

ˆ
)(ˆ

i

i HKk
α

σ
=  , i = 1, 2, 3, p.    

where 2σ̂  = 
pn

e
n

i

i

−

∑
=1

2

 and it is the Mean Square Error 

from the OLS regression, iα  is the i
th

 element of 

the vector, and is also the regression coefficient 

from the OLS regression. iα  = β̂l
Q   where Q  is 

an orthogonal matrix. p is the number of 

regressors and n is the sample size   

Ridge Estimator (LukmanAndAyinde(2017) 

Lukman and Ayinde
2

2

ˆ

ˆ
)(ˆ

ii

i LAk
αλ

σ
=  

where λ = (��) = 1,2,3, . . . , 2 

 

Ridge Estimator (FayoseAndAyinde, (2019) 
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where pMin iMin ,...,3,2,1)( == λλ  

Different high levels of collinearity among 

regressors were chosen to be:  

High Positive Collinearity (HPC) when		S = 0.80, 

0.85, 0.90, 0.95,0.99 and 0.999 with 

Sample sizes10,20,30,50,100,200,300 and 

500.Three explanatory variables were used for the 

different levels of multicollinearity with 

increasing sample sizes after which seven 

explanatory variables were also used for the 

different levels of multicollinearity with the 

increasing sample sizes.  

In this study, model estimation was carried out 

using Bayesian approach via the Gibbs sampler of 

the Markov Chain Monte Carlo simulation and 

pena data was used in the analysis to carry out 

Sensitivity analysis varying the priors with 

Bayesian estimate only ,Bayesian with Hoerl and 

Kennard ridge, Bayesian with Fayose and Ayinde 

ridge and Lukman and Ayinde ridge.The trace 

plot was  drawnfor convergence. 
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 Data Analysis 
 

Sensitivity Analysis 
 

Table 1: Bayesian Only 

Estima

te 

precisio

n 

Mean(SD) 

β0	 Mean(SD) 

β1 

Mean(SD) 

β2 

Mean(SD) 

β3 

 

Mean(SD) 

β4 

 

0.2 0.05 -4.27(3.02) 1.75(0.66) -0.07(0.02) 0.10(0.06) -0.44(0.22) 

 0.10 -2.84(2.48) 1.60(0.63) -0.07(0.02) 0.09(0.06)                                    -0.46(0.22) 

 1.00 -0.22(0.95) 1.02(0.46) -0.06(0.02) 0.07(0.05)                                    -0.42(0.18)                                    

0.4 0.05 -4.19(3.02) 1.79(0.68) -0.07(0.03) 0.10(0.06)                                    -0.46(0.23)                                    

 0.10 -2.72(2.47) 1.57(0.62) -0.07(0.02) 0.09(0.06)                                    -0.46(0.22)                                    

 1.00 -0.04(0.94) 1.04(0.47) -0.06(0.02) 0.06(0.05)                                    -0.43(0.17) 

0.6 0.05 -4.15(3.03) 1.77(0.67) -0.07(0.02) 0.10(0.06)                                    -0.45(0.22)                                    

 0.10 -2.64(2.45) 1.56(0.62) -0.07(0.02) 0.08(0.06)                                    -0.46(0.21)                                    

 1.00 0.11(0.96) 1.06(0.47) -0.06(0.02) 0.06(0.05)                                    -0.44(0.18)                                    

1.0 0.05 -3.97(3.05) 1.74(0.66) -0.07(0.03) 0.10(0.06)                                    -0.45(0.22)                                    

 0.10 -2.40(2.45) 1.56(0.62) -0.07(0.02) 0.08(0.06)                                    -0.47(0.21)                                    

 1.00 0.45(0.97) 1.11(0.48) -0.06(0.02) 0.06(0.05)                                    -0.47(0.18)                                    

1.5 0.05 -3.78(3.02) 1.73(0.67) -0.07(0.03) 0.09(0.06)                                    -0.46(0.23)                                    

 0.10 -2.20(2.45) 1.55(0.63) -0.07(0.02) 0.08(0.06)                                    -0.48(0.22)                                    

 1.00 0.84(0.96) 1.15(0.49) -0.06(0.02) 0.05(0.05)                                    -0.49(0.18)                                    

2,0 0.05 -3.56(2.99) 1.69(0.66) -0.07(0.02) 0.09(0.06)                                    -0.45(0.21)                                    

 0.10 -1.88(2.42) 1.51(0.62) -0.07(0.02) 0.08(0.06)                                    -0.48(0.21)                                    

 1.00 1.27(0.97) 1.19(0.50) -0.06(0.02) 0.04(0.05)                                    -0.51(0.19)                                    

3.0 0.05 -3.25(3.01) 1.69(0.67) -0.07(0.03) 0.09(0.06)                                    -0.47(0.22)                                    

 0.10 -1.38(2.44) 1.49(0.62) -0.07(0.02) 0.07(0.06)                                    -0.50(0.21)                                    

 1.00 2.10(0.96) 1.35(0.53) -0.07(0.02) 0.03(0.05)                                    -0.58(0.19)                                    

4.5 0.05 -2.56(2.97) 1.62(0.66) -0.07(0.02) 0.08(0.06)                                    -0.48(0.22)                                    

 0.10 -0.59(2.47) 1.45(0.63) -0.07(0.02) 0.07(0.06)                                    -0.52(0.22)                                    

 1.00 3.35(0.98) 1.59(0.57) -0.07(0.02) 0.01(0.05)                                    -0.67(0.20)                                    

5.0 0.05 -2.47(2.96) 1.63(0.66) -0.07(0.02) 0.08(0.06)                                    -0.49(0.23)                                    

 0.10 -0.32(2.47) 1.45(0.64) -0.07(0.02) 0.07(0.06)                                    -0.54(0.22)                                    

 1.00 3.75(0.96) 1.67(0.60) -0.08(0.02) 0.00(0.05)                                    -0.70(0.21)                                    

6.0 0.05 -1.96(2.97) 1.59(0.65) -0.07(0.02) 0.08(0.06)                                    -0.50(0.22)                                    

 0.10 0.17(2.45) 1.42(0.63) -0.07(0.02) 0.06(0.06)                                    -0.55(0.22)                                    

 1.00 4.64(0.97) 1.91(0.64) -0.08(0.03) -0.01(0.06)                                    -0.78(0.22)                                    
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Table 2: HoerlAndKennard Ridge With Bayesian 

Estima

te 

precisio

n 

Mean(SD) 

β0	 Mean(SD) 

β1 

Mean(SD) 

β2 

Mean(SD) 

β3 

 

Mean(SD) 

β4 

 

0.2 0.05 -3.28(2.53) 1.30(0.53) -0.06(0.02) 0.06(0.05) -0.28(0.15) 

 0.10 -2.37(2.17) 1.20(0.51) -0.05(0.02) 0.06(0.04) -0.30(0.15) 

 1.00 -0.25(0.94) 0.83(0.40) -0.05(0.02) 0.04(0.04) (0.06) 

0.4 0.05 -3.17(2.53) 1.29(0.53) -0.06(0.02) 0.06(0.04) -0.29(0.15) 

 0.10 -2.30(2.19) 1.19(0.51) -0.05(0.02) 0.05(0.04) -0.30(0.15) 

 1.00 -0.07(0.95) 0.83(0.41) -0.05(0.02) 0.04(0.04) -0.31(0.13) 

0.6 0.05 -3.15(2.57) 1.30(0.54) -0.06(0.02) 0.06(0.05) -0.29(0.15) 

 0.10 -2.22(2.18) 1.17(0.50) -0.05(0.02) 0.05(0.04) -0.30(0.15) 

 1.00 0.05(0.94) 0.85(0.40) -0.05(0.02) 0.04(0.04) -0.32(0.13) 

1.0 0.05 -3.06(2.60) 1.30(0.54) -0.06(0.02) 0.06(0.05) -0.29(0.15) 

 0.10 -2.04(2.19) 1.17(0.51) -0.05(0.02) 0.05(0.04) -0.31(0.14) 

 1.00 0.39(0.94) 0.87(0.41) -0.05(0.02) 0.03(0.04) -0.33(0.13) 

1.5 0.05 -2.88(2.53) 1.28(0.54) -0.06(0.02) 0.06(0.05) -0.29(0.15) 

 0.10 -1.88(2.19) 1.15(0.51) -0.05(0.02) 0.05(0.04) -0.31(0.15) 

 1.00 0.78(0.95) 0.89(0.41) -0.05(0.02) 0.03(0.04) -0.35(0.13) 

2.0 0.05 -2.77(2.53) 1.27(0.53) -0.06(0.02) 0.06(0.04) -0.30(0.15) 

 0.10 -1.63(2.22) 1.14(0.51) -0.05(0.02) 0.05(0.04) -0.32(0.14) 

 1.00 1.16(0.95) 0.92(0.42) -0.05(0.02) 0.02(0.04) -0.37(0.14) 

3.0 0.05 -2.54(2.54) 1.25(0.53) -0.06(0.02) 0.06(0.05) -0.30(0.15) 

 0.10 -1.22(2.18) 1.10(0.51) -0.05(0.02) 0.04(0.04) -0.32(0.15) 

 1.00 1.96(0.94) 0.98(0.43) -0.06(0.02) 0.01(0.04) -0.41(0.14) 

4.5 0.05 -2.07(2.54) 1.19(0.52) -0.06(0.02) 0.05(0.05) -0.31(0.15) 

 0.10 -0.63(2.19) 1.06(0.50) -0.05(0.02) 0.04(0.04) -0.34(0.14) 

 1.00 3.16(0.95) 1.10(0.45) -0.06(0.02) -0.01(0.04) -0.47(0.14) 

5.0 0.05 -1.98(2.51) 1.21(0.53) -0.06(0.02) 0.05(0.04) -0.32(0.15) 

 0.10 -0.39(2.19) 1.05(0.51) -0.05(0.02) 0.04(0.04) -0.34(0.15) 

 1.00 3.54(0.95) 1.14(0.46) -0.06(0.02) -0.02(0.04) -0.48(0.14) 

6.0 0.05 -1.67(2.50) 1.16(0.52) -0.05(0.02) 0.05(0.04) -0.32(0.15) 

 0.10 -0.01(2.19) 1.01(0.50) -0.05(0.02) 0.04(0.04) -0.35(0.15) 

 1.00 4.34(0.95) 1.26(0.48) -0.07(0.02) -0.03(0.04) -0.53(0.15) 
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Table 3:Fayose And Ayinde Ridge With Bayesian 

 

Estima

te 

precisio

n 

Mean(SD) 

β0	 Mean(SD) 

β1 

Mean(SD) 

β2 

Mean(SD) 

β3 

 

Mean(SD) 

β4 

 

0.2 0.05 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.10(0.04) -0.21(0.12) 

 0.10 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.10(0.04) -0.21(0.12) 

 1.00 0 .001(0.01) 0.01(0.04) -0.05(0.02) 0.09(0.04) -0.20(0.12) 

0.4 0.05 0 .001(0.01) 0.01(0.04) -0.05(0.02) 0.10(0.04) -0.21(0.12) 

 0.10 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.09(0.04) -0.21(0.12) 

 1.00 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.09(0.04) -0.20(0.12) 

0.6 0.05 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.10(0.04) -0.21(0.12) 

 0.10 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.10(0.04) -0.21(0.12) 

 1.00 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.09(0.04) -0.20(0.12) 

1.0 0.05 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.10(0.04) -0.21(0.12) 

 0.10 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.10(0.04) -0.21(0.12) 

 1.00 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.09(0.04) -0.20(0.11) 

1.5 0.05 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.10(0.04) -0.21(0.12) 

 0.10 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.09(0.04) -0.21(0.12) 

 1.00 0 .001(0.01) 0.01(0.04) -0.05(0.02) 0.09(0.04) -0.19(0.11) 

2.0 0.05 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.09(0.04) -0.21(0.12) 

 0.10 0 .001(0.01) 0.01(0.04) -0.05(0.02) 0.10(0.04) -0.21(0.11) 

 1.00 0 .001(0.01) 0.01(0.04) -0.05(0.02) 0.09(0.04) -0.19(0.11) 

3.0 0.05 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.10(0.04) -0.21(0.12) 

 0.10 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.09(0.04) -0.20(0.12) 

 1.00 0 .001(0.01) 0.01(0.04) -0.05(0.02) 0.09(0.04) -0.18(0.11) 

4.5 0.05 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.09(0.04) -0.21(0.12) 

 0.10 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.09(0.04) -0.21(0.12) 

 1.00 0 .001(0.01) 0.01(0.04) -0.05(0.02) 0.08(0.04) -0.17(0.11) 

5.0 0.05 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.09(0.04) -0.21(0.12) 

 0.10 0 .001(0.01) 0.01(0.04) -0.05(0.02) 0.09(0.04) -0.20(0.12) 

 1.00 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.08(0.04) -0.16(0.11) 

6.0 0.05 0.001 (0.01) 0.01(0.04) -0.05(0.02) 0.09(0.04) -0.21(0.12) 

 0.10 0 .001(0.01) 0.01(0.04) -0.05(0.02) 0.09(0.04) -0.20(0.12) 

 1.00 0.001 (0.01) 0.02(0.04) -0.05(0.02) 0.08(0.04) -0.16(0.11) 
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Table 4:Lukman AndAyinde  Ridge With Bayesian 

Estima

te 

precisio

n 

Mean(SD) 

β0	 Mean(SD) 

β1 

Mean(SD) 

β2 

Mean(SD) 

β3 

 

Mean(SD) 

β4 

 

0.2 0.05 -5.96(2.80) 1.28(0.57) -0.07(0.02) 0.06(0.05) -0.06(0.06) 

 0.10 -4.24(2.29) 1.02(0.49) -0.06(0.02) 0.05(0.05) -0.06(0.06) 

 1.00 -0.58(0.95) 0.46(0.36) -0.05(0.02) 0.02(0.04) -0.08(0.06) 

0.4 0.05 -5.94(2.72) 1.27(0.55) -0.07(0.02) 0.06(0.05) -0.06(0.06) 

 0.10 -4.13(2.30) 1.01(0.50) -0.06(0.02) 0.04(0.05) -0.06(0.06) 

 1.00 -0.45(0.94) 0.47(0.36) -0.06(0.02) 0.01(0.04) -0.08(0.06) 

0.6 0.05 -5.85(2.74) 1.27(0.56) -0.06(0.02) 0.06(0.05) -0.06(0.06) 

 0.10 -4.09(2.26) 1.00(0.50) -0.06(0.02) 0.04(0.05) -0.06(0.06) 

 1.00 -0.27(0.94) 0.47(0.36) -0.05(0.02) 0.01(0.04) -0.08(0.06) 

1.0 0.05 -5.69(2.71) 1.24(0.55) -0.06(0.02) 0.06(0.05) -0.06(0.06) 

 0.10 -3.97(2.26) 0.99(0.50) -0.06(0.02) 0.04(0.05) -0.06(0.06) 

 1.00 0.01(0.94) 0.47(0.36) -0.06(0.02) 0.01(0.04) -0.08(0.06) 

1.5 0.05 -5.52(2.71) 1.22(0.55) -0.06(0.02) 0.06(0.05) -0.06(0.06) 

 0.10 -3.70(2.28) 0.95(0.50) -0.06(0.02) 0.04(0.05) -0.07(0.06) 

 1.00 0.40(0.93) 0.48(0.36) -0.06(0.02) 0.00(0.04) -0.09(0.06) 

2.0 0.05 -5.45(2.72) 1.21(0.56) -0.06(0.02) 0.05(0.05) -0.06(0.06) 

 0.10 -3.48(2.25) 0.94(0.50) -0.06(0.02) 0.04(0.04) -0.07(0.06) 

 1.00 0.79(0.94) 0.48(0.37) -0.06(0.02) -0.01(0.04) -0.09(0.06) 

3.0 0.05 -5.16(2.68) 1.18(0.54) -0.06(0.02) 0.05(0.05) -0.06(0.06) 

 0.10 -3.06(2.22) 0.89(0.49) -0.06(0.02) 0.03(0.04) -0.07(0.06) 

 1.00 1.54(0.94) 0.50(0.38) -0.06(0.02) -0.03(0.04) -0.10(0.06) 

4.5 0.05 -4.60(2.66) 1.11(0.54) -0.06(0.02) 0.05(0.05) -0.06(0.06) 

 0.10 -2.43(2.21) 0.82(0.49) -0.06(0.02) 0.03(0.04) -0.07(0.06) 

 1.00 2.71(0.95) 0.53(0.39) -0.06(0.02) -0.05(0.04) -0.11(0.06) 

5.0 0.05 -4.45(2.66) 1.09(0.55) -0.06(0.02) 0.04(0.05) -0.06(0.06) 

 0.10 -2.20(2.19) 0.79(0.48) -0.06(0.02) 0.02(0.04) -0.07(0.06) 

 1.00 3.12(0.95) 0.54(0.39) -0.06(0.02) -0.06(0.04) -0.11(0.06) 

6.0 0.05 -4.14(2.60) 1.05(0.54) -0.06(0.02) 0.04(0.05) -0.06(0.06) 

 0.10 -1.82(2.22) 0.75(0.49) -0.06(0.02) 0.02(0.04) -0.08(0.06) 

 1.00 3.89(0.95) 0.57(0.42) -0.07(0.02) -0.08(0.04) -0.12(0.06) 
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Discussion and Results 
The sensitivity of the different priors was 

examined to know the impact of the priors, how 

sensitive the estimators are in the presence of 

multicollinearity. 

From the sensitivity analysis carried out, 

evaluating the performance of Bayesian 

estimators against Bayesian ridge methods 

under conditions of multicollinearity. 

the priors with Bayesian estimate only

with Hoerl and Kennard ridge, Bayesia

Fayose and Ayinde ridge and Lukman and 

Ayinde ridge.  
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Table 1 shows the mean and standard deviation 

using only Bayesian estimate 

showsthe one of Hoerl and Kennard ridge with 

Bayesian which was relatively stable compare to 

that of Bayesian only when the priors were 

varied. Table 4 shows the result of lukman and 

Ayinde ridge with Bayesian and the result of 

varying the priors gives a better stability than 

the previous two andlastly 

of Fayose and Ayinde

Bayesian which bring about the best stability

and this makes  it a good estimator to be 

used.The trace plot was drawn 

and it showing a relatively stable horizontal 

mean and variance, indicating convergence

 

Conclusion   
Comparing the posterior estimates of models 

with various prior specifications allowed us to 

assess the robustness of the findings. The 

posterior estimates between models will have a 

low percentage of deviation if priors have little 

effect on the outcomes. In case the pr

noteworthy influence, a greater percentage 

divergence between the models will be 

observed. 

Tables 1 to 4 shows the sensitivity of the 

estimators in the presence of multicollinearity, 

the dataset used has been confirmed by several 

authors among which is Aladeitan et al., 2023. 

Hence, the sensitivity of the classical and 

bayesian estimators is high towards change in 

scenarios. But the introduction of Bayesian 

ridge estimators using different ridge parameter 

estimators shows promising improvement 

the values of the estimates become more stable 

than the Bayesian estimator without 

multicolinearity, especially, for Lukm

Ayinde (2017) estimators which makes a good 

estimator to be used.The Trace plot

relatively stable horizontal mean a

indicating convergence. 
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