

EAFS: An Efficient, Accurate, and Forward Secure

Searchable Encryption Scheme Supporting

Range Search
Srilakshmi.CH, Neaha RK, Nivashini S

Associate Professor, Department of CSBS ,R.M.D Engineering College

UG Scholar, Pre Final year, Department of CSBS, R.M.D Engineering College, ucb20127@rmd.ac.in

UG Scholar, Pre Final year, Department of CSBS, R.M.D Engineering College, ucb20201@rmd.ac.in

Abstract—Forward privacy in existing searchable symmetric encryption approaches generally supports only keyword searches, rather
than range searches. In addition, existing approaches that support range search over encrypted datasets have limitations associated
with efficiency, accuracy, and security. Seeking to ad- dress these limitations, we formally propose the definition of the forward privacy
for secure range searches. Also, we demonstrate how three widely used cryptographic tools— order-preserving en- cryption (OPE),
pseudorandom function, and one-time pad–can be leveraged to design an efficient, accurate, and forward secure (EAFS) searchable
encryption scheme supporting range search in encrypted numerical databases. In the proposed EAFS scheme, a trapdoor only matches
the last data record that satisfies the search range, and the other results are found iteratively using the previous result. The chain-like search
and the embedded ciphertexts of OPE simultaneously guarantee its efficiency, forward privacy, and accu- racy. We also use the simulation-
based method to demonstrate that our scheme is secure. Then, we implement EAFS in Microsoft Azure and evaluate its performance. The
evaluation findings demonstrate that our proposed scheme supports secure range search practically and efficiently.

Index Terms—Encrypted database, forward secure, range search, searchable encryption (SE).

I.

II. INTRODUCTION

Our data are increasingly stored in cloud servers (CSs) for

a range of reasons, such as lower costs of data manage-

ment, higher quality of service, and ability to access our

data anywhere anytime using any computing device. In

some cases, data (on our mobile devices and laptops) are

being outsourced to the CSs (e.g., iCloud or OneDrive) by

default. There are known security and privacy issues

associated with the outsourcing of data, such as the cloud

service provider (CSP) getting access to user contents

without their explicit permission. This reinforces the

importance of searchable encryption (SE), a

cryptography- based scheme that enables searching in the

ciphertext domain without leaking any information to

untrusted servers. There are many different SE schemes,

with varying functionalities (e.g., keyword searches and

similarity searches).

Range searches are another common function in

databases that focuses on numeric comparisons, for

example to locate users between 20 and 40 years old. To

achieve better efficiency in range searches, the data may

be processed to fit some specific data structure (e.g., B-

tree), in which the data are stored in order. This is easy to

achieve in the plaintext domain, but not the case when

databases are encrypted. First, the numeric comparisons

cannot be made in the encrypted environment due to the

lack of semantic information. Also, it is impractical to

enumerate all possible cases for the entire range in a

search request in order to check the equality. Second, the

order between different data records is also sensitive

information. In other words, the data owner (DO)

generally does not want the CS to know about the order

between different data records, and the index should not

expose the order information prior to searching.

Therefore, it is challenging to conduct range search in the

ciphertext domain.

In 2016, Zhang et al. [1] proposed the file-inject

attacks on SE schemes, and many forward secure

solutions were proposed to mitigate such an attack. A

forward secure scheme guarantees

that the update operation does not leak the relationship

between the updating keywords and the previous

documents. That is to say, the cloud cannot learn whether

entries that have been updated recently contain some

specific keywords. However, all the forward secure

schemes discussed so far support only keyword search

rather than range search.

TABLE I

COMPARATIVE SUMMARY OF OUR SCHEME AND PRIOR ART

in indexes and appear step by step during the search phase.

Besides, the index-based range search schemes cannot achieve

 high accuracy. Hence, one can conclude that it is challenging

 to present a SE scheme that supports efficient range search and

guarantees both accuracy and forward privacy.

In this article, we present the formal definition for forward

privacy in range searches, and then propose an efficient, accurate,

and forward secure (EAFS) SE scheme that satisfies this defi-

nition. To be specific, our scheme achieves secure range search

in a single CS model, and the accurate results can be obtained

without redundant interactions and postprocessing operations.
n denotes the total number of data entities in the database, μQ is the number of results

satisfying the query, and μF is the number of false positives

A number of schemes have been proposed to conduct

secure range search in encrypted databases.

 such as those described in [5] and [6] are designed to facilitate

numeric comparisons in the ciphertext domain by using order-

preserving encryption (OPE), a special functional

cryptosystem. However, OPE leads to the leakage of the order

of encrypted data, which is not desirable in some situations.

A number of other schemes such as those described in [7]–[9]

support numeric comparisons through computations in the

ciphertext domain, using the homomorphic encryption, another

functional cryptosystem. However, such schemes rely on a

two-cloud model in which one CS (who owns the encrypted

databases) primarily provides storage resources and the other

CS (who owns the secret key used to encrypted the databases)

mainly provides the computational resources. There is a strong

assumption that both CSs are independent of each other and do

not collude, which is difficult to guarantee in practice. Another

inherent drawback is that the number of calculations is related

to the total number of data entities.

To ensure the efficiency of range searches, there is another

kind of bucket-based schemes [2]–[4] where the range is divided

into different partitions, called buckets, and each encrypted data

entity is mapped with the respective bucket. The numeric com-

parison is transformed to equality checking for specific buckets,

which achieves O(1) search complexity. However, such schemes

lead to false-positive. An additional operation of filtering may

be needed in the client side, which adversely affects the user’s

experience.

One would observe from the above discussions reinforces

the importance of designing an index structure to achieve more

efficient range searches, since the index contains the connections

between each data item and can expedites the search phase.

However, by updating some elaborate data items and observ-

ing the change of the index, attackers can learn the specific

distribution of an encrypted database (such an attack is also

referred to as the file-inject attack in range search). In other

words, while attackers cannot obtain the exact value of each

data item, more sensitive information (e.g., the exact range of

each partition in the bucket-based schemes) is exposed. This

necessitates the support for forward security in range search.

There are tradeoffs between efficiency, accuracy, and privacy.

It is clear that SE schemes with O(1) search complexity cannot

achieve forward privacy since the connections of data items are

apparent in the index, and schemes with O(n) search complexity

cannot be deployed in large-scale databases. Hence, to achieve

forward secure range search, the connections must be concealed

The search phase consists of two parts. The first part is to

find the dataset that completely meets the search request, and

the second part is to find the dataset that partially meets the

search request and then compare to return the correct results.

Thus, the complexity of the search is related to the size of the

datasets mentioned above. Both order information and similarity

information are hidden before a search is conducted, and for-

ward privacy is guaranteed when the data records are updated.

Furthermore, we also compare our proposed scheme with Wu

et al.’s [4] state-of-the-art tree-based SE scheme (ServeDB).

Based on the comparison, we observe that our scheme achieves

both accuracy and forward privacy, unlike ServeDB. Findings

from the experiments also demonstrate that the computational

cost of our scheme is less than that of ServeDB. Table Ⅰ gives a

comparative summary of our scheme and prior art.

The following summarizes the article.

1) We propose the first formal definition of forward privacy

in secure range searches.

2) We design an EAFS SE scheme that supports secure

range searches in encrypted databases. This is the first

scheme that simultaneously achieves efficiency, accuracy,

and forward security.

3) We demonstrate that the EAFS is secure under the semi-

honest model by utilizing the simulation-based method.

4) We implement the EAFS and evaluate its performance on

Microsoft Azure CSs. A comparison with another state-

of-the-art tree-based SE scheme [4] demonstrates that our

scheme achieves both efficiency, accuracy and supports

forward privacy.

The structure of our article is as follows. The literature related

to secure range search is discussed in Section Ⅱ. Section Ⅲ
presents the problem statement, and Section Ⅳ presents the

relevant preliminary information. In Section Ⅴ, we describe our

proposed EAFS, and evaluate its security and performance in

Sections Ⅵ and Ⅶ. Section Ⅷ concludes this article.

III. EXTANT LITERATURE

As discussed in the preceding section, SE facilitates the

searching over encrypted data, for example keyword searches,

etc. [1]–[9]. There have also been attempts in recent years to

support secure range searches, as demonstrated in the recent

literature. For example, Hacigumus et al. [2] proposed the first

SQL search scheme over secure databases. Specifically, data

are mapped into a finite number of buckets, and each bucket is

{ } { }

{× ∗ × ∗ × ∗}

proposed a multidimensional bucket-based scheme. Wu et al. [4]

designed a verification mechanism to ensure the completeness

of the results. However, the verification algorithm must be run

by the data user (DU). It can be regarded as a postprocessing

operation that impacts the user’s experience. These approaches

may also result in false-positive results.

OPE and HE are two technologies that can be used to eliminate

or minimize false-positive results. CryptDB [5], for example,

achieves order comparison on encrypted data by multilayer

encryption (also referred to as onion encryption) on OPE, but it

has low efficiency and leaks sensitive information. Mavroforakis

et al. [6] utilized OPE to design two algorithms, one of which can

be used over well-spread query distributions with the other being

used over skewed query distributions. However, the distribution

and the order of the data encrypted by OPE would be exposed

to the CS.

Xue et al. [7] conducted range searches using a two-cloud

architecture and Paillier encryptions in an encrypted database.

The secure comparison can be implemented by the intersection

between two CSs. However, the DO must share her/his secret

key to one of the clouds, and the two CSs must not collude. To

enhance the security of the architecture, each of the two CSs

holds a portion of the secret key in the scheme proposed by

Cheng et al. [8]. However, it still suffers from the inherent draw-

back that both CSs may collude with each other. Wong et al. [9]

proposed a HE-based scheme supporting data interoperability,

with only a single CS. However, the scheme can only be used

in a limited scenario. In addition, schemes based on HE incur

significant computational overhead.

There have also been designs of schemes that support secure

range search on spatial data. However, these schemes generally

are inefficient, inaccurate, and/or insecure. Li et al. [10], for

example, designed a bloom filter-based range search scheme

in which the index is indistinguishable. However, the scheme’s

worst-case complexity is large. Demertzis et al. [11] proposed

tree-like indices to achieve query indistinguishability, but there

is a tradeoff between performance and accuracy. In addition, the

secure range search can be realized by some specific crypto-

graphic tools, such as oblivious RAM, garbled circuit, or trusted

hardware (e.g., FPGA and Intel SGX). The downside is the large

communication overhead.

Bost [12] formally defined forward privacy in SSE, which is

a strong property against file-inject attacks. Subsequently, there

have been other attempts to design forward secure schemes that

are also efficient. However, existing works generally support

only keyword searches and not range searches. Therefore, this

is the gap we seek to address, by designing a forward secure

range search scheme that is accurate and efficient.

IV. PROBLEM STATEMENT

A. System Architecture

As a traditional model of SE, the system architecture of our

proposed approach consists of three entities, i.e., the DO, the

DUs, and the CS—see also Fig. 1.

Data Owner: DO is an entity that stores its dataset on

the CS. In our solution, database D contains m attributes

Fig. 1. System architecture.

Fig. 2. Example file-inject attack on keyword search.

a1, a2, . . . , am and n records d1, d2, . . . , dn . Due to the

restriction of the cryptography, the value of a data record, di,
for an attribute, aj , is a positive integer. In order to enable the

functionality of a secure range search as well as ensuring the

confidentiality of the original data, DO encrypts D to gener-

ate an encrypted database (searchable index), EDB. Then, the

encrypted database EDB is outsourced by DO.

Data User: DU is an entity that makes a query and

wants the result of that query. The query, q, has the

same number of attributes as database D, denoted as

q = q1.low, q1.up , q2.low, q2.up , . . . , qm.low, qm.up ,

where qj .low and qj .up are the lower bound and the upper

bound, respectively, of the search range for the jth attribute.

When DU wants to make a query q, an encrypted search token

(trapdoor) is generated and sent to the cloud for further search.

Cloud Server: CS is an entity providing a large amount of

storage and computation resources. CS receives database EDB,

from DO for storage. When a query is to be issued, a corre-

sponding trapdoor is also received by CS. By running a search

algorithm with inputting the EDB and the trapdoor, the result

that satisfies the query will be returned.

B. Threat Model

As discussed earlier, in a file-inject attack the attackers may

inject some elaborate keyword-document pairs to a database. We

replicate the example of [1] in Fig. 2, where attackers may inject

three files and each file contains four keywords which are shaded

in the figure. If file 3 is returned but file 1 and file 2 are not when

issuing a search toke, it means that the keyword k1 responds to

the token. In SE, the file-inject attack mainly refers to a situation

where attackers inject some files and observe change(s) in the

index in order to learn the relationship between the injected files

and the documents stored in CS. Accordingly, the secure range

search scheme can also be attacked by updating some elaborate

←

←

←

−

−
C

A

A
A

A

∈ { } C C
| | | | A

←

{ }

q as input, and it outputs the trapdoor T .
A

EAFS,A 0 1

Fig. 3. Example file-inject attack on range search.

data records, and consequently some sensitive information about

the newly added data would be exposed. As shown in Fig. 3, there

is a frequently used index [2]–[4] that maps the data records into

different buckets. An attacker can infer which data records are

similar to d1 according to the position they are located during

the updating of d1. The attacker also can infer the exact range

of each bucket by updating a series of continuous data records.

As per the general assumption in the SE literature, we assume

that CS is honest-but-curious. To be specific, CS follows the

designed algorithms honestly, but is curious about any sensitive

information about the data, the indices stored on CS, or the

trapdoors to be searched. We also assume that the proposed

scheme should mitigate file-inject attacks.

C. Syntax

An SE which supports secure range search is a protocol among

DO, DU, and CS, which are formulated as follows.
. (K, EDB, σ) Init(1λ) is a probabilistic algorithm,

which is run by the DO; it takes the secure parameter, λ, as

input, and outputs two secret keys K an (initially empty)

encrypted database EDB and a state σ.

. (σ′; EDB
′
) Update(K, σ, D; EDB) is a protocol be-

tween the client (with two secret keys, K, a state index, σ,
and a set of added records, D), and the server (with an en-
crypted database EDB). The client outputs an updated state

σ′, and the server outputs an updated encrypted database
EDB

′
.

. (T) GenTrapdoor(K, σ, q) is an algorithm that is run

by DU; it takes two secret keys K , a state σ, and the query

. (RST) Search(EDB,T) is a deterministic algorithm

that is run by CS; it takes the encrypted database EDB,

and the trapdoor T as input, and outputs the result set RST
iteratively.

D. Design Goals

The performance goals and safety goals achieved in our

proposed EAFS are designed as follows.

1) Search Efficiency: The search complexity on CS should

be O(μQ + μF), where μQ is the number of results that

satisfy the query, and μF is the number of false-positive

data records.

2) Correctness: Given a trapdoor, T, of query, q, CS outputs

the result set RST = rst1, rst2 ,..., rstk . RST is

correct if and only if each data record di (i = 12 ,. . . , k),
decrypted from rsti, is covered by the query q.

3) Completeness: Given a trapdoor T of query q CS outputs

the result set, RST = {rst1, rst2 ,..., rstk} . RST is

complete if and only if each data record, dj , decrypted

from (C RST), is out of the range of query, q, where C
is the set of all encrypted data records.

4) Data Privacy: CS cannot learn the information about the

data and the index encrypted by DO.

5) Forward Privacy: CS cannot learn the relationship be-

tween the newly updated records and the previous records

by observing only the change of EDB. By observing the

change of the index.

E. Security Definitions

1) Index Indistinguishability: A searchable encrypted index

EDB is generated and stored in CS when DO outsources his/her

database to CS. For security, the searchable index EDB does

not reveal any information about the underlying data records.

To be specific, we make the following distinguishing game: An

adversary issues two random and different sets of data records

that hold the same size, and outsources them to a challenger. The

challenger randomly selects one of the two sets and generates

the corresponding index EDB which will be outsourced to the

adversary. After receiving the index, the adversary determines

which set of data records relates to the index.

The game IND IDX is described as follows.

1) Setup: The challenger runs Init(1λ) to generate two

secret keys K and a state σ.

2) Challenge: The adversary selects two random and

distinct sets of data records s0, s1, from the original

database where s0 = s1 . Then, randomly selects

a bit b 0, 1 and sends sb to . The challenger

runs Update(K, σ, sb) to generate a corresponding index

EDBb. The index EDBb is sent to the adversary .

3) Guess: wins the game if the output b′ satisfies that

b′ = b.

Wb is defined that outputs b and wins the game.
Definition 1: Our EAFS achieves index indistinguishability in

the aforementioned game if the advantage

AdvIND−IDX = |Pr [W] − Pr [W]|

is negligible for any probabilistic polynomial-time adversary .

2) Forward Privacy: Forward privacy was proposed to guar-

antee that the updated documents do not reveal any information

about the updated keywords [12]. To be specific, CS cannot tell

whether or not an updated document matches a keyword that

has been queried before. However, forward privacy only relates

to the keyword search in SSE according to the previous work.

It also should be achieved for the range search to guarantee that

the newly updated data records have no relationship with the

data in the database. We formally define the forward privacy for

range search in the following.

Definition 2:A L-adaptively secure SSE scheme that supports

range search in the encrypted database is forward private if the

update leakage function LUpdate can be written as

LUpdate (op, in) = L′ (op, m, n)

where in is the input of the update, m is the number of attributes,

n is the number of data records of the input, and L′ is stateless.

∈ { } ∈ { }

{ } × { } → { }

n

. .

n

V. PRELIMINARIES

A. Pseudorandom Function

A pseudorandom function is indistinguishable com-

putationally from a random function. Given pairs

(x1,f (k, x1)), (x2,f (k, x2)),..., (xτ ,f (k, xτ)), an adversary

cannot predict f (k, xτ+1) for any xτ+1. We say that a function

f : 0, 1 λ 0, 1 s 0, 1 n is a (t, ε, q)- pseudorandom

function if:

1) f (k, x)def fk(x) can be computed efficiently from key

k 0, 1 λ and input x 0, 1 s.

2) If every oracle algorithm, A, making at most q oracle

queries and with running time at most t

TABLE II

NOTATIONS AND DEFINITIONS

. P r

Af(·,k) = 0|k ←
R
{0, 1}λ

− .

P r

Ag = 0|g ←R {F : {0, 1}
s

→ {0, 1}
n
}
 < ε.

B. Order Preserving Encryption

The confidentiality of data in an environment, in which users

are not trusted, can be guaranteed by encryption. However, for

processing some classes of queries, such as comparison and

sorting, the ciphertexts must be decrypted. OPE is used primarily

to issue SQL queries in encrypted databases. It enables the

plaintexts and the corresponding ciphertexts hold the same order,

i.e., OPE.Enc(x) > OPE.Enc(y) iff x > y. Therefore, the un-

trusted entity can perform order operations in the ciphertext

domain. The ideal security of OPE is defined as indistinguishable

underordered chosen plaintext attack (IND-OCPA), which leaks

nothing but the order.

C. Oblivious Transfer (OT)

OT is an important cryptographic tool used for secret ex-

change or other extended protocols. Two parties, i.e., a sender, S,

and a receiver, R, participate in an OT function. The sender holds

several secrets, and the receiver plans to get part of them. In such

a function, some conditions must be satisfied, i.e., the receiver

obtains only the secrets that he/she choses, and learns nothing

about the rest of the secrets, and the sender learns nothing about

which secrets the receiver has obtained.

K-out-of-n oblivious transfer (OTk) is an extensively used

type of OT protocol in which the receiver wants to get k (k < n)
secrets simultaneously from the n secrets held by the sender. The

OTk can be described as follows:
1) Input:

S inputs n strings x1, x 2 , . . . , xn ∈ {0, 1}m where m ∈ N . R

inputs a set of selections ω ⊆ {1, 2 , . . . , n} = U where |ω| =

2) Output:

S has no output. R outputs xi where i ∈ ω and learns nothing

about xj where j ∈ (U − ω).

VI. PROPOSED SCHEME

In this section, we firstly introduce the design rationale of

the secure range search and the notations used in our scheme.

Then, we present our proposed EAFS, which consists of four

Fig. 4. Building blocks of our scheme.

algorithms: initialization; update; generate trapdoor; and search.

The notations we use in this article are given in Table II.

A. Design Rationale

Based on the existing literature, we can conclude that a simple

cryptographic tool or technology cannot guarantee the security,

efficiency, and accuracy of range searches in encrypted databases

simultaneously. Therefore, we build on the onions of encryption,

which is a multilayer structure that stores multiple ciphertexts

compactly. Each layer provides either the security property or

the functionality property to inform the design of a secure range

search. The building blocks of our scheme are summarized in

Fig. 4. Note that the secure range search whose complexity re-

lates to the size of database (i.e., the total number of data records)

is impractical. The original data records should be processed

(i.e., bucketing) to generate an index that helps to accelerate the

search of the range. And a deterministic encryption (i.e., PRF)

is needed to check the equality and protect the privacy of the

index.

It is inevitable that some false positives will exist as a tradeoff

for increasing the efficiency. A functional encryption (i.e., OPE)

is needed to compare the ciphertexts. However, PRF and OPE

are two weaker encryption schemes. The PRF reveals which

encrypted values relate to the same plaintext, which can be easily

compromised by the file-inject attack. The OPE reveals the order

of the original data records. Therefore, a stronger encryption

(i.e., one-time pad) is needed to guarantee the privacy of the

range search.

Finally, the chain-like search implements the secure range

search where the complexity only relates to the number of results

k.

K

←

←
← M

F ||

←

M

{ } { }
H { } → { }

{K V }

F { } × { } → { } H { } → { }

EDB is initialized as ∅. By inputting the security parameter λ

∪ {K V }

1 i i 2 cntj +1

Algorithm 2: Update.

Input: , σ, d; EDB

Output: σl; EDB′
1: Data owner:

2: oi OPE.Enc(KOPE, di)
3: Bj (di)
4: cntj Get(σ[Bj])
5: if cntj = 0 do

Fig. 5. Chain-like search.
6: Fcntj = 0 , Fcnt +1 = F (KPRF, Bj ||cntj + 1)

λ

Algorithm 1: Init.

7: else

8: Fcntj = F (KPRF, Bj ||cntj), Fcntj +1 =

Input: 1λ
Output: σ, EDB, K, F, H1, H2
1: M← map function
2: σ ← {×B1, 0∗, ×B2, 0∗, . . . , ×B|B|, 0∗}
2: EDB ← empty dictionary
3: K = (KPRF, KOPE) ← KenGen(λ)
4: F : {01}λ × {01}∗ → {01}λ

5: H1 : {0, 1}λ → {0, 1}λ,

(KPRF, Bj cntj + 1)
9: end if

10: cntj + 1 σ′[Bj]
11: send

{H1(Fcntj +1), (Fcntj ||oi||ID(di)) ⊕ H2(Fcntj +1)} to

12: Cloud server:

13: EDB
′
= EDB ∪

{H1(Fcnt +1), (Fcnt ||oi||ID(di)) ⊕ H2(Fcnt +1)}

H2 : {0, 1}λ → {0, 1}(1+m)λ+len(ID(d))
j j j

satisfying the search request and some false positives during the

entire search process, as well as ensuring the forward privacy.

More precisely, the secure range search is implemented in a

dictionary with key-value pairs, as shown in Fig. 5. The key is

used for checking equality, and it also can be used to unmask

the corresponding value encrypted by the one-time pad. The

decrypted value helps to eliminate false positive results and

contains the information about another key relating to the data

record that satisfies the search range. Such iterative operations

of searching look like a “chain.”

B. Initialization

To achieve a secure range search, some parameters must be

generated in the initialization stage. We assume that the database

Dmn is to be outsourced to CS.

First, DO generates a map function M to preprocess the data

C. Update of an Encrypted Database

In order to update data, the following requirements must

be met. First, the update for a data record only makes small

changes on the index, which ensures the efficiency of the update.

Second, the newly updated data record has no relationship with

the previous entities in the encrypted database, which ensures

forward privacy. Third, the sensitive information leaked from

the index is minimized to the extent possible.
. Step 1: Data preprocessing (lines 1 and 2 in Algorithm 2):

Given the updated data record di = (di,1, d i , 2 ,..., di,m) ,
DO runs OPE.Enc(KOPE, di) to generate the ciphertext

oi = (oi,1, oi,2 , . . . , oi,m) .
. Step 2: Index generation (lines 3–8 in Algorithm 2): DO

runs (di) to map the data record di into one of the fm
buckets, denoted as Bj , and retrieves the corresponding

counter σ[Bj], denoted as cntj . The two PRF values, Fcntj

and Fcntj +1, are computed as follows:

records in Dmn. Without loss of generality, the map function

is defined by equally dividing the range of each attribute into a
fixed number of (e.g., f) continuous sub-ranges, which generates

where F0 = 0λ.

Fτ = F (K

PRF , Bj ||τ)

fm buckets.

Then, to accomplish the secure range search, two indices must

be generated. As mentioned above, the state index σ is initialized

. Step 3: Index update (lines 9–11 in Algorithm 2): DO

updates σ[Bj] to cntj + 1 and outsources the key-value

pair

as {×B1, 0∗, ×B2, 0∗, . . . , ×B|B|, 0∗}, and the encrypted database
H

F

,F ||o || ID (d) ⊕H

F

}

DO generates two secret keys, KPRF and KOPE, which are used

to build the encrypted database EDB.

Finally, DO selects a secure pseudorandom function

F and two secure hash functions, H1, H2, where

: 0, 1 λ 0, 1 ∗ 0, 1 λ, 1 : 0, 1 λ 0, 1 λ,

and 2 : 0, 1 λ 0, 1 (1+m)λ+len(ID(d)). The terms

0, 1 n and 0, 1 ∗ are the sets of binary strings with length n
and all finite length, respectively. The term len(ID(d)) is the
length of the identifier of a data record.

denoted as i, i , to CS. Finally, DO stores the up-

dated state index σ′ locally, and CS updates the en-

crypted database EDB
′

= EDB i, i for further se-

cure range search. The whole process is summarized in the

Update algorithm.

As mentioned above, the counter σ[Bj] of the state index

is changed into cntj + 1 and the encrypted database EDB is

added a key-value pair only when updating a data record. The

first requirement has been satisfied. Each data record di relates

j

server

cntj +1 cntj

K

≤ ≤

F ||

←
|| || ← V ⊕ H

||

←

{× ∗ × ∗}

 }

M

{ }

| |
≤ ≤

≤ ≤

q

{ }

q,k q

q q

q q q,1 q,1 q,m q,m

q q q,1 q,s

1 2 3

Algorithm 3: GenTrapdoor.

Input: , σ, q
Output: T

1: q.B = {Bq,1,..., Bq, s ,... , Bq,t}← M(q)
2: {cntq,1,..., cntq,s,..., cntq,t}← OT (σ; q.B)

Algorithm 4: Search.

Input: EDB, T

Output: RST
1: RST ←∅
2: for 1 ≤ k ≤ s do

3: {olow, oup}← OPE.Enc(KOPE, q) 3: while Fcnt /= 0λ
4: for 1 k t do

5: if cntq,k = 0:

6: Fcntq,k =
7: else
8: Fcntq,k = (KPRF, Bq,k cntq,k)
9: end if

4: Vα ← EDB[H1(Fcntq,k)]
5: Fcntq,k−1 oα ID(dα) α 2(Fcntq,k)
6: RST Add(RST, ID(dα))
7: end while
8: end for

9: for s + 1 ≤ k ≤ t do

10: end for {olow, oup}, {F , . . . ,F }, 10: while Fcntq,k /= 0λ
11: return T = × q q

 cntq,1 cntq,s 11: Vα ← EDB[H1(Fcntq,k)]
{Fcntq,s+1 , . . . , Fcntq,t } 12: Fcntq,k −1||oα||ID(dα) ← Vα ⊕ H2(Fcntq,k)

13: if olow < oα < oup do
q q

to a unique Bj cntj , which means that there are no two identical

key-value pairs in the EDB. The requirement for forward privacy

has been satisfied. Furthermore, we mask the ciphertexts en-

crypted by OPE, which could leak the order information of data

records, by one-time pad. The CSP only lean about the number

of attributes of the database from the index, which satisfies the

third requirement.

D. Generation of the Trapdoor

If DU generates a trapdoor, the state index will be needed as

input because it holds the counters that represent the number

of data records stored in every bucket, which is regarded as

14: RST Add(RST, ID(dα))
15: end if
17: end while
18: end for

 19: return RST

. Step 2: Trapdoor generation (lines 3–

11 in Algorithm 3): For the query q =
q1.low, q1.up , . . . , qm.low, qm.up , where low

and up respectively represent the lower bound and upper

bound of an attribute in the query, DO encrypts it by

computing

olow, oup

}
← OPE.Enc (KOPE, q)

where {olow, oup} = {olow, oup , . . . , olow , oup } , and the

range are exposed. If DO generates a trapdoor, he/she must

know the search range, which also can be regarded as sensitive

trapdoor is generated by computing

T = ×

olow, oup
}

,

Fcnt , . . . , Fcnt
}

,

should be satisfied. First, DU only obtains the counters that

he/she needs, but learns nothing about the other ones in the

Fcntq,s+1 , . . . , Fcntq,t ∗

denoted as T = ×T , T , T ∗ . The trapdoor T is outsourced

by DU.
. Step 1: Query preprocessing (lines 1 and 2 in Algo-

rithm 3): Given a query, q, DO runs (q) to map

the query q into several buckets, denoted as q.B =
Bq , 1 , .. ., B q , s ,.. ., Bq,t . It is clear that the false posi-

tives only exist in the buckets that intersect query q. All the

data records stored in the buckets that are totally covered

by the query q belong to the result set. Therefore, we can

generate a two-level trapdoor to minimize the number of

comparisons. We assume that Bq,k is covered by the query

q when 1 k s and that Bq,k intersects query q when

s + 1 k t.
To improve the security of our scheme, DU runs a t-out-of- B

OT protocol to get the corresponding counters with DO. Specifi-

cally, DO takes the state index as input, and DU takes the q.B as

input. After the interactions between them, DO outputs nothing,

and DU gets σ [q.B] = cntq, 1 ,.. . , cntq, s ,... , cntq,t , which

satisfies the requirements mentioned above.

to CS for further search on q. The entire process is sum-
marized in the GenTrapdoor algorithm.

E. Secure Range Search

The following requirements should be satisfied when imple-

menting the search process. First, the search efficiency relates to

the size of results that satisfies the search request, which enables

our scheme to be used in large-scale databases. Second, the

output from the secure range search is correct and complete,

which ensures the quality of the search. Third, there is no extra

interaction between CS and DU or any post-process opera-

tion implemented by DU, which ensures that DU has a great

experience.
. Step 1: Checking equality: Given the trapdoor, T , CS

outputs the query results by searching in the encrypted

database, EDB. For each PRF value Fcntq,k in the trapdoor,

where 1 ≤ k ≤ t, CS computes H1(Fcntq,k) and obtains

the corresponding key-value pair {Kα, Vα} in EDB, where

state index. Second, DO knows nothing about the query issued

information about DU. Therefore, the following requirements

sensitive information about the database. The counters related

⊥

to the search range are needed, but the counters out of the search

∗

∈

K H V || || ⊕
H V H

O

π

L,S

π

A

π

C C

K A

A

A A

C A C

C K

2 1 2 1

Fig. 6. Simplified example of EAFS.

α = 1 (Fcntq,k) and α = Fcntq,k −1 oα ID(dα)

2(Fcntq,k). Then, CS can unmask α using 2(Fcntq,k).
If Fcntq,k T2, the identifier ID(dα) will be added into

the result set RST; otherwise the data record dα must be
estimated to determine whether or not it is a false positive

by comparing oα with T1.
. Step 2: Chain-like search: CS obtains the PRF value

Fcntq,k −1, which is related to a previous data record in

the same bucket. Fcntq,k −1 can be regarded as the current
entry in the search process. CS performs the above opera-
tions iteratively until the current entry is equal to 0λ. The
chain-like search is described as follows:

Fcntq,k −1 ||oα|| ID (dα) ⊕ H2

Fcntq,k

⊕ H2

Fcntq,k

d7) must be estimated by comparing it with T1 to determine

whether or not it is in the yellow rectangle.

VII. SECURITY ANALYSIS

We demonstrate the security of our scheme by utilizing

the simulation-based model that was proposed in [13]. In this

model, first, we define the leakage function L, which indicates

what is leaked to an adversary. To be specific, we define two

leakage functions, i.e., L1 and L2, which represent the infor-

mation leaked from the index and the queries in our scheme,

respectively.
1) L1 (D) = ×n, len(H)∗ , where n is the size of database D,

Fcnt −2 ||oβ|| ID (dβ)⊕H2

Fcnt −1

⊕H2

Fcnt −1

 and len(H) is the bit length of hash values with respect to

q,k

. . .

q,k q,k the hash functions h1 and h2.

2) L2 (D, q) = ×|T2|, |T3|, m, O(o)∗ . |T2| and |T3| are the

0λ ||o || ID (d) ⊕H (F) ⊕H (F) .
numbers of elements in T2 and T3, respectively, which

During the entire process, the Search algorithm takes the

encrypted database EDB and the trapdoor T as input, and

outputs a set of correct and complete results without any extra

interaction or any post-process operation. The complexity of

the search is only O(μQ + μF), where μQ is the number of

results that satisfy the query, and μF is the number of false

positives.

Fig. 6 shows a toy example of our proposed EAFS. Let us

assume that there are nine data records (i.e., d1 to d9) to be

updated. Initially, the Update algorithm is run. The nine data

records, the order of which can be random, are mapped into the

bucket index. The counters in the index σ are updated, and nine

key-value pairs of the encrypted EDB are generated. When DU

wants to issue a query (i.e., 25 < a1 < 68 and 25 < a2 < 50),

he/she runs the GenTrapdoor algorithm. The search range is

mapped into the bucket index, and an OT protocol is needed to

get the corresponding counters in σ. When running the Search

algorithm, first, T2 finds the last data record (i.e., d5) located in

the blue rectangle and iteratively finds the previous record in a

privacy-preserving manner. The data record found by T3 (i.e.,

and intersecting with the search range, m is the number

of attributes, and (o) is the order information of the

ciphertexts in a trapdoor.

Then, we define two games, i.e., a real game and a simulated

game. The essential requirement of the real game is to execute

the real-world algorithms proposed in our scheme. The essential

role of the simulated game is to attempt to achieve the secure

range search by a simulator given ideal conditions. The simulator

only knows the leakage function. The two games, i.e., RealA(1λ)
and SimA (1λ), are defined as follows.

1) RealA(1λ): The game is implemented by the interactions

between a challenger and an adversary, . runs
Init(1λ) to generate some parameters, and selects a

subset D′ of D and sends it to . The challenger runs

Update(, σ, D′; EDB) and outputs EDB
′

to . Then,
the adversary adaptively issues a polynomial number

of search requests, i.e., Q = (q1, q2 ,. . .) . For each query

in Q, the challenger runs GenTrapdoor(, σ, q) and

outputs the trapdoor T to . Finally, returns a bit b as

the output of the experiment RealA(1λ).

means the number of buckets covered by the search range γ γ

L,S

A
S A
A S

S A

L,S

L,S

H H F

H
H

F

H H

H H

1 2 π

π

A

L,S

S

A A

2) SimA (1λ) : The game is implemented by the interactions Theorem 3: Trapdoor achieves semantic security if F is

between a simulator and an adversary, . The adversary

selects a subset D′ of D and sends it to . The simulator

generates the index EDB by L1(D′) and sends it to .
The adversary adaptively issues a polynomial number of

search requests, i.e., Q = (q ,q , . . .) . For each query in

Q, the simulator S generates the trapdoor T by L2(D′, q)

pseudorandom function and the order preserving encryption is

IND-OCPA.

According to the defined leakage functions, if there exists

an efficient polynomial-time simulator such that, for any

polynomial-time adversary , the outputs between RealA(1λ)
and SimA (1λ) are computationally distinguishable, we obtain

and sends it to . Finally, returns a bit b as the output

of the experiment SimA (1λ).
Definition 3: The EAFS scheme π is L-secure against adaptive

attacks if, for any polynomial-time adversary A, there exists an

efficient polynomial-time simulator, S, such that

the following theorem.

Theorem 4: Our EAFS scheme is L-secure against adaptive

attacks if 1 and 2 are secure, one-way hash functions, if is

a pseudorandom function, and if the order preserving encryption

is IND-OCPA.

.Pr

RealA

1λ

= 1

− Pr

SimA 1λ

= 1

. ≤ negl

1λ

VIII. EVALUATION OF PERFORMANCE

where negl(1λ) is a negligible function.

First, we demonstrate that our EAFS scheme achieves forward

privacy if 1 and 2 are secure, one-wayness hash functions. As

discussed in Section V, a key-value pair is added to the encrypted

database EDB, when a data record is updated. The newly up-

dated key-value pair has no relationship with the previous data

records before searching. The key is a hash value of 1, and the

corresponding value is masked by the hash value of 2, which

can be regarded as one-time padding. Therefore, the leakage

function of update LUpdate can be formalized as follows:

LUpdate (op, in) = L′ (op, m, n)

where m is the number of attributes, n is the number of data

records of the input in, and L′ is stateless. We obtain the
following theorem.

Theorem 1: Our EAFS scheme achieves forward privacy if

1 and 2 are secure, one-wayness hash functions.

Then, we prove that the encrypted database EDB of two

databases with the same size are computationally indistinguish-

able if our EAFS scheme is forward secure. A forward secure

SE scheme guarantees that the newly updated entry has no

relationship with the previous index. The EDB is a dictionary

that essentially is built by a large amount of update operations.

Therefore, each entry in the index is mutually independent

before searching. Given the size of the database, the simulator

can simulate a random index that has the identical structure and

the same size as the real index. Thus, we obtain the following

theorem.

Theorem 2: The encrypted database EDB of two databases

with the same size is computationally indistinguishable if our

EAFS scheme is forward secure.

Finally, we prove that the trapdoor achieves semantic security

if is the secure pseudorandom function and that the OPE is

IND-OCPA. The Trapdoor T consists of two parts. The first part

T1 includes the search ranges that were encrypted by OPE. And

the second part, i.e., T2 and T3, includes some combinations

of the bucket identifiers and corresponding counters that are

computed by PRF. Given the size of the secure parameter, λ, the

simulator can simulate a random trapdoor that is distinguishable

from the real one. We obtain the following theorem.

Since the computational cost of a secure range search is corre-

lated highly with the distribution of the data, we used both an

artificial dataset, i.e., a manmade uniform distribution dataset

namely dataset 1, and an actual dataset, i.e., the diabetes dataset1

in the UCI Machine Learning Repository, namely dataset 2.

Fig. 7 shows the distribution of dataset 2. More precisely,

the three subfigures in Fig. 7 present the distribution of the

each dimensional data in dataset 2. The entire process of our

scheme is coded using the Python programing language. DO

and DU were simulated by our PC. To ensure that our scheme

is practical, we used the real CS of Microsoft Azure to store the

encrypted database and perform the secure range search. Their

configurations were as follows.

1) PC: 2.3 GHz two-core Intel Core i5 8 G RAM

2) CS: Intel Xeon Platinum 8171M CPU @ 2.60 GHz 8 GB

RAM

Considering the tradeoff between security and efficiency in

our scheme, the security parameter λ was set to be 1024-bit. If

there was no explicit statement to the contrary, the number of

attributes, m, was equal to 2. We compared our scheme with the

state-of-the-art work proposed in [4], which is very efficient but

has false positives, to demonstrate that our scheme can achieve

better performance.

Fig. 8 shows the relationship between the size of the index

(aka., EDB) and the number of data records. The index stored

in CS is a dictionary with a key-value pair that is computed by

the secure hash functions. The length of the dictionary relates to

the number of data records in the database. Therefore, the size of

index increased linearly as the number of data records increased.

As the dimensions increased, more ciphertexts encrypted by

OPE would be generated. The size of the index increased linearly

as the number of dimensions increased.

Fig. 9 shows the relationship between the computational

cost for secure range search and the number of data records.

As mentioned above, the search complexity of the EAFS is

O(μQ + μF), where μQ is the number of data that satisfy the

query, and μF is the number of false positive data. We set the

number of (μQ + μF) as almost two percent of the total number

of the dataset when the number of attributes was m = 2 in

In this section, we evaluate the performance of our scheme.

Fig. 7. Data distribution.

Fig. 8. Size of index. Fig. 11. Computation cost for building index.

Fig. 9. Computation cost for different number of data records. Fig. 12. Comparison of the index size.

Fig. 10. Computation cost for different number of buckets.

database 1. When the number of attributes was increased to

3, one more restriction was generated, and less data records

can satisfy the search request. Therefore, the search time when

m = 3 is less than the search time when m = 2.

Figs. 10 and 11 show the relationship between the compu-

tation cost of our scheme and the total number of buckets, |B|.

If the total number of buckets is small, which means that the

range of each bucket is wide, more false positive data records

are searched for the same search token, so, subsequently, the

Fig. 13. Comparison of the time for building index.

search time will increase. Fig. 10 shows the search time of a

different number of buckets for the two datasets. As mentioned

above, the length of the index of the EAFS is related to the

number of data records in the database. Therefore, by fixing the

number of data records and the number of attributes, the time

for building the index has no relationship with the total number

of buckets, as illustrated in Fig. 11.

We compared our scheme with ServeDB [4]. Figs. 12 and 13

show the comparison of the index between our scheme and the

−

Fig. 14. Comparison of computation cost for different number of data records.

Fig. 15. Comparison of computation cost for different search range.

ServeDB. Fig. 12 shows that the size of the index of the EAFS

increased linearly as the number of data records increased. Wu

et al. [4] proposed a tree-based index that they called SVETree.

Each node of the SVETree contains a bloom filter. In ServeDB,

the data record is mapped into one of several cubes and then

mapped into a bloom filter. This results in many duplicated cubes

being mapped into the bloom filter. The length of the bloom

filter relates to the total number of cubes, which is a constant.

Therefore, since there are 2n 1 bloom filters in a SVETree

when the number of data is n, the index size of ServeDB

increased linearly as the number of data records increased. And

the index sizes of ServerSB and EAFS are close.

However, the time required to build the index of ServeDB

relates to the number of data records and the number of nodes

in the SVETree. Fig. 13 shows that it increased super-linearly

as the number of data records increased.

Figs. 14 and 15 describe the comparison of the computational

cost when performing secure range search in the two schemes.

To ensure a clear comparison, the two schemes were compared

using an ideal dataset (i.e., dataset 1). In ServeDB, the results

are generated by searching in the SVETree, which is a balanced

binary tree. If all of the data records are ordered, searching for

a continuous range only requires comparing several nodes in

the tree. This can be regarded as the best case for secure range

search in the ServeDB, as denoted by ServeDB_B. However,

the ordered data records will expose their relationships with each

other (i.e., the size of data stored in the right subtree is bigger than

the data in the left tree). To eliminate leakage, the data records

in the SVETree must be in a random order. Thus, searching for

data with random order in the SVETree can be regarded as the

worst case, as denoted by SeverDB_W. The search complexity

with worst case is μQO(log(n)). From Fig. 14, we can conclude

that the computational cost of our scheme is less than that of

ServeDB. Fig. 15 shows that the computational cost of the two

schemes increased linearly as the number of the search range

increased.

IX. CONCLUSION

We proposed the definition of forward privacy in range search,

and designed an EAFS SE scheme that supports secure range

search in encrypted databases. The computational cost for a

range search in our EAFS only relates to the number of results

that satisfy the query and the number of false positives in the in-

tersecting buckets. The chain-like search ensures that any newly

updated data entities have no relationship with the previous data,

which achieves forward privacy. We also evaluated the security

and performance of our approach to demonstrate the utility of

the EAFS.

REFERENCES

[1] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong to
us: The power of file-injection attacks on searchable encryption,” in Proc.
USENIX Secur. Symp., 2016, pp. 707–720.

[2] H. Hacigümüs, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL over
encrypted data in the database-service-provider model,” in Proc. Int. Conf.
Manag. Data Conf., 2002, pp. 216–227.

[3] B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu, “Secure multidi-
mensional range queries over outsourced data,” VLDB J., vol. 21, no. 3,
pp. 333–358, 2012.

[4] S. Wu, Q. Li, G. Li, D. Yuan, X. Yuan, and C. Wang, “ServeDB: Secure,
verifiable, and efficient range queries on outsourced database,” in Proc.
IEEE 35th Int. Conf. Data Eng., 2019, pp. 626–637.

[5] R. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB:

Protecting confidentiality with encrypted query processing,” in Proc. 23rd
ACM Symp. Oper. Syst. Principles, 2011, pp. 85–100.

[6] C. Mavroforakis, N. Chenette, A. Neill, G. Kollios, and R. Canetti, “Mod-
ular order-preserving encryption, revisited,” in Proc. SIGMOD Int. Conf.
Manag. Data Conf., 2015, pp. 763–777.

[7] K. Xue, S. Li, J. Hong, Y. Xue, N. Yu, and P. Hong, “Two-cloud secure

database for numeric-related SQL range queries with privacy preserv-
ing,” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 7, pp. 1596–1608,
Jan. 2017.

[8] K. Cheng et al., “Strongly secure and efficient range queries in cloud
databases under multiple keys,” in Proc. IEEE Conf. Comput. Commun.,
2019, pp. 2494–2502.

[9] W. Wong, B. Kao, D. W. Cheung, R. Li, and S. Yiu, “Secure query

processing with data interoperability in a cloud database environment,”
in Proc. Int. Conf. Manag. Data, 2014, pp. 1395–1406.

[10] R. Li, A. Liu, A. Wang, and B. Bruhadeshwar, “Fast and scal-
able range query processing with strong privacy protection for cloud
computing,” IEEE/ACM Trans. Netw., vol. 24, no. 4, pp. 2305–2318,
Aug. 2016.

[11] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, M. Garo-
falakis, and C. Papamanthou, “Practical private range search in depth,”
ACM Trans. Database Syst., vol. 43, no. 1, pp. 1–52, 2018.

[12] R. Bost, “Zoϕoς: Forward secure searchable encryption,” in Proc. ACM
Conf. Comput. Commun. Secur., 2016, pp. 1143–1154.

[13] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky , “Searchable symmet-
ric encryption: Improved definitions and efficient constructions,” in Proc.
ACM Conf. Comput. Commun. Secur., 2006, pp. 79–88.

