Available at www.ijsred.com

RESEARCH ARTICLE

OPEN ACCESS

Application of Diophantine Equations in Crytography

V. Pandichelvi¹, R. Vanaja² ¹PG & Research Department of Mathematics, Urumu Dhanalakshmi College, Trichy. (Affiliated to Bharathidasan University) **E-mail:** <u>mvpmahesh2017@gmail.com</u> ²PG & Department of Mathematics, Shrimati Indira Gandhi College, Trichy. (Affiliated to Bharathidasan University) **E-mail:** <u>vanajvicky09@gmail.com</u>

Abstract:

In this paper, the algorithm for the transmission of a message from the despatcher to the receiver is enlightened by employing second-degree Diophantine equations and simultaneous Diophantine equations.

Keywords — Cryptography, Diophantine equations, Simultaneous Diophantine equations, quotient ring.

I. INTRODUCTION

Cryptography is the study of secure communication techniques that restrict message contents to only the recipient and intended sender. Many authors have discussed public-key cryptosystems based on integer factorization, discrete logarithm, or elliptic curve techniques [1–10]. In this article, the process of conveying a message from one person to another is exposed by using second-degree Diophantine equations and a system of Diophantine equations.

II. Application of second-degree Diophantine equations in cryptography

this section exemplifies the ability to use second-order Diophantine equations in cryptography

A. Communication Of A Message Between Two Persons Over A Second-Degree Diophantine Equation

The communication of message 4563 between the sender and the recipient is explained through the following algorithm:

STEP 1: The recipient sets the integer values of variables x, y to x = 13, y = 3 (1)

and using those variables, the recipient constructs his public key as a Diophantine equation $x^2 - 6y^3 - 17 = 0$ (2)

STEP 2:The recipient sends the Diophantine equation (2) to the sender by keeping the values of the variables 13 and 3 secret.

STEP 3: The sender inserts an element $g(x, y) = x^2 y^3$ into the quotient ring $Z(x, y) / x^2 - 6y^3 - 17$ and describes the following operator on that quotient ring

$$T[a, b, c]: x \to x^a + bc \tag{3}$$

where *a*, *b*, and *c* are integers. The sender places an element x^2y^3 on the quotient ring and practises the operator repeatedly on this element, as offered below

$$T_{[2,1,3]}\left(T_{[1,4,2]}(x^2y^3)\right)$$

= $T_{[2,1,3]}(x^2y^3 + 8)$
= $x^4y^6 + 16x^2y^3 + 67$
= $36y^{12} + 84y^9 + 49y^6 + 16x^2y^3 + 6$ (4)
STEP 4: The sender maintains $h(x, y) = 36y^{12} + 84y^9$

 $49y^6 + 16x^2y^3 + 6$ and fixes the element $g(x, y) = x^2y^3$ as public key and sustains the parameters operator as a private key.

STEP 5: The recipient upholds the premeditated value h(13,3) = 20894044 as public and (13,3) = 4563 as secret. **STEP 6:** The recipient returns the value 20894044 to the sender while concealing the value 4563.

STEP 7: The sender recovers the value of gas

$$g = T_{[1,4,2]}^{-1} \left(T_{[2,1,3]}^{-1} (20894044) \right)$$

= $T_{[1,4,2]}^{-1} (4571) = 4563.$ (5)

STEP 8: As a result, the recipient and sender might be able to share the secret.

International Journal of Scientific Research and Engineering Development--- Volume 6 Issue 5, Sep- Oct 2023

B. Communication of the message between three persons through the second-degree Diophantine equation

The communication of message 16125 between the despatcher and two receivers is exemplified as follows.

STEP 1: The receiver R_1 sets the integer values 5, 11 as private keys and create the public key as the Diophantine equation $x^3 - y^2 - 4 = 0$ (6) The receiver R_2 retains x = 5 and y = 55 as private keys and the public key as the corresponding Diophantine equation $x^3 - 2y - 15 = 0$ (7)

STEP 2: R_1 and R_2 both share their public keys with the dispatcher S.

STEP 3: As in section II (A), the despatcher uses the operator given in (3) repeatedly by placing an element x^3y^2 on the quotient ring, as mentioned below.

$$T_{[2,3,-2]}\left(T_{[1,5,3]}(x^{3}y^{2})\right)$$

= $T_{[2,1,3]}(x^{3}y^{2} + 15)$
= $x^{6}y^{4} + 30x^{3}y^{2} + 219$
= $x^{12} - 8x^{9} + 16x^{6} + 30x^{3}y^{2} + 219$ (8)
The Dispatcher S holds $j(x, y) = x^{12} - 8x^{9} + 16x^{6} + 30x^{10}y^{10}$

 $30x^3y^2 + 219$ and $i(x, y) = x^3y^2$ as public keys by keeping the parameter operator [2,3, -2] private for the receiver R_1 .

The Dispatcher S inserts an element k(x, y) into the quotient ring $Z(x, y) / x^3 - 2y - 15 = 0$ and express the given operator repetitively by placing an element xy^2 on the quotient ring, as revealed below.

$$T_{[2,4,1]}\left(T_{[1,3,2]}(xy^2)\right)$$

= $T_{[2,4,1]}(xy^2 + 6)$
= $x^2y^4 + 12xy^2 + 40$
= $x^2y^4 + 3y^7 - 90x^4 + 675x + 40$
= $l(x,y)$

The despatcher makes l(x, y) and $k(x, y) = xy^2$ as public by sustaining the operator parameters private for the receiver R_2 . *STEP 4:*

The receiver R_1 directs the value of j(5,11) = 229219594 to the dispatcher and possess i(5,11) = 15125 secret.

The receiver R_2 computes k(5,55) and l(5,55) and sends l(5,55) = 228947165 to the sender by upholding k(5,15) = 15125 secret.

STEP 5: The dispatcher recovers the value *i* by using the value of j(x, y) as

$$i = T_{[1,5,3]}^{-1} \left(T_{[2,3,-2]}^{-1} (229219594) \right)$$

Available at www.ijsred.com

$$= T_{[1,5,3]}^{-1}(15140) = 15125.$$
(10)

The despatcher convalesces the value *k* by applying l(x, y) as

$$k = T_{[1,3,2]}^{-1} \left(T_{[2,4,1]}^{-1} (228947165) \right)$$

= $T_{[1,3,2]}^{-1} (15131) = 15125.$ (11)

STEP 6:Finally, the dispatcher and receivers R_1 and R_2 could share the secret.

III. Application of Simultaneous Diophantine Equations in Cryptography

This section describes the application of simultaneous Diophantine equations in cryptography.

A. Transmission of a message between two persons through simultaneous Diophantine equations

The transmission of a message 1225 between two adherents by means of simultaneous Diophantine equations is explicated by the following algorithm.

STEP 1:The recipient creates the following simultaneous Diophantine equations as his public key by giving integer values to the variables x and y by x = 7, y = 5 (12) $x^2 - 2y^2 + 1 = 0$

$$2x^2 - 3y^2 - 23 = 0$$
(13)

Here, 7, 5 are kept secret by the recipient.

*STEP 2:*The sender collects the Diophantine equation (13) from the recipient.

STEP 3: As in section II (A), the sender uses the operator specified in (3) repeatedly by employing an element x^2y^2 on the quotient ring as follows.

$$T_{[3,2,1]}\left(T_{[1,2,3]}(x^2y^2)\right)$$

= $T_{[3,2,1]}(x^2y^2 + 16)$
= $x^6y^6 + 18x^4y^4 + 108x^2y^2 + 214$
= $x^6y^6 + 18x^4y^4 + 180y^4 + 792y^2 + 214$
= $n(x,y)$ (14)

STEP 4:The sender makes n(x, y) and the fixed element $m(x, y) = x^2 y^2$ public and the operator parameters private.

STEP 5: The recipient calculates m(7,5) and n(7,5) and displays n(7,5) = 1865409389 in public while preserving m(7,5) = 1225 in secret.

STEP 6: The recipient returns the value 1865409389 to the sender while concealing the value of n.

STEP 7: The sender recovers the value mas

$$m = T_{[1,2,3]}^{-1} \left(T_{[3,2,1]}^{-1} (1865409389) \right)$$

= $T_{[1,2,3]}^{-1} (1231) = 1225.$ (15)

STEP 8: Finally, the recipient and sender interchange the secret m

(9)

International Journal of Scientific Research and Engineering Development--- Volume 6 Issue 5, Sep- Oct 2023

Available at www.ijsred.com

B. Sharing of the message among the sender and two recipients over simultaneous

Diophantine Equations

Sharing of message 1728 between the sender and two recipients over simultaneous Diophantine equations are illustrated below.

STEP 1: The recipient T_1 generates simultaneous Diophantine equations as his public key by engaging the integer values of variables 3 and 4 as his private keys.

$$2x^{2} - y^{2} - 2 = 0$$

$$x^{2} - 2y^{2} + 23 = 0$$
(16)

The receiver T_2 preserves the relevant simultaneous Diophantine equation

 $\begin{bmatrix} x^2 - 8y^2 - 8 = 0\\ 2x^2 - 13y^2 - 11 = 0 \end{bmatrix}$ (17) as

public key and the private keys are x = 8 and y = 3

STEP 2: T_1 and T_2 directed their public keys to sender U.

STEP 3: As in section II (A), the sender repeats the operator (3) by engaging an element x^3y^3 on the quotient ring as mentioned below.

$$T_{[3,1,-1]} \left(T_{[1,5,4]} (x^3 y^3) \right)$$

= $T_{[3,1,-1]} (x^3 y^3 + 20)$
= $x^9 y^9 + 60 x^6 y^6 + 1200 x^3 y^3 + 7999$
= $x^9 y^9 + 60 y^{12} - 1260 y^{10} + 8820 y^8 - 20580 y^6$
+ $1200 x^3 y^3 + 7999$
= $p(x, y)$ (18)

The sender U retains p(x, y) and $o(x, y) = x^3 y^3$ public with the operator, and the parameters are private for the recipient T_1 .

The sender U inserts an element $q(x,y) = x^2y^3$ into the quotient ring $Z(a, b, c) / x^2 - 8y^2 - 8 = 0$ and $2x^2 - 13y^2 - 11 = 0$ and delineates the given operator on that quotient ring, such as

$$T_{[3,3,-2]} \left(T_{[1,2,3]} (x^2 y^3) \right)$$

= $T_{[3,3,-2]} (x^2 y^3 + 6)$
= $x^6 y^9 + 18x^4 y^6 + 108x^2 y^3 + 210$
= $x^6 y^9 + 18x^4 y^6 + 756y^5 + 108y^3 + 210$
 $r(x,y)$ (19)

The sender possesses r(x, y) and $q(x, y) = x^2 y^3$ as public and the operator parameters as private for the receiver T_2 .

STEP 4: The recipient T_1 leads the value of p(3,4) = 5341020991 to the sender by reserving o(3,4) = 1728 secret. The recipient T_2 estimates l(8,3) and m(8,3) and refers r(8,3) = 5213714898 to the sender by sustaining q(8,3) = 1728 secret. **STEP 5:** The senderrecuperates the value *o* by using p(x, y) as

$$o = T_{[1,5,4]}^{-1} \left(T_{[3,1,-1]}^{-1} (5341020991) \right)$$

= $T_{[1,5,4]}^{-1} (1748) = 172(20)$

The sender improves the value q by using r(x, y) as

$$q = T_{[1,2,3]}^{-1} (T_{[3,3,-2]}^{-1} (5213714898))$$

= $T_{[1,2,3]}^{-1} (1734) = 1728.$ (21)

STEP 6: The sender U and recipients T_1 and T_2 might be capable of conveying the secret.

IV. Conclusion

The encryption method was discussed in this work by using second-degree Diophantine equations and simultaneous Diophantine equations. Through this method, how messages can be sent from one person to another using a variety of operators is explained in detail. In a similar way, one can search for the application of higher-degree Diophantine equations in Cryptography.

V. References

- R. Bose, "Novel Public Key Encryption Techniques Based on Multiple Chaotic Systems", *Physic Review Letters*, vol. 95(9), 2005.
- [2] J. Hoffstein, J. Pipher, and J.H. Silverman, "An Introduction to Mathematical Cryptography", *Springer*, *New York*, 2008.
- [3] Basu, M. and Prasad, B., "The generalized relations among the code elements for Fibonacci coding theory", *Chaos Solitons Fractals*, vol. 41(5), pp. 2517-2525, 2009.
- [4] M.R.K. Ariffin, N.A. Abu and A. Mandangan, "Strengthening the-cryptosystem" Proc. Second International Cryptology Conference 2010, 2010, 16 - 26.
- [5] Harry Yosh, "The Key Exchange Cryptosystem Used with Higher Order Diophantine Equations", *International Journal of Network Security and its Applications (IJNSA)*, vol. 3(2), March 2011.
- [6] J. S. Armand Eyebe Foudaa, J. Yves Effab, Bertrand Bodoa and Maaruf Alic, "Diophantine Solutions Based Permutation for Image Encryption", *Journal of Algorithms and Computational Technology*, vol. 7(1), pp. 65-86, June 2012.
- [7] N. Hirata-Kohno and A. Petho, "On a key exchange protocol based on Diophantine equations", *Info* communications Journal, vol. 5, pp. 17–21, 2013.
- [8] Prasad, B., "Coding theory on Lucas p-numbers", *Discrete Math. Algorithms Appl.*, vol. 8(4), pp. 17, 2016.

=

International Journal of Scientific Research and Engineering Development--- Volume 6 Issue 5, Sep- Oct 2023

Available at www.ijsred.com

[9] T.Logeswar, "Data Security in Cryptography using Mathematics", *National Conference on Contemporary Research and Innovations in Computer Science* (*NCCRICS*), Dec 2017.

[10] Sümeyra Uçar, Nihal Tas and Nihal Yılmaz Özgür, "A New Application to Coding Theory via Fibonacci and Lucas Numbers", *Mathematical Sciences and Applications E-Notes*, vol. 7(1), pp. 62-70, 2019.