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Abstract:
The primary purpose of this research is to develop a model that can be used to simulate the UK COVID-19
mortality rate data. In this case, the Exponentiated Alpha Power Inverted Exponential distribution, abbreviated as
EAPIEx distribution, is used with two shapes and one scale parameter(s).
The statistical properties of the new distribution are derived and investigated, and the method of maximum
likelihood estimation was used to estimate the unknown parameters of the new distribution. The estimator’s
effectiveness is assessed, and the Monte Carlo simulation results of the estimates are reported in tabular form.
The EAPIEx distribution was utilized to analyze the flexibility and adaptability of the distribution using UK
COVID-19 Mortality Rate Data, and it turned out to perform better than the other models used in this study.
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I. Introduction

The probability density function (pdf) is a key concept
in probability theory and statistics that allows us to
understand and assess continuous random variables and
the probability distributions that go with them. It
provides a mathematical representation of the relative
likelihood of multiple options, allowing for statistical
calculations and modeling procedures.

Exponentiated functions are used extensively in a va-
riety of disciplines, including economics, physics, biology,
and computer science. They give mathematicians a way
to model and examine a variety of exponentially growing
or decaying processes.
Since 1995, the exponentiated distributions have received
much statistical study, and several authors have created
several classes of these distributions by [1]. The Expo-
nentiated Generalized Class of distributions by [2], which
expands the concept first put forth by [3] and researched

by [4] by adding two parameters to a continuous distri-
bution. [5] first presented the Exponentiated Weibull
distribution, and several authors have also created and
generalized a number of standard distributions based
on these distributions. The Exponentiated Inverted
Exponential Distribution by [6] determines that the
proposed model is positively skewed and its shape could
be decreasing or unimodal depending on its parameter
values. A new versatile modification of the Rayleigh
distribution for modeling COVID-19 mortality rate by
[7], uses the Exponentiated Generalized family to model
COVID-19 mortality rate data. On The Exponentiated
Generalized Exponentiated Exponential Distribution with
Properties and Application by [8], they used the Expo-
nentiated Generalized family as well to model Fatigue life
of 6061-T6 aluminum coupons. Exponentiated Inverse
Rayleigh Distribution and an Application to Coating
Weights of Iron Sheets Data by [9].
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A class of transformations called the Alpha Power
Transform is employed in data analysis. This method aids
researchers in enhancing or normalizing the distributional
characteristics of the data they are working with.
The Alpha Power Transformation Family: Properties and
Applications by [10]. Alpha-Power Exponentiated Inverse
Rayleigh distribution and its application to real and sim-
ulated data by [11]. Alpha Power Transformed Weibull-G
Family of Distributions: Theory and Applications by [12].
The Alpha Power Exponentiated Inverse Exponential dis-
tribution and its application to Italy’s COVID-19 mortal-
ity rate data by [13], compared the new distribution with
other distributions and it outperformed the other distri-
butions.
The cdf and pdf of the exponentiated family of distribu-

tions are provided as follows, if Y is a random variable, the
Exponentiated Alpha Power family distribution is defined
by exponentiating the Alpha Power transform;

GEAPF (y) =

(
αW (y) − 1

α− 1

)µ

(1)

the pdf corresponding to the cdf is defined as;

gEAPF (y) =
µ logα

(α− 1)µ
w(y)αW (y)

(
αW (y) − 1

)µ−1

(2)

∀y, α, µ>0, α ̸= 1, and α, µ are shape parameters.

The inverted exponential distribution, sometimes re-
ferred to as the Pareto Type I distribution or the inverse
exponential probability distribution, represents continu-
ous random variables with non-negative support.
Theoretical Analysis of the Kumaraswamy- Inverse Expo-
nential Distribution by [14]. The Transmuted Inverse Ex-
ponential Distribution by [15]. A novel extended inverse-
exponential distribution and its application to COVID-19
data by [16].
The inverted exponential (IEx) distribution is defined by
[17] with probability density function (pdf) and cumula-
tive distribution function (cdf) respectively as;

w(y) =
β

y2
e−βy−1

(3)

W (y) = e−βy−1
(4)

∀y, β>0 and β is a scale parameter

II. The EAPIEx distribution

The three-parameter EAPIEx distribution is derived by
utilizing eqs.(3) & (4) as the baseline distributions.

By utilizing the pdf and cdf of the baseline distributions,
respectively, the pdf and cdf of the EAPIEx distribution
in eqs.(1) & (2), can be rewritten as;

g(y) =
µβ logα

y2(α− 1)µ
e−βy−1

αe−βy−1
(
αe−βy−1

− 1

)µ−1

(5)

G(y) =

(
αe−βy−1

− 1

α− 1

)µ

(6)

∀y, α, µ, β>0, α ̸= 1, α, µ are shape parameters, and β is
a scale parameter

A. Linear presentation of the pdf and cdf
of the EAPIEx distribution

The pdf and cdf of the EAPIEx distribution can be pre-
sented linearly by utilizing some mathematical techniques
on eqs.(5) & (6).

a. The pdf of the EAPIEx distribution is written
linearly as;

g(y) = Φ

∞∑
i=0

µ−1∑
j=0

(−1)j
(
µ− 1

j

)
(logα)i+1

i!
y−2

(
e−βy−1

)i+1

×

(
αe−βy−1)µ−1−j

(7)
Proof:

From series notation αx =
∑∞

i=0
(logα)i

i! xi and binomial

expansion (m− n)p−1 =
∑p−1

j=0(−1)j
(
p−1
j

)
mp−1−jnj

From eq.(5), the following expressions are simplified as;

αe−βy−1

=

∞∑
i=0

(logα)i

i!

(
e−βy−1

)i
and(

αe−βy−1

− 1

)µ−1

=

µ−1∑
j=0

(−1)j
(
µ− 1

j

)(
αe−βy−1)µ−1−j

Hence eq.(5) can be rewritten as;

g(y) =
µβ logα

y2(α− 1)µ
e−βy−1

∞∑
i=0

(logα)i

i!

(
e−βy−1

)i
×

µ−1∑
j=0

(−1)j
(
µ− 1

j

)(
αe−βy−1)µ−1−j

(8)

eq.(8) can further be simplified as;

g(y) = Φ

∞∑
i=0

µ−1∑
j=0

(−1)j
(
µ− 1

j

)
(logα)i+1

i!
y−2

(
e−βy−1

)i+1

×

(
αe−βy−1)µ−1−j

(9)
where; Φ = µβ(α− 1)−µ
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b. The cdf of the EAPIEx distribution is written
linearly as;

G(y) = (α− 1)−µ

µ∑
v=0

(−1)v
(
µ

v

)(
αe−βy−1

)µ−v

(10)

Proof:

From eq.(6) the following expression is simplified as;(
αe−βy−1

− 1

)µ

=

µ∑
v=0

(−1)v
(
µ

v

)(
αe−βy−1

)µ−v

Hence eq.(6) can be rewritten as;

G(y) = (α− 1)−µ

µ∑
v=0

(−1)v
(
µ

v

)(
αe−βy−1

)µ−v

(11)

The Survival (Reliability) and Hazard (Failure rate)
functions corresponding to the EAPIEx distribution are
given respectively as;

S(y) = 1−G(y)

= 1− (α− 1)−µ

µ∑
v=0

(−1)v
(
µ

v

)(
αe−βy−1

)µ−v (12)

and

H(y) =
g(y)

S(y)

=

µβ
∑∞

i=0

∑µ−1
j=0 (−1)j

(
µ−1
j

) (logα)i+1

i! ×

y−2
(
e−βy−1

)i+1(
αe−βy−1

)µ−1−j

(α− 1)µ −
∑µ

v=0(−1)v
(
µ
v

)(
αe−βy−1

)µ−v

(13)

∀y, α, µ, β>0, α ̸= 1

B. EAPIEx distribution Submodel

The EAPIEx distribution has a well-known submodel
when µ = 1, the distribution reduces to Alpha Power
Inverted Exponential (APIEx) distribution by [18].

The APIEx distribution is written as;

cdf; G(y) =
αe−βy−1

− 1

α− 1
(14)

and its corresponding pdf is;

g(y) =
β logα

y2(α− 1)
e−βy−1

αe−βy−1

(15)

∀y, α, β>0, α ̸= 1, α is a shape parameter, and β is a
scale parameter

For the parameter values selected, the pdf plots in Fig-
ure 1 display a positively skewed, J-shape, reversed J-
shape, increase, and unimodal.
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Figure 1: The pdf plots of the EAPIEx distribu-
tion

The S(y) plots in Figure 2 show a monotonic decrease
or a non-monotonic increase shape.
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Figure 2: The S(y) plots of the EAPIEx distribu-
tion

The H(y) plots in Figure 3, show a decreasing, an in-
creasing, and an inverted bathtub shape.
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Figure 3: The H(y) plots of the EAPIEx distribu-
tion

III. Statistical Properties

The statistical properties of the EAPIEx distribution,
which includes the quantile function, median, kth moment,
moment generating function, mean residual life function,
mean waiting time, and Rényi entropy, are all derived in
this section.

A. Quantile function

The Quantile function
(
Q(p)

)
of the EAPIEx distribution

is the inverse of eq.(6) for p ∈ (0, 1).

Q(p) = − β

log

{
log
(
1+p

1
µ (α−1)

)
logα

}
(16)

Proof:

Let G(y) = p, for p ∈ (0, 1) and then solve for y;

p =

(
αe−βy−1

− 1

α− 1

)µ

αe−βy−1

− 1 = p
1
µ (α− 1)

αe−βy−1

= 1 + p
1
µ (α− 1)

e−βy−1

logα = log

(
1 + p

1
µ (α− 1)

)
−β
y

= log

{
log
(
1 + p

1
µ (α− 1)

)
logα

}

y = − β

log

{
log
(
1+p

1
µ (α−1)

)
logα

}
The random variables of the EAPIEx distribution can

be generated/calculated by using eq.(16);

yp = − β

log

{
log
(
1+p

1
µ (α−1)

)
logα

} ; at p ∈ (0, 1)
(17)

a. Lower (1st) quantile

By using p = 1/4 in eq.(16), the Lower (1st) quantile of the
EAPIEx is given as;

Q(1/4) = − β

log

{
log
(
1+(1/4)

1
µ (α−1)

)
logα

}
(18)

b. Median (2nd) quantile

By making use of p = 1/2 in eq.(16) the Median (2nd)
quantile of the EAPIEx is given as;

Q(1/2) = − β

log

{
log
(
1+(1/2)

1
µ (α−1)

)
logα

}
(19)

c. Upper (3rd) quantile

The Upper (3rd) quantile of the EAPIEx is derived by
making use of p = 3/4 in eq.(16);

Q(3/4) = − β

log

{
log
(
1+(3/4)

1
µ (α−1)

)
logα

}
(20)

Its clear in Table 1 and Figure 4 that the quantile values
are directly proportional to the probability values.

Table 1: Quantile Values for EAPIEx(α, µ, β) dis-
tribution.

p (2.0, 1.1, 0.9) (2.1, 1.2, 0.8) (2.2, 1.3, 0.7) (2.3, 1.4, 0.6)
0.1 0.5041 0.4998 0.4842 0.4568
0.2 0.7484 0.7432 0.7209 0.6804
0.3 1.0276 1.0208 0.9903 0.9347
0.4 1.3795 1.3703 1.3291 1.2540
0.5 1.8570 1.8440 1.7879 1.6862
0.6 2.5597 2.5409 2.4626 2.3214
0.7 3.7175 3.6886 3.5732 3.3669
0.8 6.0172 5.9675 5.7781 5.4421
0.9 12.8903 12.7776 12.3663 11.6420
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Figure 4: The Quantile Values plots of the EAPIEx
distribution

B. kth moments

The distribution’s location, spread, asymmetry, and
tail behavior can all be numerically measured using the
moments of the distribution.

The kth moment of the EAPIEx distribution is defined
as;

E(Y k) = ω′
k =

∫ ∞

0

ykg(y)dy (23)

By utilizing g(y) from eq.(7) in eq.(23), the kth moment
is given as;

E(Y k) = ω′
k = Φ

∞∑
i=0

µ−1∑
j=0

(−1)j
(
µ− 1

j

)
(logα)i+1

i!

∫ ∞

0

yk−2

(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

dy

(24)
Proof:

ω′
k =

∫ ∞

0

ykΦy−2
∞∑
i=0

µ−1∑
j=0

(−1)j
(
µ− 1

j

)
(logα)i+1

i!(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

dy

= Φ

∞∑
i=0

µ−1∑
j=0

(−1)j
(
µ− 1

j

)
(logα)i+1

i!

∫ ∞

0

yk−2

(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

dy

where; Φ = µβ(α− 1)−µ

a. Mean

The mean is the 1st moment of a distribution. The mean
of the EAPIEx can be derived by putting k = 1 in eq.(24).

E(Y ) = ω′ = Φ

∞∑
i=0

µ−1∑
j=0

(−1)j
(
µ− 1

j

)
(logα)i+1

i!

∫ ∞

0

y−1

(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

dy

(25)
where; Φ = µβ(α− 1)−µ

b. Variance

The variance of a distribution is an indicator of the spread
or dispersion of values within it, and the variance of
EAPIEx distribution is defined as;

V ar(Y ) = E(Y 2)− (E(Y ))2

= Φ

∞∑
i=0

µ−1∑
j=0

(−1)j
(
µ− 1

j

)
(logα)i+1

i!

∫ ∞

0

(
e−βy−1

)i+1

(
αe−βy−1)µ−1−j

dy −

{
Φ

∞∑
i=0

µ−1∑
j=0

(−1)j
(
µ− 1

j

)
(logα)i+1

i!

∫ ∞

0

y−1
(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

dy

}2

(26)
where; Φ = µβ(α− 1)−µ

c. Coefficient of Variation

The coefficient of variation (CV) is a statistical measure
used to estimate the relative variability of a data collection
or distribution. The CV of the EAPIEx is defined as;

CV =
V ar(Y )

E(Y )
(27)

where; Φ = µβ(α− 1)−µ

V ar(Y ) = Φ

∞∑
i=0

µ−1∑
j=0

(−1)j
(
µ− 1

j

)
(logα)i+1

i!

∫ ∞

0

(
e−βy−1

)i+1

(
αe−βy−1)µ−1−j

dy −

{
Φ

∞∑
i=0

µ−1∑
j=0

(−1)j
(
µ− 1

j

)
(logα)i+1

i!

∫ ∞

0

y−1
(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

dy

}2

and

E(Y ) = Φ

∞∑
i=0

µ−1∑
j=0

(−1)j
(
µ− 1

j

)
(logα)i+1

i!

∫ ∞

0

y−1
(
e−βy−1

)i+1

(
αe−βy−1)µ−1−j

dy
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C. Moment generating function

The moment generating function (mgf) is a mathematical
function that offers a means of describing the distribution
of a random variable.

MY (t) = E
(
etY
)

(28)

Utilizing the identity; etY =
∑∞

k=0
tk

k!Y
k

MY (t) = E

( ∞∑
k=0

tk

k!
Y k

)

=

∞∑
k=0

tk

k!
E(Y k)

(29)

Hence, utilizing E(Y k) from eq.(24) in eq.(29), the mgf
is given as;

MY (t) = Φ

∞∑
k=0

∞∑
i=0

µ−1∑
j=0

tk

k!
(−1)j

(
µ− 1

j

)
(logα)i+1

i!∫ ∞

0

yk−2
(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

dy

(30)

where; Φ = µβ(α− 1)−µ

D. Rényi Entropy

The Rényi entropy offers a means to measure the uncer-
tainty in a probability distribution and is a generalization
of the Shannon entropy.

The Rényi entropy of the EAPIEx is defined as;

RΥ (Y ) =
1

1− Υ
log

(∫ ∞

0

gΥ (y)dy

)
Υ ̸= 1, (>0) (35)

For the random variable Y , Rényi entropy of the
EAPIEx distribution is given as;

RΥ (Y ) =
1

1− Υ
log

{
ΦΥ

∞∑
i=0

µ−1∑
j=0

∫ ∞

0

[
(−1)j

(
µ− 1

j

)
y−2

(logα)i+1

i!

(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

]Υ
dy

}
(36)

Proof:
Making use of g(y) from eq.(7) in eq.(35);

RΥ (Y ) =
1

1− Υ
log

{∫ ∞

0

[
Φy−2

∞∑
i=0

µ−1∑
j=0

(−1)j
(
µ− 1

j

)
(logα)i+1

i!

(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

]Υ
dy

}

=
1

1− Υ
log

{
ΦΥ

∞∑
i=0

µ−1∑
j=0

∫ ∞

0

[
(−1)j

(
µ− 1

j

)

y−2 (logα)
i+1

i!

(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

]Υ
dy

}
where; Φ = µβ(α− 1)−µ

Through the help of numerical integration using
R-software, the values of the Rényi entropy of the
EAPIEx(α, µ, β) distribution was simulated and presented
in Table 2 and its clear in Table 2 & Figure 5 that the order
(γ) is inversely proportional to the Rényi entropy value.

Table 2: The values for Rényi entropy of the
EAPIEx(α, µ, β) distribution.

RΥ (Y ) (2.5, 2.0, 3.0) (2.2, 1.7, 2.7) (1.9, 1.4, 2.4) (1.6, 1.1, 2.1)
R0.5(Y ) 14.0448 13.7237 13.3495 12.8996
R0.9(Y ) 4.5708 4.24570 3.86640 3.4113
R1.3(Y ) 3.9786 3.6523 3.2716 2.8152
R1.7(Y ) 3.7117 3.3847 3.0031 2.5459
R2.1(Y ) 3.5545 3.2270 2.8448 2.3870
R2.5(Y ) 3.4491 3.1214 2.7388 2.2805
R2.9(Y ) 3.3729 3.0449 2.6620 2.2034
R3.3(Y ) 3.3148 2.9866 2.6034 2.1447
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Figure 5: The entropy values plots of the EAPIEx
distribution
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E. Mean Residual Life function

A key idea in survival research and reliability theory is the Mean Residual Life (MRL) function. The fact that a
system or entity has made it this far gives crucial information about how long it will live.

The MRL function is denoted as µ(t);

µ(t) =
1

P (Y > t)

∫ ∞

t

P (Y > y)dy

=
1

S(t)

(
E(t)−

∫ t

0

yg(y)dy

)
− t ; t ≥ 0

(31)

µ(t) =

µβ
∑∞

i=0

∑µ−1
j=0 (−1)j

(
µ−1
j

) (logα)i+1

i!

{∫∞
0
t−1
(
e−βt−1

)i+1(
αe−βt−1)µ−1−j

dt−
∫ t

0
y−1

(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

dy

}
− t

{
(α− 1)µ −

∑µ
v=0(−1)v

(
µ
v

)(
αe−βt−1

)µ−v
}

(α− 1)µ −
∑µ

v=0(−1)v
(
µ
v

)(
αe−βt−1

)µ−v

(32)
Proof:
Making use of;

S(t) = 1− (α− 1)−µ
∑µ

v=0(−1)v
(
µ
v

)(
αe−βt−1)µ−v

,

E(t) = Φ
∑∞

i=0

∑µ−1
j=0 (−1)j

(
µ−1
j

) (logα)i+1

i!

∫∞
0
t−1
(
e−βt−1

)i+1(
αe−βt−1)µ−1−j

dt

∫ t

0
yg(y)dy = Φ

∑∞
i=0

∑µ−1
j=0 (−1)j

(
µ−1
j

) (logα)i+1

i!

∫ t

0
y−1

(
e−βy−1

)i+1(
αe−βy−1

)µ−1−j

dy

and
Φ = µβ(α− 1)−µ

From eq.(31);

µ(t) =
1

1− (α− 1)−µ
∑µ

v=0(−1)v
(
µ
v

)(
αe−βt−1

)µ−v

{
Φ

∞∑
i=0

µ−1∑
j=0

(−1)j
(
µ− 1

j

)
(logα)i+1

i!

∫ ∞

0

t−1
(
e−βt−1

)i+1(
αe−βt−1)µ−1−j

dt

− Φ

∞∑
i=0

µ−1∑
j=0

(−1)j
(
µ− 1

j

)
(logα)i+1

i!

∫ t

0

y−1
(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

dy

}
− t

=
(α− 1)µΦ

∑∞
i=0

∑µ−1
j=0 (−1)j

(
µ−1
j

) (logα)i+1

i!

(α− 1)µ −
∑µ

v=0(−1)v
(
µ
v

)(
αe−βt−1

)µ−v

{∫ ∞

0

t−1
(
e−βt−1

)i+1(
αe−βt−1)µ−1−j

dt−
∫ t

0

y−1
(
e−βy−1

)i+1

(
αe−βy−1)µ−1−j

dy

}
− t

=

µβ
∑∞

i=0

∑µ−1
j=0 (−1)j

(
µ−1
j

) (logα)i+1

i!

{∫∞
0
t−1
(
e−βt−1

)i+1(
αe−βt−1)µ−1−j

dt−
∫ t

0
y−1

(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

dy

}
− t

{
(α− 1)µ −

∑µ
v=0(−1)v

(
µ
v

)(
αe−βt−1

)µ−v
}

(α− 1)µ −
∑µ

v=0(−1)v
(
µ
v

)(
αe−βt−1

)µ−v
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F. Mean Waiting Time (MWT)

The mean waiting time measures how long it takes on average for consumers or other organizations to receive service
after joining a queue.

The MWT is denoted as µ̄(t);

µ̄(t) = t− 1

G(t)

∫ ∞

0

yg(y)dy ; t ≥ 0 (33)

µ̄(t) =
t
∑µ

v=0(−1)v
(
µ
v

)(
αe−βt−1)µ−v

− µβ
∑∞

i=0

∑µ−1
j=0 (−1)j

(
µ−1
j

) (logα)i+1

i!

∫∞
0
y−1

(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

dy∑µ
v=0(−1)v

(
µ
v

)(
αe−βt−1

)µ−v

(34)
Proof:

Making use of;

G(t) = (α− 1)−µ
∑µ

v=0(−1)v
(
µ
v

)(
αe−βt−1)µ−v

∫∞
0
yg(y)dy = Φ

∑∞
i=0

∑µ−1
j=0 (−1)j

(
µ−1
j

) (logα)i+1

i!

∫∞
0
y−1

(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

dy

and

Φ = µβ(α− 1)−µ

From eq.(33);

µ̄(t) = t−
Φ
∑∞

i=0

∑µ−1
j=0 (−1)j

(
µ−1
j

) (logα)i+1

i!

(α− 1)−µ
∑µ

v=0(−1)v
(
µ
v

)(
αe−βt−1

)µ−v

∫ ∞

0

y−1
(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

dy

= t− (α− 1)µ∑µ
v=0(−1)v

(
µ
v

)(
αe−βt−1

)µ−vΦ

∞∑
i=0

µ−1∑
j=0

(−1)j
(
µ− 1

j

)
(logα)i+1

i!

∫ ∞

0

y−1
(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

dy

= t− µβ∑µ
v=0(−1)v

(
µ
v

)(
αe−βt−1

)µ−v

∞∑
i=0

µ−1∑
j=0

(−1)j
(
µ− 1

j

)
(logα)i+1

i!

∫ ∞

0

y−1
(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

dy

=
t
∑µ

v=0(−1)v
(
µ
v

)(
αe−βt−1)µ−v

− µβ
∑∞

i=0

∑µ−1
j=0 (−1)j

(
µ−1
j

) (logα)i+1

i!

∫∞
0
y−1

(
e−βy−1

)i+1(
αe−βy−1)µ−1−j

dy∑µ
v=0(−1)v

(
µ
v

)(
αe−βt−1

)µ−v

IV. Estimation of Parameters

For random variables Y1, Y2, Y3, · · · , Yn, let the random
sample size be ’n’ for Y ∼EAPIEx(ϕ), where ϕ ∈(α, µ, β),
the joint probability density function is given as;

L(yi;ϕ) =

n∏
i=0

g(yi)

L(yi;ϕ) =

n∏
i=0

[
µβ logα

y2i (α− 1)µ
e−βy−1

i αe−βy
−1
i
(
αe−βy

−1
i − 1

)µ−1
]

(37)
The log-likelihood of eq.(37) becomes;
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l(ϕ) = ln

[
µβ logα

(α− 1)µ

]n
− 2

n∑
i=0

ln(yi)− β

n∑
i=0

y−1
i + ln(α)×

n∑
i=0

e−βy−1
i + (µ− 1) ln

(
α
∑n

i=0 e−βy
−1
i − 1

)

l(ϕ) = n ln(µ) + n ln(β) + n ln(log(α))− nµ ln(α− 1)

− 2

n∑
i=0

ln(yi)− β

n∑
i=0

y−1
i + ln(α)

n∑
i=0

e−βy−1
i +

(µ− 1) ln
(
α
∑n

i=0 e−βy
−1
i − 1

)
(38)

Differentiating eq.(38) partially wrt for each parameter
(α, µ, β) and equate to zero;

Let; Θ = (µ− 1) ln

(
α
∑n

i=0 e−βy
−1
i − 1

)
(39)

From eq.(39);

Θ′
α =

∂Θ

∂α
, Θ′

µ =
∂Θ

∂µ
, Θ′

β =
∂Θ

∂β

Hence;

∂l(ϕ)

∂α
=

n

α log(α)
− nµ

α− 1
+

1

α

n∑
i=1

e−βy−1
i +Θ′

α = 0

(40)

∂l(ϕ)

∂µ
=
n

µ
− n ln(α− 1) + Θ′

µ = 0 (41)

∂l(ϕ)

∂β
=
n

β
−

n∑
i=1

y−1
i − ln(α)

n∑
i=1

(
y−1
i e−βy−1

i

)
+Θ′

β = 0

(42)
eqs.(40)-(42) are non linear, hence we need a numerical

optimization method to find their solutions.

Here we used a numerical optimization method called
the BFGS algorithm, and the observed information matrix
is given as;

J−1(ψ) =


∂2l(ϕ)
∂α2

∂2l(ϕ)
∂α∂µ

∂2l(ϕ)
∂α∂β

∂2l(ϕ)
∂µ2

∂2l(ϕ)
∂µ∂β
∂2l(ϕ)
∂β2


where; ψ = (α, µ, β)

′

The expressions for the information matrix are available
in the Appendix

V. Monte Carlo Simulation

To assess the average bias, the root mean square error,
and the average of the parameter estimates, a simulation
exercise was carried out. The simulation used several
sample sizes and sets of initial parameter values.

The simulation was performed under 2000 replications
for each sample size (n)= 50, 100, 150, . . . , 500 and eq.(17)
were used to generate the random samples for the simu-
lation study.

The average bias and root mean square error are calcu-
lated using eqs.(43) & (44), respectively;

AB =
1

P

P∑
i=1

(d̂i − d) (43)

and

RMSE =

√√√√ 1

P

P∑
i=1

(d̂i − d)2 (44)

where d ∈ (α, µ, β) and P the number of replications

Table 3: The estimates, ABs, and RMSEs for
EAPIEx(α = 1.30, µ = 0.30, β = 0.02)

n
Estimates ABs

α̂ µ̂ β̂ α̂ µ̂ β̂
50 2.0507 0.4171 0.5995 0.7507 0.1171 0.5795
100 1.6402 0.4029 0.4126 0.3402 0.1029 0.3926
150 1.5168 0.4084 0.2766 0.2168 0.10840 0.2566
200 1.4357 0.3913 0.2163 0.1357 0.0913 0.1963
250 1.4149 0.3792 0.1628 0.1149 0.0792 0.1428
300 1.3917 0.3811 0.1429 0.0917 0.0811 0.1229
350 1.3770 0.3697 0.1201 0.0770 0.0697 0.1001
400 1.3755 0.3703 0.1096 0.0755 0.0703 0.0896
450 1.3597 0.3648 0.1037 0.0597 0.0648 0.0837
500 1.3494 0.3554 0.1062 0.0494 0.0554 0.0862

n
RMSEs

α̂ µ̂ β̂
50 3.9156 0.3376 0.7469
100 1.3228 0.2950 0.5936
150 0.8211 0.3553 0.4534
200 0.4721 0.3061 0.3699
250 0.4875 0.2749 0.2776
300 0.3314 0.2942 0.2352
350 0.3155 0.2691 0.1714
400 0.2961 0.2728 0.1378
450 0.2525 0.2648 0.1098
500 0.2138 0.2327 0.1165
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Table 4: The estimates, ABs, and RMSEs for
EAPIEx(α = 1.20, µ = 0.20, β = 0.01)

n
Estimates ABs

α̂ µ̂ β̂ α̂ µ̂ β̂
50 1.3498 0.2073 0.0951 0.1498 0.0073 0.0851
100 1.2224 0.2044 0.0881 0.0224 0.0044 0.0781
150 1.2045 0.2043 0.0776 0.0045 0.0043 0.0676
200 1.2039 0.2038 0.0708 0.0039 0.0038 0.0608
250 1.2044 0.2035 0.0618 0.0044 0.0035 0.0518
300 1.2053 0.2040 0.0569 0.0053 0.0040 0.0469
350 1.2044 0.2043 0.0520 0.0044 0.0043 0.0420
400 1.2044 0.2031 0.0460 0.0044 0.0031 0.0360
450 1.2034 0.2033 0.0455 0.0034 0.0033 0.0355
500 1.2030 0.2029 0.0403 0.0030 0.0029 0.0303

n
RMSEs

α̂ µ̂ β̂
50 1.0566 0.0405 0.0925
100 0.2348 0.0372 0.0883
150 0.0798 0.0311 0.0819
200 0.0718 0.0205 0.0775
250 0.0755 0.0192 0.0715
300 0.0756 0.0232 0.0680
350 0.0664 0.0294 0.0644
400 0.0672 0.0142 0.0595
450 0.0568 0.0215 0.0591
500 0.0546 0.0264 0.0547

Remarks on Simulation Results

1. As seen in Table 3 and Table 4, as the sample size (n)
increases, the average parameter estimates converge
to the initial parameter value.

2. As the sample size goes higher, the Average Bias (AB)
decreases.

3. The sample size has an inverse relationship with the
Root Mean Square Error (RMSE).

4. The sensitive of α depends on the sample size (n).

5. The estimators work well and offer low values for the
RMSE, AB, and average parameter values as they
approach the initial parameter values.

VI. Data Application

By utilizing UK COVID-19 Mortality Rate Data, this
section of the paper evaluates the applicability and
flexibility of the EAPIEx distribution.
The EAPIEx distribution is compared with the following
distributions:

• Alpha Power Exponentiated Inverse Rayleigh
(APEIR) distribution by [19]

The cdf and pdf are defined respectively as;

G(y) =
αe

− βθ

y2 − 1

α− 1

g(y) =
2βθ log(α)

y3(α− 1)
e
− βθ

y2 αe
− βθ

y2

• Exponentiated Transmuted Inverse Exponential
(ETIEx) distribution by [20]
The cdf and pdf are defined respectively as;

G(y) =

(
e−

a
y

(
1 + λ− λe−

a
y

))b

g(y) =
ab

y2
e−

ab
y

(
1 + λ− 2λe−

a
y

)(
1 + λ− λe−

a
y

)b−1

where; −1 ≤ λ ≤ 1
• Exponentiated Inverse Exponential (EIEx) distribu-

tion
The cdf and pdf are defined respectively as;

G(y) = e−
µβ
y

g(y) = βµy−2e−
µβ
y

• Inverse Exponential (IEx) distribution
The cdf and pdf are defined respectively as;

G(y) = e−
β
y

g(y) = βy−2e−
β
y

A. Data Set: United Kingdom COVID-19
Mortality Rates Data

Table 5, consist of COVID-19 mortality rates data set in
the United Kingdom used by [21].

Table 5: United Kingdom COVID-19 Mortality
Rates Data.

0.0587 0.0863 0.1165 0.1247 0.1277 0.1303
0.1652 0.2079 0.2395 0.2845 0.2992 0.3188
0.3317 0.3446 0.3553 0.3622 0.3926 0.3926
0.4633 0.4690 0.4954 0.5139 0.5696 0.5837
0.6197 0.6365 0.7096 0.7444 0.8590 1.0438
1.0602 1.1305 1.1468 1.1533 1.2260 1.2707
1.4149 1.5709 1.6017 1.6083 1.6324 1.6998
1.8164 1.8392 1.8721 2.1360 2.3987 2.4153
2.5225 2.7087 2.7946 3.3609 3.3715 3.7840
4.1969 4.3451 4.4627 4.6477 5.3664 5.4500
5.7522 6.4241 7.0657 8.2307 9.6315 10.1870
11.1429 11.2019 11.4584 0.2751 0.4110 0.7193
1.3423 1.9844 3.9042 7.4456

The descriptive statistics for UK COVID-19 mortality
rates is presented in Table 6. The data is right-skewed, is
unimodal, and have a value for kurtosis < 3 (Platykurtic).
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Table 6: Descriptive Statistics of UK COVID-19
Mortality Rates Data.

N Max. Min. Mean Median Mode SD Skew. Kurt.
76 11.46 0.06 2.44 1.25 0.39 2.94 1.74 2.32

The failure rate of UK COVID-19 mortality rate data
has bathtub shape, as illustrated in Figure 6, because the
TTT-transform plot is initially convex below the 45◦ line
and subsequently concave above the 45◦ line, with few
outliers in the boxplot.
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Figure 6: The Boxplot, the Histogram and the
TTT-transform plot of the Data Set.

The asymptotic variance-covariance matrix of the
EAPIEx distribution parameters for the UK COVID-19
Mortality Rate Data is given as;

J−1(ψ) =

51.5770 −0.3867 −0.1271
−0.3867 0.0865 −0.1198
−0.1271 −0.1198 0.1825


where ψ = (α, µ, β)

′

The maximum likelihood with a standard in brackets of
the EAPIEx distribution and other well-known distribu-
tions are provided in Table 7, majority of the fitted distri-
butions have standard error less than half the parameter
value.

Table 7: The MLEs and the Standard Error (in
parentheses).

Distributions

EAPIEx(α̂, µ̂, β̂) 14.4870(11.5240) 0.5180(0.2722) 0.5943(0.3848)

APEIR(α̂, θ̂, β̂) 5.3559(1.3252) 5.1246(2.4636) 0.0133(0.0064)

ETIEx(λ̂, b̂, â) −0.9676(0.0456) 0.1368(0.0628) 2.6458(1.3610)

EIEx(µ̂, β̂) 3.0760(36.4912) 0.1676(1.9880)

IEx(β̂) 0.5155(0.0591)

With regards to UK COVID-19 Mortality Rate Data,
the EAPIEx distribution in Table 8 has the largest
log-likelihood, p − value, and the smallest Kolmogorov-
Smirnov test (K−S), its implies that the EAPIEx provide
a better fit than the other distributions used in this study.

Table 8: The l(ϕ), the Goodness-of-fit and the p−
values results.

Distributions l(ϕ) K − S p− value Rank
EAPIEx −142.4631 0.0790 0.7294 1st

APEIR −220.1216 0.6892 <5% 5th

ETIEx −143.4585 0.10293 0.3965 2nd

EIEx −149.6024 0.1892 <5% 3rd

IEx −149.6024 0.1892 <5% 3rd

Table 9 displays the data information criterion, and it is
obvious that the EAPIEx distribution has the lowest AIC,
AICc, BIC, and HQIC when compared to the other distri-
butions. In model selection, it is stated that for a model
to be selected over other models, it must have the low-
est information criterion values. In this case, the EAPIEx
distribution is the optimal model for simulating the UK
COVID-19 mortality rate in terms of the model selection
principle.

Table 9: The Information Criteria results.

Distributions AIC AICc BIC HQIC
EAPIEx 290.9263 291.2596 297.9185 293.7207
APEIR 446.2433 446.5766 453.2355 449.0377
ETIEx 292.9171 293.2504 299.9093 295.7115
EIEx 303.2048 303.3692 307.8663 305.0678
IEx 301.2048 301.2589 303.5355 302.1363

According to Figure 7, the EAPIEx distribution fits the
COVID-19 mortality rate data in the United Kingdom
better than other well-known distributions.

VII. Conclusion

The major goal of this research was to create a new
three-parameter distribution termed ”the Exponentiated
Alpha Power Inverted Exponential distribution, abbrevi-
ated as EAPIEx distribution”, which was used to model
UK COVID-19 Mortality Rate Data. Various statistical
properties are derived and studied such as Quantile
function, Lower quantile, Median, Upper quantile, Sur-
vival function, Hazard function, kth Moments, Moment
generating function, and Entropy. The parameters of
the new distribution are estimated using the maximum
likelihood method, and the performance of the estimation
method is investigated using Monte Carlo simulation.
The average parameter estimate, average bias, and root
mean square error are calculated, and it is evident that
the sample size (n) is inversely related to the estimate
(that is the estimate converges to the initial parameter
value as the sample size increases).
Regarding the main purpose of this paper, we applied the
distribution to UK COVID-19 Mortality Rate Data. It
demonstrates that the EAPIEx distribution outperforms
the other distributions employed in this investigation.
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Figure 7: The Fitted densities plot of UK COVID-
19 Mortality Rates.
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Appendix

Expressions of the Information matrix are derived below;

From eqs. (40) to (42)

Note;
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