
International Journal of Scientific Research and Engineering Development–Volume 6 Issue 6, Nov-Dec. 2023

Available at www.ijsred.com

Weighted Bayesian Fractional Regression Model for

Estimating Community Deaths in Africa

Issah Matinu Abdul1,∗, Joseph K. Mung’atu2, Kipruto Hillary3

1,∗Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya
Email: 1abdul.matinu@students.jkuat.ac.ke

2Department of Statistics and Actuarial Sciences, Jomo Kenyatta University of Agriculture and
Technology, Nairobi, Kenya.

Email: 2j.mungatu@fsc.jkuat.ac.ke
3Department of Public and Global Health, University of Nairobi, Nairobi, Kenya.

Email: 3kiprutohi@who.int

Abstract:
Death registration systems in Africa often don’t capture all the events, especially those deaths that occur in the

community. Knowing accurately how many people die in a community is extremely important. It helps understand
why people are dying and how to improve the official records. In this study, we use the available national data to
estimate the deaths that take place outside the health facilities, that is the community deaths. Weighted Bayesian
fractional regression model is used to study different factors that explain community death rates in Africa. These
factors include the quality of the health system, the economic conditions people live in, characteristics of the
geography, and other external influences. We used a variety of existing information sources to gather and assess data
to meet our research objectives. To make sure our findings were strong, we checked them using different methods.
We then checked how good our model was using the Deviance Information Criterion, comparing it against the
unweighted Bayesian fractional regression model. We then prioritised each factor based on how big an effect it has
on community deaths in Africa using dominance analysis. Our study emphasises the need of assessing and improving
current public awareness programmes and policy initiatives that target community mortality in Africa. Additional
research is required to enhance our comprehension of community mortality, considering the many factors our study
has uncovered. Therefore, we suggest conducting comprehensive investigations that specifically examine the variables
that contribute to community fatalities. This would greatly enhance the existing body of research on how to address
and reduce community mortality in Africa.

Keywords- Community Deaths, Weighted Bayesian Fractional Regression, Deviance Information Criterion,
Dominance Analysis.

I. Introduction

Throughout recent years, there has been an increas-
ing scholarly focus on the precise estimation of mortal-
ity rates inside residential settings throughout the African
continent. Home fatalities, often referred to as community
deaths, are instances of mortality that transpire outside
the confines of healthcare establishments, typically tran-
spiring inside the individual’s own residence. Accurate
estimation of the prevalence of fatalities occurring inside
residential settings is of paramount importance in compre-

hending the comprehensive mortality impact within a cer-
tain populace and in providing valuable insights for pub-
lic health actions. The precise assessment of mortality
rates occurring within households in Africa has significant
importance for several reasons. To begin with, fatalities
occurring inside residential settings serve as a significant
metric for assessing the overall health condition of a cer-
tain community. Limited access to healthcare and diag-
nostic capabilities, as well as stringent testing, and prac-
tices, implies that reported cases and fatalities are antici-
pated to represent a fraction of the genuine numbers [1].
Due to a lack of reliable data, low-income and middle-
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income nations (also known as LMICs) have a difficult
time pinpointing the factors that lead to mortality in their
populations. This is often due to deaths occurring out-
side of formal medical settings and minimal contact with
healthcare services, resulting in a lack of proper documen-
tation and registration [2].
Estimating the number of fatalities that occur in African
communities with sufficient precision is essential in the
realm of public health for the purposes of comprehend-
ing the extent of the disease burden and creating effec-
tive treatments. This issue presents a particularly diffi-
cult challenge in Africa for a number of reasons, including
a lack of resources and an insufficient infrastructure for
healthcare, as well as cultural practises that might have
an effect on the reporting and documenting of fatalities.
The absence of trustworthy data is a significant obsta-
cle when attempting to estimate the number of fatalities
that occur within African communities. Because there is
a paucity of data that can be relied upon, it is impossible
to acquire an accurate picture of the exact number of fa-
talities that are happening in communities. In addition,
the procedure that is used to gather data in Africa is rife
with uncertainty and inaccuracy, which frequently leads
to a reduction in the accuracy of the reported cases and
fatalities in Africa. According to [3], in many African na-
tions, for instance, sick children often do not have access
to official healthcare, and the majority of fatalities take
place inside family homes.
The primary objective of this study is to use a weighted
Bayesian fractional regression model to gain insights into
the many elements, including health systems, socio-economic
conditions, geographical factors, and external influences,
that contribute to community mortality rates in Africa.
Additionally, the aim is to ascertain the extent to which
the explanatory factors contribute to the explanation of
community fatalities, hence establishing their dominance.
A systematic literature review conducted by [4] studied
home-death obstacles and facilitators. The 2006–2016 re-
search examined PubMed, EMBASE, Ovid, CINAHL, and
PsycINFO. They identified seven main barriers to home
deaths: a lack of knowledge, skills, and support among
healthcare professionals and informal carers, the burden
on informal carers and families, difficulty recognising death,
inadequate processes like advance care planning and dis-
charge, and patient-specific challenges due to their condi-
tion or social circumstances. The research found four main
facilitators of home deaths: patient and healthcare pro-
fessional support, competent personnel, coordination, and
communication. [5] estimated national and sub-national
death registration completeness. They employed random-
effects models to estimate the logit of death registration
completeness based on registered crude death rate, under-
five mortality rate, population age structure, and under-
five death registration completeness. [6] studied age-specific
mortality. Death registration accuracy was assessed using
empirical completeness. The traditional and similar dying
methods were used using a model life table. Also, [7] ex-

amined short-term mobility before death in Burkina Faso
and Senegal adults. Age and nativity were major drivers
of migration before death in specific locations, and a frac-
tion of fatalities occurred outside the HDSS site. [8] stud-
ied non-traumatic adult fatalities in Botswana and vari-
ables that affect where individuals die, such as age, gen-
der, occupation, district of residence, and cause of death.
Home fatalities accounted for 36% of all deaths, with un-
explained causes being the most common. HIV/AIDS,
cardiovascular disease, and cancer dominated hospital fa-
talities. Females, those over 80, and those in cities or rural
areas were more likely to die at home.
According to the research presented in [9], a sizeable por-
tion of the deaths that take place in low- and middle-
income countries (LMICs) take place inside the confines
of the home. According to the results of the study, the
domestic death rate of low- and middle-income countries
is around 60% higher than the domestic mortality rate of
high-income countries, which is 27%. This would imply
that a larger number of deaths in low- and middle-income
countries take place outside of established healthcare insti-
tutions such as hospitals and clinics. This suggests that a
sizable number of fatalities escape detection by traditional
monitoring techniques, which results in an underestimate
of the true burden of disease. Estimating the number of
fatalities that occurred inside African communities using
a fractional regression model is one possible solution to
this issue. This research used widely available national
and sub-national data to estimate the predicted number
and percentage of home deaths in a population to cover
the essential information vacuum. African countries may
improve their civil registration systems and learn where
deaths occur.
The subsequent sections of the research are structured
as follows: In the second part, we provide the weighted
Bayesian fractional regression models as a method for do-
ing data analysis. Section 3 of the paper elucidates the
utilisation of the weighted Bayesian fractional regression
model in the context of community death data pertaining
to 47 African nations as designated by the World Health
Organisation (WHO). Section 4 provides a conclusion and
recommendations.

II. Materials and Methods

A. Data Description

This research primarily examines the fraction of fatalities
that occur outside of health facilities. To establish our
model framework, we collected data from several sources,
including the World Health Organisation (WHO), World
Bank, among others. The model structure is shown in Fig-
ure 1. The approach we propose builds upon the work of
[9] as an expansion. The variables included in the models
encompass the health system, socio-economic, geographic
features, and other external factors.
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a. Health System Covariates

1. The logarithm of health expenditure per capita is ob-
tained from the World Health Organisation Global
Health Expenditure Database.

2. The Global Burden of Disease Study’s Universal Health
Care (UHC) effective coverage indicator. The UHC
index has 23 indicators that include many healthcare
categories, including promotion, prevention, treat-
ment, rehabilitation, and palliation. These indica-
tors are applicable to five distinct age groups within
the population. The indicators include both objec-
tive measurements of the extent to which health sys-
tem interventions are implemented, as well as assess-
ments of the resulting outcomes. The index used a
weighting system to assign value to the variables,
taking into consideration their potential impact on
health outcomes as measured by disability-adjusted
life-years.

3. The present study examines the stated rates of home
births as documented by reputable sources such as
UNICEF, Multiple Indicator Cluster Survey, and De-
mographic and Health Survey data.

4. The proportion of available medical professionals in
each country.

b. Socio-economic Covariates

1. The Socio-Demographic Index (SDI) used by the
Global Burden of Disease (GBD) is calculated as the
geometric mean of three key indicators: the fertility
rate among individuals below the age of 25, the av-
erage level of education for those aged 15 and above,
and the lag distributed income per capita.

2. The education index of the Human Development In-
dex (HDI) by the United Nations (UN) is used as a
metric to gauge the average number of years spent
in schooling. Additionally, the income index is in-
cluded, together with the education index, to calcu-
late the geometric mean of these two indexes.

3. Income level of each country by classification as de-
termined by the World Bank.

c. Geographic Covariate

1. The proportion of individuals residing in urban re-
gions, as determined by the United Nations Popula-
tion Division.

d. External Factors Covariates

1. Natural Disaster Index, the primary component of
theWorld Risk Report (WRR) is theWorldRiskIndex
(WRI), which has been developed by the Institute
for Environment and Human Security (EHS) at the

United Nations University (UNU) in collaboration
with Bündnis Entwicklung hilft (BEH).

2. WHO-determined health seeking behaviour that at-
tempts to help countries better comprehend where
their populations seek care in order to govern their
health systems.

3. Health inequality from the WHO global health ob-
servatory.

Figure 1: Conceptual Framework

B. Fractional Response Model and the Like-
lihood Function

The Fractional Regression model (FRM) was proposed by
[10] as a solution to the limitations faced by linear and
nonlinear econometric models when dealing with bounded
dependent variables.
Let Yi be the fraction of deaths that occur outside the
health facility. In a fractional regression model, the re-
sponse variable is a fractional outcomes bounded between
0 and 1. It is common to assume that the response variable
follows a beta distribution, which is suitable for modeling
continuous outcomes constrained within a specific range
with the probability density function of the beta distribu-
tion is given by:

f(y;α, β) =
1

B(α, β)

[
yα−1(1− y)β−1

]
where y is the random variable, α and β are the shape
parameters, and B(α, β) is the beta function. The beta
function is defined as:

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt

The mean and variance of the beta distribution are given
by:

1. µ = α
α+β
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2. σ2 = αβ
(α+β)2(α+β+1)

To establish a connection between the linear predictor and
the mean function in a fractional regression model, we
often use the logit-link function [11]. The logit-link func-
tion transforms the expected value of the response variable
(which lies between 0 and 1) onto the entire real line. The
logit transformation is defined as the natural logarithm of
the ratio of the expected value to its complement:

logit(E(Y | x;β)) = xTβ

where β = (β0, β1, β2, · · · , βp) and x = (1, x1, x2, · · · , xp)
are (p+ 1) column vectors which refers to the regression
coefficients and predictor variables, respectively.
Assuming that the observed response of the ith fraction of
community death is yi and the explanatory variable values
are represented by the vector xi, we define wi as the cor-
responding weight. We adopt the approach presented in
[12] and [13] to establish the weighted likelihood function,
which is given by

L(β) =

n∏
i=1

P (Yi = yi | x;β)wi (II..1)

Here, P (Yi = yi | x;β) represents the probability density
function of the beta distribution, which depends on the
expected value of the response variable given the predic-
tor variables and the regression coefficients.

C. Estimation of Parameters

a. Prior Distribution

In Bayesian analysis, the prior distribution, π(β), repre-
sents our initial belief about the parameter β. A wide
range of prior distributions can be found in the Bayesian
literature [14]. The term ”non-informative prior,” also
known as a ”vague, flat, or diffuse prior,” in Bayesian
analysis is often used to denote the absence of any previ-
ous information about the parameter of interest. Jeffrey’s
prior [15] is another sort of non-informative prior that is
often used with a single parameter. The Fisher informa-
tion matrix I(β) and π(β) ∝

√
|I(β)| are used to calculate

Jeffrey’s prior, which is scale-invariant. A weakly informa-
tive prior known as the unit information prior incorporates
information from a single data point [16]. The spike-and-
slab prior [17] is helpful for variable selection, especially in
situations in which the number of explanatory variables is
higher than the number of data points. On the other hand,
an informative prior is utilised to combine both the infor-
mation that we already know and the uncertainty that we
have on the parameter of interest [18]. In this study, we
used three instructive priors that have been meticulously
created, justified, and presented.
Assuming that each of the regression coefficients is inde-
pendent of the others βj(j = 0, 1, · · · , p) [19], the joint

prior distribution for β can be formulated as follows:

π(β) =

p∏
j=0

π (βj |λj , σj) (II..2)

Here, π (βj |λj , σj) represents the marginal prior for the
jth coefficient. Including this marginal prior into the joint
prior distribution for β will create the joint prior distribu-
tion, and three different types of priors are considered for
π (βj |λj , σj).

The first prior considered is a Normal prior [20], which
is described by the following density function:

π (βj |λj , σj) =
1

σj

√
2π

exp

−

(
βj − λj√

2σj

)2


The Normal prior is characterized by location and scale
parameters λj and σj , respectively, which determine the
shape of the distribution. In order to impose a constraint
similar to L2 norm that performs regularization akin to
Ridge regression [21], all λj ’s are set to 0.

A Laplace prior [22] is the second prior distribution that
we utilized, and its density is given by:

π (βj |λj , σj) =
1

2σj
exp

{
−|βj − λj |

σj

}
The prior distribution with location and scale parameters
λj and σj , respectively, is commonly referred to as the
double exponential prior. When λj = 0, this prior acts as
an L1 norm constraint, while also performing regulariza-
tion similar to the LASSO [23].

We considered a third prior, which is a Cauchy distribu-
tion [24] characterized by its density function.

π (βj |λj , σj) =

[
πσj

(
1 +

(
βj − λj

σj

)2
)]−1

The location and scale parameters of the Cauchy prior are
denoted by λj and σj , respectively. Notably, when λj = 0,
this prior is known to induce more substantial shrinkage
than the Normal and Laplace priors [25].

b. Posterior Means

The focus of the Bayesian regression model is on the pos-
terior distribution π (β|y,x), which is obtained by multi-
plying the likelihood function f (y|β) |f (y) and the prior
distribution π (β).

π (β|y) = f (y|β)π (β)

f (y)

Where

f (y) =

∫
β

f (y|β) g (β) dβ
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The normalizing constant of integration, also known as
the marginal likelihood, is independent of β. It can be
difficult to compute, and as a result, the evaluation of
the posterior distribution is also challenging. To simplify
this, the common practice is to exclude the normalizing
constant and express it as:

π (β|y) ∝ f (y|β)π (β)

Now by combining the likelihood function (Eq. II..1) with
the prior distribution (Eq. II..2), we obtain the joint pos-
terior distribution of β.

π (β|y,x) ∝ L(β)× π(β) =

n∏
i=1

P (Yi = yi | x;β)wi

×
p∏

j=0

π (βj |λj , σj) (II..3)

The symbols L(· ) and π(· ) represent the likelihood func-
tion and the prior distribution, respectively. The gener-
ation of posterior samples using Monte Carlo techniques
[26] or a Gibbs sampler [27] is not viable due to the absence
of a closed-form representation of a conventional statistical
distribution for the joint posterior distribution of β. The
Metropolis algorithm proposed by [28] is recommended for
addressing this issue.

c. The Metropolis Algorithm

We made use of the Metropolis method to roughly esti-
mate the posterior means of β. starting with a certain
parameter vector state, β(s), we generated a new state
using the following procedure:

1. Sample a proposal state β∗

β∗ ∼ P ∗
(
β|β(s)

)
where P ∗(· ) is the proposal distribution to be ex-
plained later.

2. Calculate the acceptance ratio r

r =
π (β∗|y,x)
π
(
β(s)|y,x

)
where π (· |y,x) is the posterior distribution of β

3. Accept or reject the proposal with

β(s+1) =

{
β∗,with probability min(r,1)

β(s),with probability 1-min(r,1)

The proposal distribution P ∗(· ) for β is considered as
multivariate-normal (MVN):

β|β(s) ∼ MVN
(
β(s),Σp

)

The proposal variance-covariance matrix Σp is similar to
the variance-covariance matrix of the ordinary least squared
method.

Σp =
[
σ̂2
(
xTx

)−1
]
k

with σ̂2 being the sample variance of
{log(y1 + 0.5), log(y2 + 0.5), · · · , log(yn + 0.5)}. We ad-
vise starting with k = 1 in order to establish a suitable Σp.
If this decision results in an extremely low or high accep-
tance rate, we advise adjusting Σp using different values
of k > 0 until a realistic acceptance rate is reached.

d. Model Selection

[29] was the first to propose the Deviance Information Cri-
terion (DIC). It is a generalisation of the Akaike Informa-
tion Criterion (AIC) for hierarchical modelling. DIC is
especially helpful in Bayesian model selection problems
where the posterior distributions of the models have been
derived through Markov chain Monte Carlo (MCMC) sim-
ulation. The most applicable model was chosen using
the Deviance Information Criterion (DIC), the Akaike In-
formation Criterion (AIC), and the Bayesian Information
Criterion (BIC) values. [30] introduced the Bayesian infor-
mation criterion as an alternative to the [31] information
criterion. Schwarz derived BIC as an approximation to
an asymptotic transformation of the Bayesian posterior
probability of a candidate model. In contexts with a large
sample size, the fitted model favoured by BIC should cor-
respond to the candidate model that is a posteriori most
probable; that is, the model that is rendered most plau-
sible by the available data. Priors are not required for
the computation of BIC, which is based on the empiri-
cal log-likelihood. Assuming that two candidate models
are considered equally probable a priori, the Bayes fac-
tor is the ratio of the models’ posterior probabilities. The
model with the highest posterior probability is determined
by whether or not the Bayes factor is less than one. The
definitions of AIC, BIC, and DIC are given as:

AIC = −2 ln(L) + 2k (II..4)

Where:

L is the likelihood of the model.

k is the number of model parameters.

BIC = −2 ln(L) + k ln(n) (II..5)

Where:

L is the likelihood of the model.

k is the number of model parameters.

n is the sample size.

DIC = D(θ̄) + pD (II..6)
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Where:

D(θ̄) is the posterior mean of the deviance.

pD is a penalty term for model complexity.

The penalty term pD is often computed as:

pD = D̄ −D(θ̄)

Where:

D̄ is the average deviance over the posterior samples.

e. Bayesian R-squared:

An important consideration in a regression model is to de-
termine the percentage of variability in the response vari-
able that is explained by the independent variable(s). The
Bayesian R2 proposed by [32] uses the variance of the pre-
dicted values divided by the variance of predicted values
plus the expected variance of the errors. i.e,

R2 =
σfit

σfit + σres
(II..7)

where,

1. σfit is the variance of the modeled predictive means

2. σres is the modeled residual variance

f. Predictor Relative Importance

The phrase ”relative importance analysis”, encompasses
many techniques used to identify the contributions of linked
variables inside a regression model and to estimate their
significance. There are several relative importance analy-
sis techniques applied by researchers some are Dominance
Analysis by [33] and Relative weight anlysis by [34]. These
two approaches are the most popular ones, and they are
also the ones that are often cited as the preferred processes
for determining the relative significance of predictor vari-
ables [35]. Following the idea by [36] we used the domi-
nance analysis to compute the relative importance of the
independent variables.

D. Software

The Bayesian analysis was conducted using a R pack-
age developed by [37]. The brms package offers a soft-
ware interface for the purpose of fitting Bayesian gener-
alised (non-)linear multivariate multilevel models by us-
ing the Stan programming language. The statistical soft-
ware stata version 17 and excel were used to produce fre-
quency distributions, graphical representations, and cross-
tabulations.

III. Results and Discussion

We used the suggested technique in this section to anal-
yse data from the 47 WHO African nations that were cov-
ered in the prior section. We investigated the weighted
Bayesian fractional regression model for model fitting. The
Bayesian R-square goodness-of-fit were used to determine
how well these models matched the actual data. The best
model for the data was then chosen using Deviance Infor-
mation Criterion (DIC). The implications of community
deaths in Africa were then estimated and discussed using
the appropriate model.

Table 1: Description of Variables

Variable Description

1 y (dependent variable) fraction of community deaths
2 x1 log(Health Expenditure)
3 x2 Universal Health Coverage
4 x3 Percentage of Birth at Home
5 x4 Health Inequality
6 x5 Social Demographic Index
7 x6 Health Seeking Behavior
8 x7 Percentage of Pop. In the Urban Areas
9 x8 Life Expectancy at Birth
10 x9 Mean Educational Years
11 x10 Gross National Income
12 x11 Disaster Index
13 x12 Ratio of Healthcare Workforce
14 x13 Income Level Classification

A. Descriptive Statistics

Table 2: Descriptive Statistics Table

Variable Categories/Type Mean Std. dev. Min Max

y Quantitative 0.6500136 0.2278802 0.04 0.998
x1 Quantitative 5.130365 0.9531708 3.621 7.476
x2 Quantitative 46.15532 9.777032 22.3 64.9
x3 Quantitative 11.1 16.62187 1 88.5
x4 Quantitative 37.28298 21.98528 0.5 90.1
x5 Quantitative 0.4400213 0.1394749 0.162 0.724
x6 Quantitative 0.5265575 0.1477599 0.2815632 0.8395367
x7 Quantitative 43.59591 19.43731 12.5 89.8027
x8 Quantitative 62.07711 5.138073 52.5254 76.3767
x9 Quantitative 10.87322 2.079068 5.54251 15.17353
x10 Quantitative 4979.467 5441.278 731.7867 25830.62
x11 Quantitative 5.870851 6.164477 0.48 34.37
x12 Quantitative 0.3429681 0.4913541 0.0162 2.4717

Table 2 provides an overview of the analytic sample, dis-
playing the descriptive statistics for the variables utilised
in this research. In summation, it can be observed that a
significant proportion, approximately 65%, of mortalities
in Africa transpire beyond the confines of healthcare fa-
cilities. The mean health expenditure per capita in Africa
is $164, with a minimum value of $37.34 and a maximum
value of $1,765.17. The mean universal health coverage
in Africa is 46.16. The mean proportion of home births
is 11.1%. Additionally, it is worth noting that the pro-
portion of individuals residing in urban regions stands at
43.60%. The mean life expectancy at birth is 62 years,
whereas the mean number of years of schooling is 10.87
years. The mean value of the gross national income is
$4,979.47. According to the natural disaster index, the
47 African countries under the jurisdiction of the World
Health Organisation (WHO) have an average probability
of 5.87% for experiencing a natural disaster. This indicates
that Africa possesses a moderate level of susceptibility to
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such events, with the lowest recorded probability being
0.48% and the highest reaching 34.37%. The mean value
of the healthcare workforce ratio is 0.34.

Figure 2: Scatter plot Matrix of the variables

The scatter plot matrix reveals several noteworthy cor-
relations. Firstly, there is a negative correlation between
fractional home deaths and health expenditure. Addition-
ally, a negative correlation is observed between fractional
home deaths and universal health coverage. Conversely,
a positive correlation is evident between fractional home
deaths and the percentage of home delivery. Furthermore,
a positive correlation is observed between fractional home
deaths and health inequality. Furthermore, it was noted
that there exists an inverse correlation between fractional
home deaths and the social demographic index. Addi-
tionally, a negative association was found between frac-
tional home deaths and health-seeking behaviour, as well
as the percentage of individuals residing in urban areas.
Moreover, fractional home deaths displayed a negative re-
lationship with life expectancy at birth, average educa-
tional years, the ratio of healthcare workforce, and gross
national income. There exists a positive correlation be-
tween fractional home deaths and the disaster index.

Table 3: Normality test Results

Test type Test Statistic P-value
1 Pearson test 65.64 2.64e-08
2 Shapiro test 0.95 1.59e-07
3 Anderson Darling test 2.73 6.70e-07
4 Lilliefors test 0.11 9.98e-07
* p < 0.05, ** p < 0.01, *** p < 0.001

The results of the normality test are shown in Table 3.
Various types of tests indicate that the distribution of re-
sponses is not normal. Given the variability in community
mortality rates falling within the range of 0 to 1 and the

departure from normal distribution, it is advisable to use
an alternative approach. Hence, a fractional regression
model was used in consideration of the inherent charac-
teristics of the proportion of community deaths.

B. Estimation of Community Deaths

Table 4: Posterior estimates with 95% credible
intervals (CI) of the estimated coefficients for
WBFR

Variable Categories/Type Estimate Est. Error Q2.5 Q97.5

Intercept 1.341142 0.4147571 0.5282331 2.154051
x1 Quantitative -0.9744168 0.1169453 -1.203625 -0.7452083
x2 Quantitative -0.0127012 0.0055768 -0.0236315 -0.0017708
x3 Quantitative 0.0090048 0.0023809 0.0043383 0.0136713
x4 Quantitative 0.1732216 0.0636578 0.0484547 0.2979886
x5 Quantitative -0.6276504 0.475733 -1.56007 0.304769
x6 Quantitative -0.9831012 0.3312814 -1.632401 -0.3338015
x7 Quantitative 0.0027189 0.0021391 -0.0014736 0.0069114
x8 Quantitative -0.0042092 0.0021917 -0.0085048 0.0000865
x9 Quantitative -0.1176975 0.019363 -0.1556482 -0.0797467
x10 Quantitative -0.0000314 8.55E-06 -0.0000481 -0.0000146
x11 Quantitative 0.0015803 0.0027188 -0.0037484 0.006909
x12 Quantitative -0.2137235 0.0994344 -0.4086114 -0.0188356
x13 High-income (ref)

Upper-middle-income 0.0174515 0.008015 0.0017423 0.0331606
Lower-middle-income 0.071471 0.027699 0.0171803 0.125761
Low-income 0.1159666 0.001896 0.1122497 0.119683

AIC = 577.58, BIC = 730.5425, DIC = 67.462, BayesR2 = 0.4589

Table 5: Posterior estimates with 95% credible in-
tervals (CI) of the estimated coefficients for BFR

Variable Categories/Type Estimate Est. Error Q2.5 Q97.5

Intercept 2.3417 2.2076 -1.9851 6.6684
x1 Quantitative 0.4489 0.2704 -0.0812 0.9789
x2 Quantitative -0.0230 0.0233 -0.0686 0.0227
x3 Quantitative 0.0271 0.0100 0.0075 0.0467
x4 Quantitative -0.0053 0.0083 -0.0216 0.0109
x5 Quantitative -2.1577 1.8943 -5.8705 1.5551
x6 Quantitative -1.7422 1.3943 -4.4751 0.9906
x7 Quantitative 0.0094 0.0084 -0.0071 0.0259
x8 Quantitative 0.0276 0.0344 -0.0398 0.0951
x9 Quantitative -0.2246 0.0805 -0.3824 -0.0669
x10 Quantitative -0.0001 0.0000 -0.0001 -0.0000
x11 Quantitative 0.0034 0.0183 -0.0324 0.0393
x12 Quantitative 0.1202 0.2214 -0.3138 0.5541
x13 High-income (ref)

Upper-middle-income -1.8406 0.7226 -3.2569 -0.4244
Lower-middle-income -0.5007 0.7159 -1.9038 0.9025
Low-income -0.1313 0.7776 -1.6554 1.3927

AIC = 832.054, BIC = 856.106, DIC = 108.453, BayesR2 = 0.1320

Tables 4 and 5 provide the findings of the models in both
their weighted and unweighted forms, respectively. The
log health expenditure, universal health coverage, percent-
age of births that take place at home, health inequality,
health-seeking behaviour, mean educational years, gross
national income, ratio of health workforce, and income
level classification are all factors that, according to the
weighted model, have a significant impact on community
deaths. When we look at the model without weights, we
can see that the proportion of births that occur at home,
the mean number of years spent in school, and the gross
national income all have a considerable impact on com-
munity deaths. When everything is said and done, the
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weighted fractional model identifies nine primary impor-
tant drivers of community deaths, while the unweighted
model identifies just three major determinants of deaths
in a community.

Figure 3: Trace plot of variables

Figure 4: Trace plot of variables

Figure 5: Trace plot of variables

Figure 6: Trace plot of variables

The intermingling of the chains is evident. The data ex-
hibits a significant amount of variability, as shown by the
fluctuation of values, resulting in the exploration of the
whole distribution. Thus far, the observed chain exhibits
satisfactory behaviour and seems to converge towards the
stationary distribution.

Table 6: Dominance Statistics

Variable Dominance Stat. Stand. Domin. Stat. Ranking

x1 0.065136842 0.141941255 3
x2 0.015052632 0.032801551 5
x3 0.013136842 0.028626808 6
x4 0.008210526 0.017891755 7
x5 0.004789474 0.010436857 10
x6 0.030036842 0.065454003 4
x7 0.003489474 0.007603996 13
x8 0.004515789 0.009840465 12
x9 0.126989474 0.276725809 2
x10 0.007184211 0.015655286 8
x11 0.004652632 0.010138661 11
x12 0.005405263 0.011778739 9
x13 0.1703 0.371104816 1

Based on the findings presented in Table 6, it is evident
that the healthcare system covariates contribute to 21.51%
of the explained variability. Additionally, the socio-economic
covariates account for a substantial portion of the ex-
plained variability, specifically 74.92%. Furthermore, the
geographic covariate is responsible for a minimal 0.76% of
the explained variability, while the external factors covari-
ates contribute to 2.81% of the explained variability. This
suggests that the socio-economic covariate is a significant
factor in predicting the occurrence of community deaths.
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Figure 7: Percentage of Community Deaths in
Africa

On the basis of the model that we developed, Figure
8 presents a projection of the proportion of community
deaths across 47 nations in Africa. It is plain to observe
that a larger proportion of fatalities in the community
corresponds to a darker shade of blue.

IV. Conclusion

Upon conducting a thorough analysis employing the weighted
Bayesian fractional regression model, a multitude of fac-
tors, each with a significant impact, were pinpointed as
pivotal determinants of mortality rates within communi-
ties. These encompass factors such as the logarithm of
health expenditure, the degree of universal health cover-
age, the proportion of births occurring domestically, the
level of health inequality within the community, the propen-
sity for health-seeking behaviour, the mean duration of
education, the gross national income, the relative ratio of
health workforce, and the classification of income level.
In stark contrast, a similar analysis devoid of the incor-
poration of the weights from the model, delineated that
mortality rates in communities primarily hinge on three
crucial factors: the fraction of births transpiring at home,
the mean duration of educational pursuits, and the gross
national income of the respective communities.
In essence, the weighted fractional model offers a compre-
hensive understanding by identifying nine primary cata-
lysts of community mortality rates. Conversely, the un-
weighted model provides a more narrowed perspective by
recognising only three as the major determinants of com-
munity deaths.
Our research underscores the necessity of evaluating and
ameliorating existing public-awareness campaigns and pol-
icy initiatives tailored towards community deaths across

the African continent. Given the varying determinants
our study identified, more research is needed to increase
the understanding of community mortality. Hence, we
propose the execution of in-depth studies focusing on the
factors contributing to community deaths, which would
significantly augment the extant literature on addressing
and mitigating community mortality in Africa.
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Weighted Bayesian Fractional Regression Model for Estimating 

Community Deaths in Africa 
 
 
 

SUPPLEMENTARY MATERIAL 
 
S1- Estimates of Percentage of Community Deaths with 95% Credible Interval 
S2- Estimates of Total Community Deaths with 95% Credible Interval 
S3- Estimates of Total Deaths by Age Groups 
 
 

Table S1 Estimates of Percentage of Community Deaths with 95% Credible Interval 

sn. Country Est. Comm. 
deaths 

Std. Error 95% CI 

Lower Limit Upper Limit 
1 Algeria 0.519422 0.127236 0.270039 0.768804 
2 Angola 0.791124 0.046279 0.700417 0.881831 
3 Benin 0.686291 0.104668 0.481141 0.891441 
4 Botswana 0.309403 0.102368 0.108762 0.510043 
5 Burkina Faso 0.8272 0.087007 0.656666 0.997733 
6 Burundi 0.770211 0.105278 0.563866 0.976556 
7 Cabo Verde 0.645855 0.162195 0.327953 0.963758 
8 Cameroon 0.57129 0.157959 0.261691 0.88089 
9 Central African Republic 0.896892 0.042082 0.814411 0.979373 

10 Chad 0.827296 0.072006 0.686164 0.968429 
11 Comoros 0.675825 0.108932 0.462318 0.889332 
12 Congo 0.606405 0.1094 0.391981 0.820829 
13 Cote d'Ivoire 0.700945 0.120298 0.465161 0.936728 
14 Democratic Republic of the Congo 0.779842 0.100343 0.583171 0.976514 
15 Equatorial Guinea 0.350093 0.13638 0.082788 0.617398 
16 Eritrea 0.836987 0.071559 0.696731 0.977243 
17 Eswatini 0.467574 0.118944 0.234443 0.700704 
18 Ethiopia 0.812838 0.072762 0.670224 0.955451 
19 Gabon 0.286968 0.087879 0.114726 0.45921 
20 Gambia, The 0.785604 0.103431 0.582879 0.988329 
21 Ghana 0.620924 0.148642 0.329586 0.912262 
22 Guinea 0.715892 0.119351 0.481964 0.94982 
23 Guinea-Bissau 0.76059 0.114417 0.536333 0.984846 
24 Kenya 0.624844 0.105408 0.418244 0.831444 
25 Lesotho 0.607828 0.119454 0.373698 0.841958 
26 Liberia 0.783232 0.0985 0.590172 0.976292 
27 Madagascar 0.817126 0.051415 0.716352 0.917899 
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28 Malawi 0.597529 0.116413 0.36936 0.825698 
29 Mali 0.885345 0.022082 0.842065 0.928625 
30 Mauritania 0.691419 0.132507 0.431705 0.951133 
31 Mauritius 0.19781 0.049293 0.101197 0.294424 
32 Mozambique 0.776554 0.101472 0.57767 0.975439 
33 Namibia 0.13203 0.042509 0.048711 0.215348 
34 Niger 0.850073 0.068065 0.716666 0.983479 
35 Nigeria 0.741453 0.101994 0.541545 0.94136 
36 Rwanda 0.759401 0.105635 0.552356 0.966445 
37 Sao Tome and Principe 0.519053 0.146139 0.232621 0.805485 
38 Senegal 0.692828 0.109473 0.478262 0.907395 
39 Seychelles 0.317409 1.44E-02 0.289185 0.345633 
40 Sierra Leone 0.71827 0.109733 0.503194 0.933346 
41 South Africa 0.173013 0.057102 0.061093 0.284932 
42 South Sudan 0.783245 0.083076 0.620416 0.946073 
43 Tanzania 0.89241 0.01269 0.867536 0.917283 
44 Togo 0.750308 0.067629 0.617756 0.882861 
45 Uganda 0.712196 0.089698 0.536389 0.888003 
46 Zambia 0.767764 0.032551 0.703963 0.831564 
47 Zimbabwe 0.315863 0.049476 0.21889 0.412836 

 
 

Table S2 Estimates of Total Deaths with 95% Credible Interval 

sn.  Country Number of 
Comm. 

Deaths (a) 

95% CI Number 
of Facility 

Deaths 
(b) 

Total 
Deaths 
(a+b) 

95% CI Population 
2022 Lower 

Limit 
Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

1 Algeria 104,317 54,233 154,401 110,715 215,032 164,948 265,117 44,903,225 
2 Angola 218,620 193,554 243,686 553 219,172 194,106 244,238 35,588,987 
3 Benin 84,148 58,994 109,302 48,152 132,300 107,146 157,454 13,352,864 
4 Botswana 7,577 2,663 12,490 18,244 25,821 20,908 30,735 2,630,296 
5 Burkina Faso 163,767 130,005 197,529 68,149 231,916 198,154 265,678 22,673,762 
6 Burundi 72,252 52,895 91,609 22,869 95,120 75,764 114,477 12,889,576 
7 Cabo Verde 2,289 1,162 3,416 1,589 3,878 2,751 5,005 593,149 
8 Cameroon 133,350 61,084 205,616 86,420 219,769 147,503 292,036 27,914,536 
9 Central African 

Republic 
55,763 50,635 60,891 8,634 64,397 59,269 69,525 5,579,144 

10 Chad 177,716 147,399 208,033 16,513 194,230 163,912 224,547 17,723,315 
11 Comoros 4,841 3,312 6,370 2,024 6,865 5,335 8,394 836,774 
12 Congo 24,995 16,157 33,833 21,127 46,122 37,283 54,960 5,970,424 
13 Cote d'Ivoire 173,366 115,049 231,682 95,451 268,817 210,500 327,133 28,160,542 
14 Democratic 

Republic of the 
Congo 

725,388 542,450 908,327 228,595 953,983 771,044 1,136,922 99,010,212 

15 Equatorial Guinea 5,174 1,224 9,124 9,294 14,468 10,517 18,418 1,674,908 
16 Eritrea 20,390 16,973 23,807 3,253 23,642 20,226 27,059 3,684,032 
17 Eswatini 6,331 3,174 9,487 10,019 16,350 13,193 19,506 1,201,670 
18 Ethiopia 662,494 546,258 778,729 72,124 734,618 618,382 850,853 123,379,924 
19 Gabon 4,876 1,949 7,803 11,730 16,606 13,680 19,533 2,388,992 
20 Gambia, The 15,644 11,607 19,680 4,601 20,245 16,208 24,281 2,705,992 
21 Ghana 155,490 82,534 228,446 101,412 256,903 183,947 329,859 33,475,870 
22 Guinea 96,777 65,154 128,400 2,704 99,481 67,857 131,104 13,859,341 
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23 Guinea-Bissau 13,661 9,633 17,689 3,714 17,375 13,348 21,403 2,105,566 
24 Kenya 266,817 178,596 355,038 178,919 445,735 357,514 533,956 54,027,487 
25 Lesotho 19,672 12,095 27,250 17,736 37,408 29,830 44,986 2,305,825 
26 Liberia 35,950 27,089 44,811 2,295 38,245 29,384 47,106 5,302,681 
27 Madagascar 167,851 147,151 188,552 32,701 200,552 179,852 221,253 29,611,714 
28 Malawi 82,991 51,300 114,681 46,107 129,098 97,408 160,789 20,405,317 
29 Mali 179,855 171,063 188,647 14,606 194,461 185,669 203,253 22,593,590 
30 Mauritania 23,740 14,823 32,658 11,641 35,382 26,464 44,299 4,736,139 
31 Mauritius 2,630 1,346 3,915 7,779 10,409 9,124 11,694 1,262,523 
32 Mozambique 219,030 162,934 275,126 70,513 289,543 233,447 345,640 32,969,518 
33 Namibia 3,577 1,320 5,835 25,334 28,912 26,654 31,169 2,567,012 
34 Niger 174,760 147,334 202,186 6,661 181,421 153,995 208,847 26,207,977 
35 Nigeria 2,070,083 1,511,954 2,628,212 279,193 2,349,276 1,791,147 2,907,405 218,541,212 
36 Rwanda 64,200 46,697 81,704 26,546 90,746 73,242 108,250 13,776,698 
37 Sao Tome and 

Principe 
740 331 1,148 718 1,457 1,049 1,866 227,380 

38 Senegal 69,244 47,799 90,689 35,137 104,381 82,936 125,825 17,316,449 
39 Seychelles 293 267 319 630 923 897 949 100,060 
40 Sierra Leone 55,118 38,614 71,622 30,039 85,157 68,653 101,661 8,605,718 
41 South Africa 117,471 41,480 193,461 651,813 769,284 693,294 845,275 59,893,885 
42 South Sudan 93,025 73,686 112,364 41,569 134,594 115,255 153,933 10,913,164 
43 Tanzania 353,079 343,238 362,920 102,868 455,947 446,106 465,788 65,497,748 
44 Togo 52,980 43,620 62,340 21,816 74,796 65,436 84,155 8,848,699 
45 Uganda 191,925 144,548 239,302 65,215 257,139 209,762 304,516 47,249,585 
46 Zambia 104,252 95,588 112,915 27,157 131,409 122,746 140,072 20,017,675 
47 Zimbabwe 45,754 31,707 59,801 56,582 102,336 88,289 116,382 16,320,537 

 
 
 
 

Table S3: Estimate of Total Deaths by Age 

sn country 0 1-4 5-14 15-24 25-34 35-54 55-74 75+ Total 
1 Algeria 19,136 3,139 3,023 3,041 4,415 25,428 70,998 85,852 215,032 

2 Angola 51,466 18,597 10,790 11,073 13,294 34,713 51,040 28,199 219,172 
3 Benin 28,692 11,657 10,764 8,875 8,828 17,921 27,099 18,465 132,300 
4 Botswana 2,157 635 501 1,021 1,857 6,661 8,457 4,531 25,821 
5 Burkina Faso 46,260 25,927 16,193 16,268 15,498 31,857 50,154 29,759 231,916 
6 Burundi 16,919 4,866 11,316 7,697 7,866 15,336 19,678 11,442 95,120 
7 Cabo Verde 126 20 33 57 131 567 1,065 1,880 3,878 
8 Cameroon 43,748 16,374 9,876 12,120 15,677 39,417 50,383 32,176 219,769 
9 Central African 

Republic 
17,268 6,000 3,653 4,789 4,808 9,602 13,961 4,315 64,397 

10 Chad 47,010 19,339 26,219 16,660 14,877 26,988 29,471 13,665 194,230 
11 Comoros 1,063 251 210 287 298 957 2,165 1,632 6,865 
12 Congo 6,380 1,984 1,526 2,128 2,983 10,484 13,753 6,883 46,122 
13 Côte d'Ivoire 58,013 16,092 11,110 16,270 20,478 57,860 59,382 29,612 268,817 
14 Democratic Republic 

of the Congo 
219,479 83,461 84,027 64,951 61,750 119,903 195,942 124,470 953,983 

15 Equatorial Guinea 2,799 800 533 558 963 2,739 3,836 2,240 14,468 
16 Eritrea 2,919 669 1,444 1,716 1,410 3,262 6,695 5,528 23,642 
17 Eswatini 1,316 396 340 790 1,655 4,415 5,196 2,243 16,350 
18 Ethiopia 122,067 33,949 47,975 56,664 56,085 107,875 182,828 127,174 734,618 
19 Gabon 1,824 551 416 598 953 3,259 5,183 3,823 16,606 
20 Gambia 2,767 1,173 1,953 1,682 1,580 3,428 4,452 3,209 20,245 
21 Ghana 30,110 7,450 19,782 18,850 20,340 45,584 69,726 45,059 256,903 
22 Guinea 22,418 7,907 7,806 6,804 6,741 11,842 20,451 15,511 99,481 
23 Guinea-Bissau 3,193 1,246 817 991 1,239 3,322 4,338 2,230 17,375 
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24 Kenya 45,832 14,754 12,487 25,524 44,022 123,008 114,810 65,299 445,735 
25 Lesotho 4,677 1,170 914 1,836 3,641 9,243 10,850 5,076 37,408 
26 Liberia 7,906 2,037 1,495 1,865 2,021 6,526 9,999 6,396 38,245 
27 Madagascar 31,267 8,853 13,514 14,326 14,223 31,835 53,831 32,702 200,552 
28 Malawi 16,806 5,444 4,214 7,340 10,535 28,605 29,547 26,606 129,098 
29 Mali 49,090 23,673 13,505 12,780 11,421 23,657 36,997 23,340 194,461 
30 Mauritania 7,189 2,066 1,288 1,504 1,357 4,305 9,974 7,698 35,382 
31 Mauritius 160 25 22 122 222 1,381 4,353 4,122 10,409 
32 Mozambique 63,002 16,554 11,145 15,718 19,454 53,272 74,033 36,366 289,543 
33 Namibia 2,057 699 536 1,272 2,483 7,389 9,297 5,178 28,912 
34 Niger 43,124 28,163 10,399 10,102 8,860 20,505 38,795 21,473 181,421 
35 Nigeria 496,505 193,411 279,197 188,241 174,530 340,859 440,567 235,968 2,349,276 
36 Rwanda 12,609 3,555 2,666 4,061 5,509 15,944 28,152 18,249 90,746 
37 Sao Tome and 

Principe 
78 12 33 76 74 283 484 419 1,457 

38 Senegal 14,100 5,860 4,563 5,128 5,490 14,928 29,753 24,559 104,381 
39 Seychelles 18 3 4 16 34 147 347 355 923 
40 Sierra Leone 21,359 6,955 3,956 4,324 3,926 11,026 21,126 12,484 85,157 
41 South Africa 35,731 10,193 7,562 22,711 60,390 173,965 278,268 180,465 769,284 
42 South Sudan 23,168 10,099 17,990 11,733 7,913 22,852 27,894 12,944 134,594 
43 Tanzania 91,617 25,687 16,833 20,636 22,274 71,781 126,251 80,868 455,947 
44 Togo 13,071 4,093 5,684 5,750 5,675 11,903 18,729 9,891 74,796 
45 Uganda 49,230 15,049 10,695 17,676 22,831 51,230 63,861 26,567 257,139 
46 Zambia 26,527 9,211 6,108 8,162 10,577 28,523 28,541 13,760 131,409 
47 Zimbabwe 12,764 4,585 3,419 5,983 8,573 24,629 27,308 15,074 102,336  

Total 1,815,016 654,635 698,534 640,779 709,764 1,661,216 2,380,022 1,465,756 10,025,721 
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