# Application of Diophantine Equations in Crytography 

V. Pandichelvi ${ }^{1}$, R. Vanaja ${ }^{2}$<br>${ }^{1}$ PG \& Research Department of Mathematics, Urumu Dhanalakshmi College, Trichy.<br>(Affiliated to Bharathidasan University)<br>E-mail: mppmahesh2017@gmail.com<br>${ }^{2}$ PG \& Department of Mathematics, Shrimati Indira Gandhi College, Trichy.<br>(Affiliated to Bharathidasan University)

E-mail: vanajvicky09@gmail.com
$\qquad$ $* * * * * * * * * * * * * * * * * * * * * * * *$ $\qquad$


#### Abstract

: In this paper, the algorithm for the transmission of a message from the despatcher to the receiver is enlightened by employing second-degree Diophantine equations and simultaneous Diophantine equations.


Keywords - Cryptography, Diophantine equations, Simultaneous Diophantine equations, quotient ring.
$\qquad$ ************************ $\qquad$

## I. INTRODUCTION

Cryptography is the study of secure communication techniques that restrict message contents to only the recipient and intended sender. Many authors have discussed public-key cryptosystems based on integer factorization, discrete logarithm, or elliptic curve techniques [1-10]. In this article, the process of conveying a message from one person to another is exposed by using second-degree Diophantine equations and a system of Diophantine equations.
II. Application of second-degree Diophantine equations in cryptography
this section exemplifies the ability to use second-order Diophantine equations in cryptography

## A. Communication Of A Message Between Two Persons Over A Second-Degree Diophantine Equation

The communication of message 4563 between the sender and the recipient is explained through the following algorithm:
STEP 1: The recipient sets the integer values of variables $x, y$ to $x=13, y=3$
and using those variables, the recipient constructs his public key as a Diophantine equation $x^{2}-6 y^{3}-17=0$
STEP 2:The recipient sends the Diophantine equation (2) to the sender by keeping the values of the variables 13 and 3 secret.

STEP 3: The sender inserts an element $g(x, y)=x^{2} y^{3}$ into the quotient ring $Z(x, y) / x^{2}-6 y^{3}-17$ and describes the following operator on that quotient ring
$T[a, b, c]: x \rightarrow x^{a}+b c$
where $a, b$, and $c$ are integers. The sender places an element $x^{2} y^{3}$ on the quotient ring and practises the operator repeatedly on this element, as offered below
$T_{[2,1,3]}\left(T_{[1,4,2]}\left(x^{2} y^{3}\right)\right)$
$=T_{[2,1,3]}\left(x^{2} y^{3}+8\right)$
$=x^{4} y^{6}+16 x^{2} y^{3}+67$
$=36 y^{12}+84 y^{9}+49 y^{6}+16 x^{2} y^{3}+6$
STEP 4: The sender maintains $h(x, y)=36 y^{12}+84 y^{9}+$ $49 y^{6}+16 x^{2} y^{3}+6$ and fixes the element $g(x, y)=x^{2} y^{3}$ as public key and sustains the parameters operator as a private key.
STEP 5: The recipient upholds the premeditated value $h(13,3)=20894044$ as public and $(13,3)=4563$ as secret.
STEP 6: The recipient returns the value 20894044 to the sender while concealing the value 4563.
STEP 7: The sender recovers the value of $g$ as

$$
\begin{align*}
g & =T_{[1,4,2]}^{-1}\left(T_{[2,1,3]}^{-1}(20894044)\right) \\
& =T_{[1,4,2]}{ }^{-1}(4571)=4563 . \tag{5}
\end{align*}
$$

STEP 8:As a result, the recipient and sender might be able to share the secret.

## Available at www.ijsred.com

## B. Communication of the message between three persons through the second-degree Diophantine equation

The communication of message 16125 between the despatcher and two receivers is exemplified as follows.

STEP 1: The receiver $R_{1}$ sets the integer values 5,11 as private keys and create the public key as the Diophantine equation $x^{3}-y^{2}-4=0$
The receiver $R_{2}$ retains $x=5$ and $y=55$ as private keys and the public key as the corresponding Diophantine equation $x^{3}-2 y-15=0$
STEP 2: $R_{1}$ and $R_{2}$ both share their public keys with the dispatcher $S$.
STEP 3: As in section II (A), the despatcher uses the operator given in (3) repeatedly by placing an element $x^{3} y^{2}$ on the quotient ring, as mentioned below.

$$
\begin{align*}
& T_{[2,3,-2]}\left(T_{[1,5,3]}\left(x^{3} y^{2}\right)\right) \\
& =T_{[2,1,3]}\left(x^{3} y^{2}+15\right) \\
& =x^{6} y^{4}+30 x^{3} y^{2}+219 \\
& =x^{12}-8 x^{9}+16 x^{6}+30 x^{3} y^{2}+219 \tag{8}
\end{align*}
$$

The Dispatcher $S$ holds $j(x, y)=x^{12}-8 x^{9}+16 x^{6}+$ $30 x^{3} y^{2}+219$ and $i(x, y)=x^{3} y^{2}$ as public keys by keeping the parameter operator [2,3,-2] private for the receiver $R_{1}$. The Dispatcher S inserts an element $k(x, y)$ into the quotient ring $Z(x, y) / x^{3}-2 y-15=0$ and express the given operator repetitively by placing an element $x y^{2}$ on the quotient ring, as revealed below.
$T_{[2,4,1]}\left(T_{[1,3,2]}\left(x y^{2}\right)\right)$
$=T_{[2,4,1]}\left(x y^{2}+6\right)$
$=x^{2} y^{4}+12 x y^{2}+40$
$=x^{2} y^{4}+3 y^{7}-90 x^{4}+675 x+40$
$=l(x, y)$
The despatcher makes $l(x, y)$ and $k(x, y)=x y^{2}$ as public by sustaining the operator parameters private for the receiver $R_{2}$.
STEP 4:
The receiver $R_{1}$ directs the value of $j(5,11)=229219594$ to the dispatcher and possess $i(5,11)=15125$ secret.
The receiver $R_{2}$ computes $k(5,55)$ and $l(5,55)$ and sends $l(5,55)=228947165$ to the sender by upholding $k(5,15)=15125$ secret.
STEP 5: The dispatcherrecovers the value $i$ by using the value of $j(x, y)$ as
$i=T_{[1,5,3]}^{-1}\left(T_{[2,3,-2]}{ }^{-1}(229219594)\right)$

$$
\begin{equation*}
=T_{[1,5,3]}^{-1}(15140)=15125 . \tag{10}
\end{equation*}
$$

The despatcher convalesces the value $k$ by applying $l(x, y)$ as

$$
\begin{align*}
k & =T_{[1,3,2]}^{-1}\left(T_{[2,4,1]}^{-1}(228947165)\right) \\
& =T_{[1,3,2]}{ }^{-1}(15131)=15125 . \tag{11}
\end{align*}
$$

STEP 6:Finally, the dispatcher and receivers $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ could share the secret.

## III. Application of Simultaneous Diophantine Equations in Cryptography

This section describes the application of simultaneous Diophantine equations in cryptography.

## A. Transmission of a message between two persons through simultaneous Diophantine equations

The transmission of a message 1225 between two adherents by means of simultaneous Diophantine equations is explicated by the following algorithm.
STEP 1:The recipient creates the following simultaneous Diophantine equations as his public key by giving integer values to the variables $x$ and $y$ by $x=7, y=5$
$x^{2}-2 y^{2}+1=0$
$2 x^{2}-3 y^{2}-23=0$
Here, 7, 5 are kept secret by the recipient.
STEP 2:The sender collects the Diophantine equation (13) from the recipient.
STEP 3: As in section II (A), the sender uses the operator specified in (3) repeatedly by employing an element $x^{2} y^{2}$ on the quotient ring as follows.
$T_{[3,2,1]}\left(T_{[1,2,3]}\left(x^{2} y^{2}\right)\right)$
$=T_{[3,2,1]}\left(x^{2} y^{2}+16\right)$
$=x^{6} y^{6}+18 x^{4} y^{4}+108 x^{2} y^{2}+214$
$=x^{6} y^{6}+18 x^{4} y^{4}+180 y^{4}+792 y^{2}+214$
$=n(x, y)$
STEP 4:The sender makes $n(x, y)$ and the fixed element $m(x, y)=x^{2} y^{2}$ public and the operator parameters private.
STEP 5:The recipient calculates $m(7,5)$ and $n(7,5)$ and displays $n(7,5)=1865409389$ in public while preserving $m(7,5)=1225$ in secret.
STEP 6:The recipient returns the value 1865409389 to the sender while concealing the value of $n$.
STEP 7:The sender recovers the value mas
$m=T_{[1,2,3]}^{-1}\left(T_{[3,2,1]}^{-1}(1865409389)\right)$
$=T_{[1,2,3]}^{-1}(1231)=1225$.
STEP 8: Finally, the recipient and sender interchange the secret $m$

## Available at www.ijsred.com

B. Sharing of the message among the sender and two recipients over simultaneous

## Diophantine Equations

Sharing of message 1728 between the sender and two recipients over simultaneous Diophantine equations are illustrated below.
STEP 1:The recipient $T_{1}$ generates simultaneous Diophantine equations as his public key by engaging the integer values of variables 3 and 4 as his private keys.

$$
\left.\begin{array}{l}
2 x^{2}-y^{2}-2=0 \\
x^{2}-2 y^{2}+23=0 \tag{16}
\end{array}\right]
$$

The receiver $T_{2}$ preserves the relevant simultaneous
Diophantine equation
$\left.\begin{array}{l}x^{2}-8 y^{2}-8=0 \\ 2 x^{2}-13 y^{2}-11=0\end{array}\right]$
public key and the private keys are $x=8$ and $y=3$
STEP 2:T1 and $T_{2}$ directed their public keys to sender U.
STEP 3: As in section II (A), the sender repeats the operator (3) by engaging an element $x^{3} y^{3}$ on the quotient ring as mentioned below.

$$
\begin{align*}
& T_{[3,1,-1]}\left(T_{[1,5,4]}\left(x^{3} y^{3}\right)\right) \\
& =T_{[3,1,-1]}\left(x^{3} y^{3}+20\right) \\
& =x^{9} y^{9}+60 x^{6} y^{6}+1200 x^{3} y^{3}+7999 \\
& =x^{9} y^{9}+60 y^{12}-1260 y^{10}+8820 y^{8}-20580 y^{6} \\
& \quad+1200 x^{3} y^{3}+7999 \\
& =p(x, y) \tag{18}
\end{align*}
$$

The sender U retains $p(x, y)$ and $o(x, y)=x^{3} y^{3}$ public with the operator, and the parameters are private for the recipient $T_{1}$.
The sender U inserts an element $q(x, y)=x^{2} y^{3}$ into the quotient ring $Z(a, b, c) / x^{2}-8 y^{2}-8=0$ and $2 x^{2}-13 y^{2}-$ $11=0$ and delineates the given operator on that quotient ring,such as
$T_{[3,3,-2]}\left(T_{[1,2,3]}\left(x^{2} y^{3}\right)\right)$
$=T_{[3,3,-2]}\left(x^{2} y^{3}+6\right)$
$=x^{6} y^{9}+18 x^{4} y^{6}+108 x^{2} y^{3}+210$
$=x^{6} y^{9}+18 x^{4} y^{6}+756 y^{5}+108 y^{3}+210=$
$r(x, y)$
The sender possesses $r(x, y)$ and $q(x, y)=x^{2} y^{3}$ as public and the operator parameters as private for the receiver $T_{2}$.
STEP 4: The recipient $T_{1}$ leads the value of $p(3,4)=$ 5341020991 to the sender by reservingo $(3,4)=1728$ secret. The recipient $T_{2}$ estimates $l(8,3)$ and $m(8,3)$ and refers $r(8,3)=5213714898$ to the sender by sustaining $q(8,3)=$ 1728 secret.

STEP 5: The senderrecuperates the value $o$ by using $p(x, y)$ as

$$
\begin{aligned}
o & =T_{[1,5,4]}{ }^{-1}\left(T_{[3,1,-1]}-1(5341020991)\right) \\
& =T_{[1,5,4]}{ }^{-1}(1748)=172(20)
\end{aligned}
$$

The sender improves the value q by using $r(x, y)$ as

$$
\begin{align*}
q & =T_{[1,2,3]}^{-1}\left(T_{[3,3,-2]}-1(5213714898)\right) \\
& =T_{[1,2,3]}^{-1}(1734)=1728 . \tag{21}
\end{align*}
$$

STEP 6: The sender U and recipients $T_{1}$ and $T_{2}$ might be capable of conveying the secret.

## IV. Conclusion

The encryption method was discussed in this work by using second-degree Diophantine equations and simultaneous Diophantine equations. Through this method, how messages can be sent from one person to another using a variety of operators is explained in detail. In a similar way, one can search for the application of higher-degree Diophantine equations in Cryptography.

## V. References

[1] R. Bose, "Novel Public Key Encryption Techniques Based on Multiple Chaotic Systems", Physic Review Letters, vol. 95(9), 2005.
[2] J. Hoffstein, J. Pipher, and J.H. Silverman, "An Introduction to Mathematical Cryptography", Springer, New York, 2008.
[3] Basu, M. and Prasad, B., "The generalized relations among the code elements for Fibonacci coding theory", Chaos Solitons Fractals, vol. 41(5), pp. 2517-2525, 2009.
[4] M.R.K. Ariffin, N.A. Abu and A. Mandangan, "Strengthening the-cryptosystem" Proc. Second International Cryptology Conference 2010, 2010, 16-26.
[5] Harry Yosh, "The Key Exchange Cryptosystem Used with Higher Order Diophantine Equations", International Journal of Network Security and its Applications (IJNSA), vol. 3(2), March 2011.
[6] J. S. Armand Eyebe Foudaa, J. Yves Effab, Bertrand Bodoa and Maaruf Alic, "Diophantine Solutions Based Permutation for Image Encryption", Journal of Algorithms and Computational Technology, vol. 7(1), pp. 65-86, June 2012.
[7] N. Hirata-Kohno and A. Petho, "On a key exchange protocol based on Diophantine equations", Info communications Journal, vol. 5, pp. 17-21, 2013.
[8] Prasad, B., "Coding theory on Lucas p-numbers", Discrete Math. Algorithms Appl., vol. 8(4), pp. 17, 2016.
[9] T.Logeswar, "Data Security in Cryptography using Mathematics", National Conference on Contemporary Research and Innovations in Computer Science (NCCRICS), Dec 2017.
[10] Sümeyra Uçar, Nihal Tas and Nihal Yılmaz Özgür, "A New Application to Coding Theory via Fibonacci and Lucas Numbers", Mathematical Sciences and Applications E-Notes, vol. 7(1), pp. 62-70, 2019.

