Available at www.ijsred.com

RESEARCH ARTICLE

OPEN ACCESS

# Geological Sustainability: A Major Focus on the Geological Impact of Bioremediation Involving Excavation in Comparison with Non-Excavation Bioremediation Methods

Chidinma Uzochukwu\*, SeleghaE. Abrakasa\*\*Hycienth O. Nwankwoala\*\*\*, Leo C. Osuji\*\*\*\*

# Abstract:

The main focus of environmental sustainability has been on remaining natural resources for next generation use and eliminating or reducing contamination into the atmosphere, land, surface and ground water as we harness natural resources for human use. Little or no emphasis has been made on geological sustainability especially in response to oil spill which is one of the negative impacts of the oil and gas industry activities. Geological sustainability entails preserving geology of an area and avoidance of human induced geological change. If one studied the geology of an area; can the next person study the geology of the same area sometime in the future and make similar findings? If a change exist, can that change be explained by geology alone being free of human influence? RENA involving excavation of impacted soil and back-filling of the treated soil has become the norm in the remediation of crude oil contaminated land; a major question of concern is whether geological sustainability is in view during the excavation and back-filling process. Are there measures to ensure that the various layers of soil in the soil profile are kept and remediated separately? Are there measures to ensure that each remediated soil layer is taken back to its subsurface position during the back-filling process? What are the likely geological impacts in situations where back-filling is done with soil obtained from elsewhere? These questions suggest the need for the geological society to flag-off geological sustainability campaign and say no to human induced geological change. This study made use of geological findings from two remediated sites as well as a bench scale study of the effectiveness of non-excavation remediation methods utilizing biostimulation and phytoremediation. Soil profiles from sampling points in the understudied remediated sites indicated non correlation within the remediated area in comparison with areas outside the remediated section, except for deeper depths not included in the remediation execution. Applied biostimulation and phytoremediation approach showed great potential in reducing the initial TPH value to up to 73% of the initial at monitoring and 79.2% of the remaining TPH at close out for the phytoremediation approach; up to 63% of the initial TPH was degraded at monitoring and up to 78.7% of the remaining TPH was degraded at close out for the biostimulation approach; and up to 90% of the starting TPH was degraded at monitoring and up to 57.6% of the remaining TPH degraded at close out for the integration of both. The result re-directs the mind on the need to narrow down environmental sustainability to geological sustainability especially in the area of remediation of crude oil contaminated land involving excavation and back-filling.

Keywords — Bioremediation, Biostimulation, Phytoremediation, Geological sustainability.

#### **1.INTRODUCTION**

Geological sustainability entails preserving geology and avoidance of human induced geological change. Environmental sustainability led to the emergent of oil spill response and remediation using ecofriendly methods mainly bioremediation employing land farming of excavated soil; while this sustains the environment in terms of removal of the contaminant of concern from the environment to as low as reasonably possible, it may not sustain the geology of the remediated area if geological sustainability is not in view. If one studied the geology of an area; can the next person study the geology of the same area sometime in the future and make similar findings? If a change exist, can that change be explained by geology alone being free of human influence? Excavation and backfilling has become the norm in the remediation of crude oil contaminated land in the Niger Delta particularly in Ogoni; a major question of concern is whether geological sustainability is in view during the excavation and back-filling process. The report on the environmental assessment of Ogoni pointed out that the only remediation method observed in Ogoni is Remediation by Enhanced Natural Attenuation (RENA); according to the report, the method has proven not to be effective. RENA usually involves excavation and land farming of spill impacted soil which threatens geological sustainability as it alters soil structure and properties such as porosity and permeability. There are usually no conscious steps taken to ensure that impacted soil is excavated and land farmed separately based on soil strata and that they are returned back to their true subsurface position during back filling. In January 2010, SPDC (Shell Petroleum Development Company of Nigeria) adopted a new remediation management system, while the report commended the method as an improvement, it still noted that the method does not meet local regulatory requirements or international best practices. Ten out of the 15 investigated sites which SPDC recorded as remediated sites still have pollution exceeding SPDC and government remediation closure values. Contamination at eight out of these ten sites has migrated to groundwater.

This shows that there is still a gap to be filled. Also, in areas characterised by shallow unconfined aquifer and heavy rainfall such as Ogoni, RENA may encourage lateral and vertical migration of spill and this is a threat to groundwater as well as public health (that is, threat to people who uses groundwater for domestic purposes).

Non-excavation bioremediation approaches adopted this **Biostimulation** in study are and phytoremediation. Biostimulation and phytoremediation are in-situ remediation approaches that eliminates the need for excavation of the spill impacted soil which threatens geological sustainability; the approaches support geological sustainability as it offers no alteration of soil structure/properties, rather, it protects the local geology. This re-directs the mind on the need to involve geologists in the assessment and remediation of spill impacted sites. Addition of phytoremediation to the remediation approach is necessary to overcome the possibility of or inhibit groundwater contamination and migration of the contaminant plume as they accumulate and concentrate the spilled oil in their roots, stem or harvestable part. Uzochukwu, (2022) demonstrated the use of phytostabilizer (phytoremediation) as a proactive containment and remediation tool using Bodo Creek in Ogoni as case study. The study focused on areas dominated with chikoko sediments which represented a matured root system of a phytostabilizer. Surface and subsurface samples were analysed for TPH and the results indicated that chikoko sediments inhibited vertical migration of spilled crude.

It is vital to as much as possible adopt remediation approaches that will encourage geological sustainability. Unfortunately, most people involved in environmental restoration of impacted sites are non-geologists; hence, their major concern and goal is to reduce the TPH levels to target values without recourse to geological consequences of their adopted approach. This emphasizes the need to geologists include in the assessment and remediation team. A Conceptual Site Model (CSM) aids the remediation action plan and an accurate and detailed conceptual site model cannot be designed without a geologist. A conceptual site

model is a model that describes the biological, physical and chemical processes that control the actual or potential impact the contaminant may have on soil, ground water or surface water as well as the direct and indirect risk it poses to receptors such as people living around the impacted area. The model is iterative and as such is developed and refined as new site data is obtained and is usually updated throughout the site investigation for remedial action. According to California Environmental Protection Agency (June, 2012), conceptual site model has been expanded to include elements such as geology and hydrogeology. CSM should include detailed geology and hydrogeology (site characterization) that may affect the distribution and migration of the contaminant plume or affect the duration of the restoration of the concerned environmental media. Knowledge of soil type, depth to groundwater, type and extent of aquifers, and groundwater flow direction constitute vital input in the remediation action plan of spill impacted sites; these data can only be provided accurately by a geologist. Even though one would immediately attribute spill impacted site assessment and remediation using biostimulation and phytoremediation approach role to а microbiologists or a plant scientist since it involves the use of microorganisms and plants; they, however, do not understand geology as a professional geologist would and therefore cannot accurately uphold geological sustainability, their interest lies only on reduction or removal of the contaminant of interest from the contaminated media in focus caring less on the consequence of their adopted approach to geology of the area in focus and by extension the surrounding area. Traditionally, Conceptual Site Model (CSM) involves source of spill, the pathways, and receptors. A receptor can be farmland, surface water, or residential area. When the pathway does not link the source to a receptor, it is usually said that there is no risk to the receptor; hence, in terms of risk ranking, the site is ranked low and, in most cases, low risk sites are not included in the priority list and as such its remediation is usually delayed. The spill may not pose a risk to the receptor, but how about the risk it is posing to the geology of the impacted

area? In a wider perspective it is advantageous, for the expansion of conceptual site model by California Environmental Protection Agency to include geology and hydrogeology. According to American Geosciences Institute (AGI), geoscience does not only inform all aspects of petroleum production but also all aspect of environmental protection. Geoscientists alongside other disciplines' professionals such as biology and environmental sciences forecast the short and long term of environmental contamination to identify the relative hazards from different issues and inform decisions about monitoring, mitigation and remediation. Geoscientists study the groundwater and soil in the spill impacted area to identify potential migration pathways, to check if the spill plume is localized within the impacted area or if there is offsite migration. Geoscientists use their understanding of hydrogeology to provide insight into how a source of contamination may spread through ground or surface water, and provide the same expertise to help mitigate the impact of spills and guide cleanup operations. According to AGI, many state and federal regulators (in America) are geoscientists with the knowledge and experience to develop and enforce laws that are consistent with the local and regional geologic conditions and protect the environment as well as human health. Our present day and future understanding of the environment as well as its remediation when impacted by spill depends on well-trained geoscientists as geology and hydrogeology (groundwater modelling) is what informs a remedial design. A remediation project, therefore, should involve an interdisciplinary team with geologist working in close collaboration with other disciplines to reduce risk as well as uphold geological sustainability. This explains why we have companies such 'Geoscience and as Remediation Services', an environmental services company based in United States (US) and 'Vista geoscience', a leading company in environmental site investigation and remediation field services also based in the US.

#### 2. MATERIALS AND METHODS

This study made use of geological findings from two remediated sites in Ogoni, Niger Delta. The

geological study of the two sites involved boring of holes into the subsurface using hand auger to a maximum depth of 10m at various locations within the sites to obtain the soil profile at the different drilled locations for correlation. Control locations were chosen outside the remediated area; this is to enable comparison of soil profile within and outside the remediated area.

For demonstration of the effectiveness of nonexcavation bioremediation methods (biostimulation and phytoremediation) in remediating crude oil impacted soils, a bench scale study was conducted using 75 plastic containers each containing 4kg of soil. Three different soil types (clayey silty sand, silty sand, and sand) as indicated by particle size and hydrometer analysis were used in the study. Spill simulation was achieved by spiking the soils with crude oil. The set-up was to be divided into scenario A and B consisting of only category A (if seeds planted directly in the contaminated soil fails to germinate) or category A and B (if seeds planted directly in the contaminated soil germinates). The study consisted of category A and B because seeds planted directly in the contaminated soils and in the nursery both germinated.

In scenario A set-up, the soil sample was spiked with 30ml of crude oil while scenario B set-up soil sample was spiked with 60ml of crude oil. This was done to experimentally measure the effectiveness of biostimulation and phytoremediation in low and high concentration of spill impacted soil sample.

Category A consisted of 7 set-ups each containing 4kg of spill impacted soil. Each container had two replicas for error correction. Maize and cow pea seeds were planted in a nursery and also directly in the spill impacted soil at the same time. The nursery was set up in nursery bags consisting of uncontaminated soil. The nursery was to act as a back-up for transplanting of maize and cow pea after germination, into the spill impacted soil if seeds planted directly in the contaminated soil fails to germinate. Because seeds planted directly in the contaminated soil survived, category B was initiated. Category B consisted of container 1 to 3. Category B was essentially a phytoremediation set-up to ascertain if transplanted plants have more phytoremediation potential than plants that

germinated and grew in the impacted soil and vice versa. Category B made use of maize and cowpea transplanted from the nursery.

Category C involved subjection of the set up to limiting conditions outside acceptable range; this was to enable the achievement of the second technical objective of this research which is to find out how the limiting factors of biostimulation and phytoremediation play a role in the remediation process. This was based on phytoremediation utilizing maize and cowpea with 4kg soil sample per container each spiked with 30ml of crude oil.

There were 12 control set-ups containing spill impacted soil sample (4kg per container) and they were classified into two groups, each group containing 6 set-ups. In each group, 3 were spiked with 30ml of crude oil to serve as control for scenario A and the remaining 3 were spiked with 60ml of crude oil to serve as control for scenario B. Biostimulation and phytoremediation were not performed in the controls, however, whatever disturbance that was done in the experimental setup was also performed on group one control set-up while group two was made to sit undisturbed. This implies that group one control set-up involved only enhanced natural attenuation while group two control set-up involved only natural attenuation. Both the experimental and control set-up were exposed to the same natural environmental conditions. The essence of the control set-up was to accurately rule out the contribution of enhanced natural attenuation and natural attenuation process in the experimental result and arrive at a precise conclusion on how much input proposed biostimulation and phytoremediation approach made in remediating the spill impacted soil.

Monitoring involved collection of soil sample for analysis of parameters of interest which included Total Petroleum Hydrocarbon (TPH) to ascertain degradation rates and the changes in monitored parameters.

Parameters of interest were measured based on approved methods in EGASPIN and APHA standard. Contaminated soil sample (spiked soil) used in this study was first analysed for parameters of interest before commencement of the remediation process. The soil samples were analysed again following the monitoring plan and after the remediation process.

The biostimulation approach made use of NPK fertilizer while the phytoremediation approach made use of maize and cowpea and analysis for TPH reduction was the indices to check for the effectiveness of deployed bioremediation approaches.

#### 3. RESULTS AND DISCUSSION

Findings from the remediated sites in Ogoni (site 1 and 2, as detailed below, see figure 1 and 3 for a sketch of site overview) revealed that excavation and back filling activities performed on visited sites changed the geology of the study area. The applied remediation approach which is excavation of contaminated soils for remediation by enhanced natural attenuation (landfarming of contaminated soils) altered the soil profile, a thin foreign layer of contaminated clay soil was observed at one of the assessment borehole locations (sampling points) which is believed to have been erroneously introduced during the back filling process. There was also indication (based on the analysis of soil profile within the remediated area in comparison to soil profile outside the remediated area) that soils obtained from elsewhere were introduced in the backfilling process. Details of findings from site 1 and 2 are outlined below.



Good correlation of soil profiles was obtained atsampling points outside the remediated area. Thisis, however, not the case for soil profiles at sampling points within the remediated area (see figure 2 for soil profile at the various soil sampling points). This implies that during the backfilling process, there was no measure put in place to ensure that various soil strata are remediated separately and are taken back to their subsurface position during backfilling. There was also indication (based on the analysis of soil profile within the remediated area in comparison to soil profile outside the remediated area) that soils obtained from elsewhere were introduced in the backfilling process.

At a particular bole hole location within the remediated area (sampling point 6), thin layer of medium hydrocarbon contaminated clay (based on visual and olfactory assessment) was observed in the soil at depth 3m to nearly 3.5m below ground level. The clay layer was a little less than 0.5m thick and no hydrocarbon contamination exist above and below it. Correlation of the soil profile at the different borehole locations (sampling points) revealed that the thin clay layer is missing at other location. This suggests that the clay layer may have been erroneously introduced during the backfilling process and is probably localized around the bore hole location where it was observed.



Fig. 2: Soil profile at the various sampling depths in site 2



Fig. 1:Sketch of site 1 overview



Fig. 3: Sketch of site 2 overview

At site 2, backfilling made use of soil obtained from elsewhere. This made the geology of the oil spill previously impacted area different from the surrounding geology. Soil profile of the remediated area is silty clay from the surface down to the total remediation depth (4.5m), which is different from surrounding soil profile where top loamy soil exists at the surface down to at least 0.5m depth (see figure 4 for soil profile at the various soil sampling

# Biostimulation and phytoremediation approaches

All samples were analysed for Total Petroleum Hydrocarbon (TPH) at the laboratory using Gas Chromatography - Flame Ionization Detection (GC – FID) and were also subjected to RemScan analysis. RemScan results usually gives consistently higher TPH values, this can be attributed to the fact that RemScan dictates TPH higher than  $C_{40}$  while laboratory analysis will likely not be able to dictate the heavier fraction, in other words, the consistently higher RemScan values may indicate that the contaminant in the samples

points). Remediation was executed to a depth of 4.5m below ground surface, analysis of obtained soil profile indicates non correlation from 0m to 4.5m below ground surface in comparison with soil profile outside the remediated area while good correlation was obtained from 4.5m depth to the final sampling depth.

| Sa   | mpling point 1 | oint 1 Sampling point 2 Sampling point 3 S |            | t 3 Sam       | pling point 4      |      |                     |
|------|----------------|--------------------------------------------|------------|---------------|--------------------|------|---------------------|
| 0m   | Silty Clay     | 0m                                         | Silty Clay | <sup>0m</sup> | Dark               | 0m   | Dark                |
| 0.5m | Silty Clay     | 0.5m                                       | Silty Clay | 0.5m          | loamy<br>Dark loam | 0.5m | loamy<br>Darls laam |
| 1m   | onty only      | 1m                                         | only only  | 1m            | Dark Ioun          | 1m   | Dark Ioalli         |
|      | Silty Clay     |                                            | Silty Clay |               | Silty Sand         |      | Silt                |
| 1.5m | Silty Clay     | 1.5m                                       | Silty Clay | 1.5m          | Silty Sand         | 1.5m | Silty Sand          |
| 2m   | Silty Clay     | 2m                                         | Silty Clay | 2m            | Silty Sand         | 2m   | Silty Sand          |
| 2.5m | Silty Clay     | 2.5m                                       | Silty Clay | 2.5m          | Silty Sand         | 2.5m | Cilty Cand          |
| 3m   | ,              | 3m                                         |            | 3m            | only outo          | 3m   | Sincy Sand          |
|      | Silty Clay     |                                            | Silty Clay |               | Silty Sand         |      | Silty Sand          |
| 3.5m | Silty Clay     | 3.5m                                       | Silty Clay | 3.5m          | Silty Sand         | 3.5m | Silty Sand          |
| 4m   | Silty Clay     | 4m                                         | Silty Clay | 4m            | Silty Sand         | 4m   | Silty Sand          |
| 4.5m |                | 4.5m                                       |            | 4.5m          |                    | 4.5m |                     |
|      | Silty Sand     |                                            | Silty Sand |               | Silty Sand         |      | Silty Sand          |
| 5m   | Silty Sand     | 5m                                         | Silty Sand | 5m            | Silty Sand         | 5m   | Silty Sand          |
| 5.5m | Silty Sand     | 5.5m                                       | Silty Sand | 5.5m          | Silty Sand         | 5.5m | Cite: Cand          |
| 6m   | oncy band      | бт                                         | , 6446     | бm            | Sincy Sails        | бm   | Siny Sand           |

Fig. 4: Soil profile at the various sampling depths in site 2

contains material heavier than what the laboratory analytical GC – FID method can dictate.

The soil samples were subjected to analysis for other parameters such as pH, temperature, nitrogen, phosphorous, potassium, manganese, ammonia, Total Hydrocarbon Bacteria (THB) and Hydrocarbon Utilizing Bacteria (HUB). However, for the purpose of this publication, emphasis is on TPH parameter based on RemScan analysis.

Sample ID's and the results of the analysis for TPH parameter at initial, monitoring and close out stages of the research are detailed in table 1 to 7 while the performance review of the applied remediation approaches is outlined in table 8 to 21.

#### Comparison of TPH values of initial, monitoring, and close out RemScan analysis

Table 1:TPH for Category A, Scenario A soil samples (Comparison of initial, monitoring, and close out analysis)

|          | Sample ID      | TPH (mg/kg) |       |             |      |          |      |
|----------|----------------|-------------|-------|-------------|------|----------|------|
|          |                |             |       |             |      |          |      |
|          |                | Initial     | Mean  | Monitori    | Mean | Close    | Mean |
|          |                | analysis    | TPH   | ng analysis | TPH  | out      | TPH  |
|          |                |             |       |             |      | analysis |      |
| 1        | CASACon1       | 5888        | 5684  | 1000        | 1500 | 1000     | 1000 |
|          | E1             |             |       |             |      |          | _    |
| 2        | CASACon1<br>E2 | 5930        |       | 2400        |      | 1100     |      |
| 3        | CASACon1       | 5235        |       | 1100        |      | 900      | -    |
|          | Κ              |             |       |             |      |          |      |
| 4        | CASACon2       | 5878        | 5405  | 3500        | 2133 | 1100     | 1033 |
|          | Е              |             |       |             |      |          |      |
| 5        | CASACon2       | 5147        |       | 1100        |      | 900      |      |
| -        | K1             |             |       |             |      |          |      |
| 6        | CASACon2       | 5192        |       | 1800        |      | 1100     | -    |
| Ŭ        | K2             | 0172        |       | 1000        |      | 1100     |      |
| 7        | CASACon3       | 5892        | 5661  | 1600        | 1700 | 900      | 833  |
| ,        | F1             | 5072        | 5001  | 1000        | 1700 | 200      | 055  |
| 8        |                | 5902        |       | 1600        |      | 800      | -    |
| 0        | E7             | 5702        |       | 1000        |      | 800      |      |
| 0        | CASACon3       | 5101        |       | 1000        |      | 800      | -    |
| 9        | V CASACOIIS    | 5191        |       | 1900        |      | 800      |      |
| 1        | K<br>CASACon/  | 11 260      | 11 1/ | 5900        | 4066 | 1000     | 867  |
| 0        | CASACOII4      | 11,209      | 5     | 3900        | 4000 | 1000     | 807  |
| 0        | CASACon4       | 10.096      | 5     | 4600        |      | 1000     | -    |
| 1        | CASACOII4      | 10,980      |       | 4000        |      | 1000     |      |
| 1        | G2<br>CASACert | 11 101      |       | 1700        |      | 600      | -    |
| 2        | CASAC014       | 11,181      |       | 1700        |      | 600      |      |
| <u> </u> | CARAC 5        | 11.070      | 11 17 | 1100        | 12(( | 000      | 750  |
| 1        | CASACons       | 11,270      | 11,17 | 1100        | 1366 | 800      | /50  |
| 3        | Gl             | 44.054      | 4     | 1700        |      |          | _    |
| 1        | CASACon5       | 11,051      |       | 1700        |      | 700      |      |
| 4        | G2             | 11.000      |       | 1000        |      | 750      |      |
| _ 1      | CASACon5       | 11,202      |       | 1300        |      | 750      |      |
| 5        | G3             |             |       |             |      |          |      |
| 1        | CASACon6       | 11,122      | 11,13 | 1700        | 2066 | 800      | 900  |
| 6        | G1             |             | 2     |             |      |          |      |
| 1        | CASACon6       | 11,309      |       | 2000        |      | 1000     |      |
| 7        | G2             |             |       |             |      |          |      |
| 1        | CASACon6       | 10,966      |       | 2500        |      | 900      |      |
| 8        | G3             |             |       |             |      |          |      |
| 1        | CASACon7       | 11,040      | 11,06 | 1200        | 1100 | 500      | 467  |

| 9 | G1       |        | 5 |      |     |  |
|---|----------|--------|---|------|-----|--|
| 2 | CASACon7 | 11,011 |   | 1000 | 400 |  |
| 0 | G2       |        |   |      |     |  |
| 2 | CASACon7 | 11,144 |   | 1100 | 500 |  |
| 1 | G3       |        |   |      |     |  |

Table 2: TPH for Category A, Scenario B soil samples (Comparison of initial, monitoring, and close out analysis)

|   | Sample ID | TPH (mg/kg)      |            |                    |  |  |
|---|-----------|------------------|------------|--------------------|--|--|
|   | -         | Initial analysis | Monitoring | Close out analysis |  |  |
|   |           | -                | analysis   | -                  |  |  |
| 2 | CASBCon1  | 12,317           | 3900       | 3400               |  |  |
| 2 | E1        |                  |            |                    |  |  |
| 2 | CASBCon1  | 12,381           | 4300       | 3200               |  |  |
| 3 | E2        |                  |            |                    |  |  |
| 2 | CASBCon1  | 10,126           | 6800       | 3200               |  |  |
| 4 | Κ         |                  |            |                    |  |  |
| 2 | CASBCon2  | 12,278           | 6300       | 4200               |  |  |
| 5 | Е         |                  |            |                    |  |  |
| 2 | CASBCon2  | 10,016           | 4300       | 4100               |  |  |
| 6 | K1        |                  |            |                    |  |  |
| 2 | CASBCon2  | 10,141           | 6600       | 4150               |  |  |
| 7 | K2        |                  |            |                    |  |  |
| 2 | CASBCon3  | 12,351           | 7400       | 3900               |  |  |
| 8 | E1        |                  |            |                    |  |  |
| 2 | CASBCon3  | 12,423           | 4600       | 3200               |  |  |
| 9 | E2        |                  |            |                    |  |  |
| 3 | CASBCon3  | 10,123           | 8500       | 4000               |  |  |
| 0 | Κ         |                  |            |                    |  |  |
| 3 | CASBCon4  | 22,764           | 10,200     | 9300               |  |  |
| 1 | G1        |                  |            |                    |  |  |
| 3 | CASBCon4  | 22,902           | 8900       | 6600               |  |  |
| 2 | G2        |                  |            |                    |  |  |
| 3 | CASBCon4  | 22,648           | 8300       | 6500               |  |  |
| 3 | G3        |                  |            |                    |  |  |
| 3 | CASBCon5  | 12,266           | 4500       | 1700               |  |  |
| 4 | E1        |                  |            |                    |  |  |
| 3 | CASBCon5  | 12,426           | 2100       | 1900               |  |  |
| 5 | E2        |                  |            |                    |  |  |
| 3 | CASBCon5  | 15,001           | 2600       | 1900               |  |  |
| 6 | E3        |                  |            |                    |  |  |
| 3 | CASBCon6  | 12,402           | 7000       | 3900               |  |  |
| 7 | E1        |                  |            |                    |  |  |
| 3 | CASBCon6  | 12,351           | 5900       | 3800               |  |  |
| 8 | E2        |                  |            |                    |  |  |

| 3 | CASBCon6 | 14,983 | 6900 | 4000 |
|---|----------|--------|------|------|
| 9 | E3       |        |      |      |
| 4 | CASBCon7 | 12,245 | 2200 | 1600 |
| 0 | E1       |        |      |      |
| 4 | CASBCon7 | 12,359 | 5200 | 1700 |
| 1 | E2       |        |      |      |
| 4 | CASBCon7 | 12,489 | 4800 | 2300 |
| 2 | E3       |        |      |      |

Table 3:TPH for Category B, Scenario A soil samples (Comparison of initial, monitoring, and close out analysis)

|    | Sample ID  |          | TPH (mg/kg) |           |
|----|------------|----------|-------------|-----------|
|    |            | Initial  | Monitoring  | Close out |
|    |            | analysis | analysis    | analysis  |
| 43 | CBSACon1E1 | 5796     | 2300        | 2100      |
| 44 | CBSACon1E2 | 5896     | 2800        | 2400      |
| 45 | CBSACon1K  | 5131     | 2000        | 1700      |
| 46 | CBSACon2E  | 5964     | 1000        | 800       |
| 47 | CBSACon2K1 | 5179     | 2500        | 600       |
| 48 | CBSACon2K2 | 5207     | 700         | 600       |
| 49 | CBSACon3E1 | 5887     | 1200        | 900       |
| 50 | CBSACon3E2 | 5864     | 900         | 800       |
| 51 | CBSACon3K  | 5174     | 1900        | 800       |

Table 4:TPH for Category B, Scenario B soil samples (Comparison of initial, monitoring, and close out analysis)

|    | Sample ID  | TPH (mg/kg) |                     |           |  |  |
|----|------------|-------------|---------------------|-----------|--|--|
|    |            |             |                     |           |  |  |
|    |            | Initial     | Monitoring analysis | Close out |  |  |
|    |            | analysis    |                     | analysis  |  |  |
| 52 | CBSBCon1E1 | 12,357      | 4700                | 2100      |  |  |
| 53 | CBSBCon1E2 | 12,379      | 6000                | 2400      |  |  |
| 54 | CBSBCon1K  | 10,126      | 7900                | 1700      |  |  |
| 55 | CBSBCon2E  | 12,334      | 7000                | 800       |  |  |
| 56 | CBSBCon2K1 | 10,015      | 1300                | 600       |  |  |
| 57 | CBSBCon2K2 | 10,103      | 5900                | 600       |  |  |
| 58 | CBSBCon3E1 | 12,389      | 7000                | 900       |  |  |
| 59 | CBSBCon3E2 | 12,295      | 6200                | 800       |  |  |
| 60 | CBSBCon3K  | 10,157      | 7000                | 800       |  |  |

Table 5:TPH for Category C soil samples (Comparison of initial, monitoring, and close out analysis)

|    | SampleID |                  | TPH (mg/kg) |                    |  |  |
|----|----------|------------------|-------------|--------------------|--|--|
|    |          | Initial analysis | Monitoring  | Close out analysis |  |  |
|    |          |                  | analysis    |                    |  |  |
| 61 | CCG1     | 11,200           | 11,000      | 10,800             |  |  |
| 62 | CCG2     | 11,100           | 11,100      | 10,900             |  |  |
| 63 | CCG3     | 11,150           | 11,000      | 10,800             |  |  |

Table 6:TPH for Control, Group 1 soil samples (Comparison of initial, monitoring, and close out analysis)

|   | Sample ID  | TPH (mg/kg)      |            |           |
|---|------------|------------------|------------|-----------|
|   |            | Initial analysis | Monitoring | Close out |
|   |            |                  | analysis   | analysis  |
| 6 | ConSAGp    | 11,251           | 6000       | 4300      |
| 4 | 1 <b>G</b> |                  |            |           |
| 6 | ConSAGp    | 5963             | 3100       | 1800      |
| 5 | 1E         |                  |            |           |
| 6 | ConSAGp    | 5248             | 3200       | 1700      |
| 6 | 1K         |                  |            |           |
| 6 | ConSBGp    | 22,809           | 19,500     | 16,200    |
| 7 | 1 <b>G</b> |                  |            |           |
| 6 | ConSBGp    | 12,378           | 10,700     | 8600      |
| 8 | 1E         |                  |            |           |
| 6 | ConSBGp    | 10,108           | 8700       | 6800      |
| 9 | 1K         |                  |            |           |

Table 7:TPH for Control, Group 2 soil samples (Comparison of initial, monitoring, and close out analysis)

|   | Sample ID |                  | TPH (mg/kg) |                    |  |  |  |
|---|-----------|------------------|-------------|--------------------|--|--|--|
|   |           | Initial analysis | Monitoring  | Close out analysis |  |  |  |
|   |           |                  | analysis    |                    |  |  |  |
| 7 | ConSAGp   | 11,193           | 10,100      | 8900               |  |  |  |
| 0 | 2G        |                  |             |                    |  |  |  |
| 7 | ConSAGp   | 5958             | 5600        | 4900               |  |  |  |
| 1 | 2E        |                  |             |                    |  |  |  |
| 7 | ConSAGp   | 5214             | 4800        | 4300               |  |  |  |
| 2 | 2K        |                  |             |                    |  |  |  |
| 7 | ConSBGp   | 22,868           | 21,700      | 19,600             |  |  |  |
| 3 | 2G        |                  |             |                    |  |  |  |
| 7 | ConSBGp   | 12,407           | 11,800      | 10,900             |  |  |  |
| 4 | 2E        |                  |             |                    |  |  |  |
| 7 | ConSBGp   | 10,113           | 9700        | 8900               |  |  |  |
| 5 | 2K        |                  |             |                    |  |  |  |

# Performance against applied remediation approach and impact levels based on TPH analysis following TPH reduction monitoring

Table 8: Category A, Scenario A soil samples (Performance against applied remediation approach and impact levels based on TPH reduction monitoring)

| Set up      | Sample ID     | Remediation                         | Starting | Mean      | %       | %       |
|-------------|---------------|-------------------------------------|----------|-----------|---------|---------|
|             |               | approach                            | mean TPH | TPH at    | TPH     | TPH     |
|             |               |                                     | (mg/kg)  | monitorin | Degrade | Remaini |
|             |               |                                     |          | g         | d       | ng      |
|             |               |                                     |          | (mg/kg)   |         |         |
| Container 1 | CASACon1E1    | Phytoremediati                      | 5684     | 1500      | 73.6    | 26.4    |
| set ups     | CASACon1E2    | on utilizing Maize                  |          |           |         |         |
|             | CASACon1K     |                                     |          |           |         |         |
| Container 2 | CASACon2E     | Phytoremediati                      | 5405     | 2133      | 60.5    | 39.5    |
| set ups     | CASACon2K1    | on utilizing                        |          |           |         |         |
|             | CASACon2K2    | Cowpea                              |          |           |         |         |
| Container 3 | CASACon3E1    | Phytoremediati                      | 5661     | 1700      | 70.0    | 30.0    |
| set ups     | CASACon3E2    | on utilizing Maize                  |          |           |         |         |
|             | CASACon3K plu | plus Cowpea                         |          |           |         |         |
| Container 4 | CASACon4G1    | Biostimulation                      | 11,145   | 4066      | 63.5    | 36.5    |
| set ups     | CASACon4G2    |                                     |          |           |         |         |
|             | CASACon4G3    |                                     |          |           |         |         |
| Container 5 | CASACon5G1    | Biostimulation                      | 11,174   | 1366      | 87.8    | 12.2    |
| set ups     | CASACon5G2    | plus                                |          |           |         |         |
|             | CASACon5G3    | phytoremediation<br>utilizing Maize |          |           |         |         |
| Container 6 | CASACon6G1    | Biostimulation                      | 11,132   | 2066      | 81.4    | 18.6    |
| set ups     | CASACon6G2    | plus                                |          |           |         |         |
|             | CASACon6G3    | phytoremediation                    |          |           |         |         |
|             |               | utilizing Cowpea                    |          |           |         |         |
| Container 7 | CASACon7G1    | Biostimulation                      | 11,065   | 1100      | 90.1    | 9.9     |
| set ups     | CASACon7G2    | plus                                |          |           |         |         |
|             | CASACon7G3    | phytoremediation                    |          |           |         |         |
|             |               | utilizing Maize                     |          |           |         |         |
|             |               | and Cowpea                          |          |           |         |         |

Table 9: Category A, Scenario B soil samples (Performance against applied remediation approach and impact levels based on TPH reduction monitoring)

| Set up      | Sample ID  | Remediation approach                | Starting<br>mean TPH | Mean<br>TPH at    | %<br>TPH | % TPH<br>Remainin |
|-------------|------------|-------------------------------------|----------------------|-------------------|----------|-------------------|
|             |            |                                     | (mg/kg)              | monitorin         | Degra    | g                 |
|             |            |                                     |                      | g<br>(ma/laa)     | ded      |                   |
| Containar 1 | CASPCon1E1 | Dhytoromodiati                      | 11 609               | (IIIg/Kg)<br>5000 | 56.0     | 12.1              |
| set uns     | CASECONTEL | on utilizing Maize                  | 11,008               | 3000              | 50.9     | 43.1              |
| set ups     | CASBCon1E2 | on attrizing warze                  |                      |                   |          |                   |
|             | CASBCon1K  |                                     |                      |                   |          |                   |
| Container 2 | CASBCon2E  | Phytoremediati                      | 10,811               | 5733              | 47.0     | 53.0              |
| set ups     | CASBCon2K1 | on utilizing                        |                      |                   |          |                   |
|             | CASBCon2K2 | Cowpea                              |                      |                   |          |                   |
| Container 3 | CASBCon3E1 | Phytoremediati                      | 11,632               | 6833              | 41.3     | 58.7              |
| set ups     | CASBCon3E2 | on utilizing Maize                  |                      |                   |          |                   |
|             | CASBCon3K  | plus Cowpea                         |                      |                   |          |                   |
| Container 4 | CASBCon4G1 | Biostimulation                      | 22,771               | 9133              | 59.9     | 40.1              |
| set ups     | CASBCon4G2 |                                     |                      |                   |          |                   |
|             | CASBCon4G3 |                                     |                      |                   |          |                   |
| Container 5 | CASBCon5E1 | Biostimulation                      | 13,231               | 3066              | 76.8     | 23.2              |
| set ups     | CASBCon5E2 | plus                                |                      |                   |          |                   |
|             | CASBCon5E3 | phytoremediation<br>utilizing Maize |                      |                   |          |                   |
| Container 6 | CASBCon6E1 | Biostimulation                      | 13,245               | 6600              | 50.2     | 49.8              |
| set ups     | CASBCon6E2 | plus                                |                      |                   |          |                   |
|             | CASBCon6E3 | phytoremediation                    |                      |                   |          |                   |
|             |            | utilizing Cowpea                    |                      |                   |          |                   |
| Container 7 | CASBCon7E1 | Biostimulation                      | 12,364               | 4066              | 67.1     | 32.9              |
| set ups     | CASBCon7E2 | plus                                |                      |                   |          |                   |
|             | CASBCon7E3 | phytoremediation<br>utilizing Maize |                      |                   |          |                   |
|             |            | and Cowpea                          |                      |                   |          |                   |

| Set up                 | Sample ID                                     | Remediation<br>approach                            | Startin<br>g mean<br>TPH<br>(mg/kg<br>) | Mean<br>TPH at<br>monitoring<br>(mg/kg) | %<br>TPH<br>Degra<br>ded | % TPH<br>Remainin<br>g |
|------------------------|-----------------------------------------------|----------------------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------|------------------------|
| Container 1<br>set ups | CBSACon1E<br>1<br>CBSACon1E<br>2<br>CBSACon1K | Phytoremediation<br>utilizing Maize                | 5607                                    | 2366                                    | 57.8                     | 42.2                   |
| Container 2<br>set ups | CBSACon2E<br>CBSACon2K<br>1<br>CBSACon2K<br>2 | Phytoremediation<br>utilizing Cowpea               | 5450                                    | 1400                                    | 74.3                     | 25.7                   |
| Container 3<br>set ups | CBSACon3E<br>1<br>CBSACon3E<br>2<br>CBSACon3K | Phytoremediation<br>utilizing Maize plus<br>Cowpea | 5641                                    | 4000                                    | 29.1                     | 70.9                   |

Table10: Category B, Scenario A soil samples (Performance against applied remediation approach and impact levels)

Table 11: Category B, Scenario B soil samples (Performance against applied remediation approach and impact levels based on TPH reduction monitoring)

| Set up    | Sample ID  | Remediation     | Starting | Mean      | % TPH    | %       |
|-----------|------------|-----------------|----------|-----------|----------|---------|
|           | _          | approach        | mean TPH | TPH at    | Degraded | TPH     |
|           |            |                 | (mg/kg)  | monitorin |          | Remaini |
|           |            |                 |          | g         |          | ng      |
|           |            |                 |          | (mg/kg)   |          |         |
| Container | CBSBCon1E1 | Phytoremediat   | 11,620   | 6200      | 46.6     | 53.4    |
| 1 set ups | CBSBCon1E2 | ion utilizing   |          |           |          |         |
|           | CBSBCon1K  | Maize           |          |           |          |         |
| Container | CBSBCon2E  | Dhytoremediat   | 10.817   | 1733      | 56.3     | 13.8    |
| Container | CDSDC0II2E | r frytoremeulat | 10,017   | 4755      | 50.5     | 43.0    |
| 2 set ups | CBSBCon2K1 | ion utilizing   |          |           |          |         |
|           | CBSBCon2K2 | Cowpea          |          |           |          |         |
| Container | CBSBCon3E1 | Phytoremediat   | 11,613   | 6966      | 40.0     | 60.0    |
| 3 set ups | CBSBCon3E2 | ion utilizing   |          |           |          |         |
|           | CBSBCon3K  | Maize plus      |          |           |          |         |
|           |            | Cowpea          |          |           |          |         |

Table 12: Category C soil samples (Performance against applied remediation approach and impact levels based on TPH reduction monitoring)

| Sample ID | Remediatio | Starting | Mean       | % TPH    | % TPH     |
|-----------|------------|----------|------------|----------|-----------|
| _         | n approach | mean TPH | TPH at     | Degraded | Remaining |
|           |            | (mg/kg)  | monitoring |          |           |
|           |            |          | (mg/kg)    |          |           |
| CCG1      | NA         | 11,150   | 11.033     | 1.1      | 99.9      |
| CCG2      |            |          |            |          |           |
| CCG3      |            |          |            |          |           |

Table 13: Control, Group 1 soil samples (Performance against applied remediation approach and impact levels based on TPH reduction monitoring)

| Sample ID | Remediation      | Starting | TPH at     | % TPH    | % TPH     |
|-----------|------------------|----------|------------|----------|-----------|
|           | approach         | TPH      | monitoring | Degraded | Remaining |
|           |                  | (mg/kg)  | (mg/kg)    |          |           |
| ConSAGp   | Enhanced natural | 11,251   | 6000       | 46.7     | 53.3      |
| 1G        | attenuation      |          |            |          |           |
| ConSAGp   | Enhanced natural | 5963     | 3100       | 48.0     | 52.0      |
| 1E        | attenuation      |          |            |          |           |
| ConSAGp   | Enhanced natural | 5248     | 3200       | 39.0     | 61.0      |
| 1K        | attenuation      |          |            |          |           |
| ConSBGp   | Enhanced natural | 22,809   | 19500      | 14.5     | 85.5      |
| 1G        | attenuation      |          |            |          |           |
| ConSBGp   | Enhanced natural | 12,378   | 10,700     | 13.6     | 88.4      |
| 1E        | attenuation      |          |            |          |           |
| ConSBGp   | Enhanced natural | 10,108   | 8700       | 14.9     | 85.1      |
| 1K        | attenuation      |          |            |          |           |

Table 14: Control, Group 2 soil samples (Performance against applied remediation approach and impact levels based on TPH reduction monitoring)

| Sample ID | Remediation | Starting | TPH at     | % TPH    | % TPH     |
|-----------|-------------|----------|------------|----------|-----------|
| _         | approach    | TPH      | monitoring | Degraded | Remaining |
|           |             | (mg/kg)  | (mg/kg)    |          |           |
| ConSAGp   | Natural     | 11,193   | 10,100     | 9.8      | 90.2      |
| 2G        | attenuation |          |            |          |           |
| ConSAGp   | Natural     | 5958     | 5600       | 6.0      | 94.0      |
| 2E        | attenuation |          |            |          |           |
| ConSAGp   | Natural     | 5214     | 4800       | 7.9      | 92.1      |
| 2K        | attenuation |          |            |          |           |
| ConSBGp   | Natural     | 22,868   | 21,700     | 5.1      | 94.9      |
| 2G        | attenuation |          |            |          |           |
| ConSBGp   | Natural     | 12,407   | 11,800     | 4.9      | 95.1      |
| 2E        | attenuation |          |            |          |           |
| ConSBGp   | Natural     | 10,113   | 9700       | 4.1      | 95.9      |
| 2K        | attenuation |          |            |          |           |

# Performance against applied remediation approach and impact levels based on TPH analysis following close out analysis

| Table 15: Catego    | ory A, Scenario A   | soil samples   | (Performance | against app | plied remedia | tion approad | ch and |
|---------------------|---------------------|----------------|--------------|-------------|---------------|--------------|--------|
| impact levels based | i on TPH of the clo | ose out analys | sis)         |             |               |              |        |

| Set up    | Sample ID  | Remediation        | Remaini | Mean      | % TPH    | %       |
|-----------|------------|--------------------|---------|-----------|----------|---------|
|           |            | approach           | ng mean | TPH at    | Degraded | TPH     |
|           |            |                    | TPH     | close out |          | Remaini |
|           |            |                    | (mg/kg) | (mg/kg    |          | ng      |
|           |            |                    |         | )         |          |         |
| Container | CASACon1E1 | Phytoremediati     | 1500    | 1000      | 33.3     | 66.7    |
| 1 set ups | CASACon1E2 | on utilizing Maize |         |           |          |         |
|           | CASACon1K  |                    |         |           |          |         |
| Container | CASACon2E  | Phytoremediati     | 2133    | 1033      | 51.6     | 48.4    |
| 2 set ups | CASACon2K1 | on utilizing       |         |           |          |         |
|           | CASACon2K2 | Cowpea             |         |           |          |         |
| Container | CASACon3E1 | Phytoremediati     | 1700    | 833       | 51.0     | 49.0    |
| 3 set ups | CASACon3E2 | on utilizing Maize |         |           |          |         |
|           | CASACon3K  | plus Cowpea        |         |           |          |         |
| Container | CASACon4G1 | Biostimulation     | 4066    | 867       | 78.7     | 21.3    |
| 4 set ups | CASACon4G2 |                    |         |           |          |         |
|           | CASACon4G3 |                    |         |           |          |         |
| Container | CASACon5G1 | Biostimulation     | 1366    | 750       | 45.1     | 54.9    |
| 5 set ups | CASACon5G2 | plus               |         |           |          |         |
|           | CASACon5G3 | phytoremediation   |         |           |          |         |
|           |            | utilizing Maize    |         |           |          |         |
| Container | CASACon6G1 | Biostimulation     | 2066    | 900       | 56.4     | 43.6    |
| 6 set ups | CASACon6G2 | plus               |         |           |          |         |
|           | CASACon6G3 | phytoremediation   |         |           |          |         |
| <u> </u>  |            | Di di lai          | 1100    | 467       | 57 (     | 40.4    |
| Container | CASACon/GI | BIOSTIMULATION     | 1100    | 407       | 57.6     | 42.4    |
| / set ups | CASACon/G2 | plus               |         |           |          |         |
|           | CASACon7G3 | utilizing Maize    |         |           |          |         |
|           |            | and Cownea         |         |           |          |         |
|           |            | una compea         |         |           |          |         |

Table 16: Category A, Scenario B soil samples (Performance against applied remediation approach and impact levels based on TPH of the close out analysis)

| Set up      | Sample ID  | Remediation        | Remaining | Mean      | %       | %       |
|-------------|------------|--------------------|-----------|-----------|---------|---------|
| -           | -          | approach           | mean TPH  | TPH at    | TPH     | TPH     |
|             |            |                    | (mg/kg)   | close out | Degrade | Remaini |
|             |            |                    |           | (mg/k     | d       | ng      |
|             |            |                    |           | g)        |         |         |
| Container 1 | CASBCon1E1 | Phytoremediatio    | 5000      | 3267      | 34.7    | 65.3    |
| set ups     | CASBCon1E2 | n utilizing Maize  |           |           |         |         |
|             | CASBCon1K  |                    |           |           |         |         |
| Container 2 | CASBCon2E  | Phytoremediatio    | 5733      | 4150      | 27.6    | 72.4    |
| set ups     | CASBCon2K1 | n utilizing Cowpea |           |           |         |         |
|             | CASBCon2K2 | 1                  |           |           |         |         |
| Container 3 | CASBCon3E1 | Phytoremediatio    | 6833      | 3700      | 45.8    | 54.2    |
| set ups     | CASBCon3E2 | n utilizing Maize  |           |           |         |         |
|             | CASBCon3K  | plus Cowpea        |           |           |         |         |
| Container 4 | CASBCon4G1 | Biostimulation     | 9133      | 7467      | 18.2    | 81.8    |
| set ups     | CASBCon4G2 |                    |           |           |         |         |
|             | CASBCon4G3 |                    |           |           |         |         |
| Container 5 | CASBCon5E1 | Biostimulation     | 3066      | 1833      | 40.2    | 59.8    |
| set ups     | CASBCon5E2 | plus               |           |           |         |         |
|             | CASBCon5E3 | phytoremediation   |           |           |         |         |
|             |            | utilizing Maize    |           |           |         |         |
| Container 6 | CASBCon6E1 | Biostimulation     | 6600      | 3900      | 40.9    | 59.1    |
| set ups     | CASBCon6E2 | plus               |           |           |         |         |
|             | CASBCon6E3 | phytoremediation   |           |           |         |         |
|             |            | utilizing Cowpea   |           |           |         |         |
| Container 7 | CASBCon7E1 | Biostimulation     | 4066      | 1867      | 54.1    | 45.9    |
| set ups     | CASBCon7E2 | plus               |           |           |         |         |
|             | CASBCon7E3 | phytoremediation   |           |           |         |         |
|             |            | utilizing Maize    |           |           |         |         |
|             |            | and Cowpea         |           |           |         |         |

| Table 17: Category B, Scenario A     | soil samples (Performance | against applied remediat | ion approach and |
|--------------------------------------|---------------------------|--------------------------|------------------|
| impact levels based on TPH of the cl | ose out analysis)         |                          |                  |

| Set up    | Sample ID  | Remediation       | Remaini | Mean      | %       | %       |
|-----------|------------|-------------------|---------|-----------|---------|---------|
|           | _          | approach          | ng mean | TPH at    | TPH     | TPH     |
|           |            |                   | TPH     | close out | Degrade | Remaini |
|           |            |                   | (mg/kg) | (mg/kg)   | d       | ng      |
| Container | CBSACon1E1 | Phytoremediatio   | 2366    | 2067      | 12.6    | 87.4    |
| 1 set ups | CBSACon1E2 | n utilizing Maize |         |           |         |         |
|           | CBSACon1K  |                   |         |           |         |         |
| Container | CBSACon2E  | Phytoremediatio   | 1400    | 667       | 52.4    | 47.6    |

| 2 set ups | CBSACon2K1 | n utilizing Cowpea |      |     |      |      |
|-----------|------------|--------------------|------|-----|------|------|
|           | CBSACon2K2 |                    |      |     |      |      |
| Container | CBSACon3E1 | Phytoremediatio    | 4000 | 833 | 79.2 | 20.8 |
| 3 set ups | CBSACon3E2 | n utilizing Maize  |      |     |      |      |
|           | CBSACon3K  | plus Cowpea        |      |     |      |      |

Table 18: Category B, Scenario B soil samples (Performance against applied remediation approach and impact levels based on TPH of the close out analysis)

| Set up    | Sample ID  | Remediation        | Remaini | Mean   | %       | % TPH    |
|-----------|------------|--------------------|---------|--------|---------|----------|
|           |            | approach           | ng mean | TPH at | TPH     | Remainin |
|           |            |                    | TPH     | close  | Degrade | g        |
|           |            |                    | (mg/kg) | out    | d       |          |
|           |            |                    |         | (mg/k  |         |          |
|           |            |                    |         | g)     |         |          |
| Container | CBSBCon1E1 | Phytoremediatio    | 6200    | 3267   | 47.3    | 52.7     |
| 1 set ups | CBSBCon1E2 | n utilizing Maize  |         |        |         |          |
|           | CBSBCon1K  |                    |         |        |         |          |
| Container | CBSBCon2E  | Phytoremediatio    | 4733    | 2967   | 37.3    | 62.7     |
| 2 set ups | CBSBCon2K1 | n utilizing Cowpea |         |        |         |          |
|           | CBSBCon2K2 |                    |         |        |         |          |
| Container | CBSBCon3E1 | Phytoremediatio    | 6966    | 3500   | 49.8    | 50.2     |
| 3 set ups | CBSBCon3E2 | n utilizing Maize  |         |        |         |          |
|           | CBSBCon3K  | plus Cowpea        |         |        |         |          |

Table 19: Category C soil samples (Performance against applied remediation approach and impact levels based on TPH of the close out analysis)

| Sample | Remediation | Remaini | Mean      | % TPH    | % TPH     |
|--------|-------------|---------|-----------|----------|-----------|
| ID     | approach    | ng mean | TPH at    | Degraded | Remaining |
|        |             | TPH     | close out |          |           |
|        |             | (mg/kg) | (mg/kg)   |          |           |
| CCG1   | NA          | 11,033  | 10,833    | 1.8      | 98.2      |
| CCG2   |             |         |           |          |           |
| CCG3   |             |         |           |          |           |

Table 20: Control, Group 1 soil samples (Performance against applied remediation approach and impact levels based on TPH of the close out analysis)

| Sample ID | Remediation      | Remaini | TPH at    | % TPH    | % TPH     |
|-----------|------------------|---------|-----------|----------|-----------|
|           | approach         | ng TPH  | close out | Degraded | Remaining |
|           |                  | (mg/kg) | (mg/kg)   |          |           |
| ConSAGp   | Enhanced natural | 6000    | 4300      | 31.7     | 68.3      |
| 1G        | attenuation      |         |           |          |           |
| ConSAGp   | Enhanced natural | 3100    | 1800      | 41.9     | 58.1      |

| 1E      | attenuation      |        |        |      |      |
|---------|------------------|--------|--------|------|------|
| ConSAGp | Enhanced natural | 3200   | 1700   | 46.9 | 53.1 |
| 1K      | attenuation      |        |        |      |      |
| ConSBGp | Enhanced natural | 19,500 | 16,200 | 16.9 | 83.1 |
| 1G      | attenuation      |        |        |      |      |
| ConSBGp | Enhanced natural | 10,700 | 8600   | 19.6 | 80.4 |
| 1E      | attenuation      |        |        |      |      |
| ConSBGp | Enhanced natural | 8700   | 6800   | 21.8 | 78.2 |
| 1K      | attenuation      |        |        |      |      |

Table 21: Control, Group 2 soil samples (Performance against applied remediation approach and impact levels based on TPH of the close out analysis)

| Sample ID | Remediation | Remaini | Mean      | % TPH    | % TPH     |
|-----------|-------------|---------|-----------|----------|-----------|
| -         | approach    | ng mean | TPH at    | Degraded | Remaining |
|           |             | TPH     | close out |          |           |
|           |             | (mg/kg) | (mg/kg)   |          |           |
| ConSAGp   | Natural     | 10,100  | 8900      | 11.9     | 88.1      |
| 2G        | attenuation |         |           |          |           |
| ConSAGp   | Natural     | 5600    | 4900      | 12.5     | 87.5      |
| 2E        | attenuation |         |           |          |           |
| ConSAGp   | Natural     | 4800    | 4300      | 10.4     | 89.6      |
| 2K        | attenuation |         |           |          |           |
| ConSBGp   | Natural     | 21,700  | 19,600    | 9.7      | 90.3      |
| 2G        | attenuation |         |           |          |           |
| ConSBGp   | Natural     | 11,800  | 10,900    | 7.6      | 92.4      |
| 2E        | attenuation |         |           |          |           |
| ConSBGp   | Natural     | 9700    | 8900      | 8.3      | 91.8      |
| 2K        | attenuation |         |           |          |           |

Based on the results (as presented in tables 1 to 21 above), eliminating the contribution of natural attenuation from the applied remediation approaches yielded mean TPH reduction of up to; 68% of the initial or starting TPH in low impacted soils and the remaining TPH after reduction monitoring was further reduced by 67% with a mean TPH reduction of up to 72% observed in the high impacted soils following TPH reduction monitoring which was further reduced by 47% at close out for all clayey silty sand soil set ups, 66% in low impacted soils and the remaining TPH after reduction monitoring was further reduced by 42% while a mean TPH reduction of up to 52% was observed in the high impacted soils following TPH

reduction monitoring which was further reduced by 29% at close out for silty sand soil set ups; and 80% in the low impacted soils and the remaining TPH after reduction monitoring was further reduced by about 67% while a mean TPH reduction of up to 55% was observed in the high impacted soils following TPH reduction monitoring which was further reduced by 9% at close out for sand soil set ups.

#### 4. CONCLUSION

This study has shown non-correlation of soil profile across previously remediated sites when geological sustainability is not in view. For avoidance of geological change except change that has geological explanation, geological

sustainability needs to be flagged-off. Where applicable, non-excavation methods vsuch as biostimulation and phytoremediation should be deployed; the bench scale study indicated the effectiveness of both approaches in low as well as high crude oil impacted soils. Uzochukwu et al., (2023), gives detailed explanation of the deployment biostimulation of and phytoremediation in the treatment of contaminated soils and a measure of its effectiveness. Where non-excavation methods may not be applicable such as impacted sites with impacts at deeper depths, efforts should be made to ensure that consideration of geological sustainability is in view. Flagging off geological sustainability implies implementing measures to ensure that soil excavated for remediation are separated and remediated according to various soil layers encountered and are returned to their true subsurface position after remediation. This can be achieved by boring holes at designated locations in the crude oil impacted area to obtain the soil profile of the area noting the thickness of the various soil layers and their depth intervals. This will enable gathering of background data ahead of the excavation that will inform decision on number of lots to be prepared for separation of soil layers based on the number of soil layers obtained from the background data. Each lot containing each soil layer should be properly labelled to indicate soil type and the depth interval it was excavated from. After remediation of excavated soil, soil excavated from deeper depth should be backfilled before soil excavated from shallower depth. In other words, soil layers should be returned to the depth interval they were excavated from. This is necessary, not only to ensure correlation of soil profile across the site and to avoid human induced change in groundwater flow direction, but to ensure that soil that are already suited to environmental conditions prevailing at the depth interval where they were excavated from are returned to their subsurface position.

In a nutshell, this study re-directs the mind on the need to narrow down environmental sustainability to geological sustainability especially in the area of remediation of crude oil contaminated sites involving excavation and backfilling. In view of the aforementioned, this study calls on the geological society to flag off geological sustainability campaign and enforce measures geared towards maintenance of geological sustainability.

#### ACKNOWLEDGMENT

I am thankful to my supervisors (Associate Prof. S.E. Abrakasa, Prof. H.O. Nwankwoala and Prof. L.C. Osuji) who guided me in my PhD research with their helpful information, practical advice and ideas. I am also thankful to ACE-CEFOR for organizing series of progress report presentation that kept me on track with insightful comments and wholesome criticism that helped me in successfully carrying out the research. I express my sincere gratitude to Shell Petroleum Development Company of Nigeria Limited (SPDC) for accepting me into her graduate internship program and to the management of the Ogoni Restoration Project (ORP) team of SPDC for retaining me after the internship program. Working with the ORP team gave me the practical experience I needed to successfully complete my research.

#### REFERENCES

- [1] Amanda, V.E., (2006). Phytoremediation of Petroleum Hydrocarbons. U. S. Environmental Protection Agency, Environmental Careers Organization, Washington, DC (2006). Retrieved from https://cluin.org/download/studentpapers/A\_Van\_Epps-Final.pdf
- [2] American Geosciences Institute (AGI). https://www.americangeosciences.org/geoscien ce-currents/geoscientists-petroleum-andenvironment. Retrieved on 22<sup>nd</sup> July, 2022.
- [3] United Nations Environment Programme, (2011). Environmental Assessment of Ogoniland. ISBN: 978-92-807-3130-9
- [4] Uzochukwu, C., (2022). Remediation Amid Continuous Crude Oil Pollution: A Look

Ahead on the Use of Phytostabilizer as a Proactive Containment and Remediation tool, a case study of Bodo Creek in Ogoni, Niger Delta. International Journal of Scientific Research and Engineering Development, pg. 858 – 864, vol 5(6).

[5] Uzochukwu, C., Abrakasa, S.E., Nwankwoala, H.O., and Osuji, L.C., (2023). Evaluation of the Role of Limiting Factors of Bioremediation Based on a Bench Scale Study Utilizing Biostimulation and Phytoremediation Approach. International Journal of Scientific Research and Engineering Development, pg. 844 – 852, vol 6(3).