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Abstract. The scientific community has recently shown a great deal of interest in advanced 

generative models of three-dimensional forms. In spite of this, almost all of them generate discrete 

form representations such as voxels, points, clouds of points, and poly meshes. The expression of a 

form as a sequence of CAD operations is a fundamentally new way of representing a shape, and we 

deliver the first ever 3D generating model for this representation. In contrast to grids and point 

clouds, computer-aided design (CAD) models encapsulate the method by which a user creates three-

dimensional forms. These models are frequently used in the design of industrial and technical 

products. On the other hand, existing 3D generating models have significant challenges since the 

sequential and asymmetrical structure of CAD processes makes the methods difficult to follow. An 

similarity between the processes involved in CAD and spoken language has inspired us to propose a 

CAD generation network that would be built on the Transformer. In order to stimulate more study on 

this subject in the future. 

 

1. Introduction 

It is ingrained in us to be creative and inventive, as well as to find ways to articulate our innovations 

via three-dimensional shapes. This is the reason why drawing tools such as the parallel bar, and the 

French curve, and divider were developed; and this is the reason why, in the modern digital age, CAD 

software, or computer-aided design, has been used for the creation of 3D shapes in a wide variety of 

industrial sectors, including automotive and aerospace as well as manufacturing along with 

architectural design [1]. Is it within the capabilities of the machine to also produce three-dimensional 

forms? Recent years have seen an immense rise in the amount of research that has been focused on 

the creation of 3D models by making use of the extraordinary progress that has been made in the 

fields of deep neural networks [2]. Models that do nothing more than generate computerised 

discretizations of 3D objects are examples of existing 3D machine learning models [3. Models such 

as hazy points, polygon produces, and level set the field are all examples of methods that fall into this 

category]. At this time, there is not enough capacity to generate the drawing process, which is 

absolutely necessary for the process of creating forms in three dimensions. [5] We describe an 

advanced generative network that creates a series of operations that can be used to construct a 3D 

form using CAD tools such as Epdm and AutoCAD. This sequence may be used to make a model. 

This kind of operational sequence, which is more widely known as a CAD model, explains the 

"drawing" process that is used in the production of shapes. CAD models are employed in almost all 
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3D design work done in the industrial sector today. They are not discretized into poly mesh or point 

clouds until much later in the making procedure [8], unless it is absolutely essential. To our 

knowledge, this is the first step towards developing a generative rendition of CAD designs that has 

been taken. There is a challenge brought about by the sequential and customizable nature of CAD 

designs [12]. A CAD model is constructed by a series of geometric operations that each are controlled 

by parameters. Some examples of these operations include curve sketching, extrusion, filleting, 

Boolean operations, and chamfering. 

 Many of the parameters may take on continuous or discrete values, depending on the choice you 

make, while others only give discrete ones. These anomalies are a direct result of the user's building 

of 3D forms, and they provide a striking contrast from the discrete three-dimensional illustrations 

(voxels, points, clouds, and meshes) that are used in the currently available generative models [6]. As 

a direct consequence of this, 3D generative models that have been created in the past are not 

appropriate for use in the production of CAD models. Technology-related contributions that were 

made. In order to address these concerns, we are seeking for an interpretation that may rectify the 

irregularities that are present in the CAD model [7]. We take the CAD operations (or commands) that 

are performed the most often and organise them into a standardised framework that contains the 

command types, parameters, and order in which they are carried out. After that, we offer an 

autoencoder that is based on the Connector network [10]. This autoencoder makes comparisons 

between the command sequences used in CAD software and spoken languages. After integrating 

CAD drawings in a latent space, it performs a decoding operation on a latent vector to produce a 

CAD command sequence. In order to train our autoencoder, we not only produce a new dataset of 

CAD command sequences, but this new dataset is orders of magnitude bigger than any dataset of the 

same sort that has previously been created [11]. This dataset is also being made accessible to the 

public in the hopes of fostering further research around learning-based CAD designs. 

Parametric digital design (CAD), which is the most prevalent kind of 3D modelling paradigm, is used 

to create a wide variety of produced items, ranging from automobile components and electrical 

equipment to furniture and other home goods. This methodology is supported by all of the main solid 

modelling kernels, and it is a standard feature of all parametric CAD programmes. The production of 

engineering sketches may be useful in a number of different CAD processes. For instance, having the 

ability to automatically reverse engineer a dynamic CAD model form noisy 3D scan data has been a 

desire for a very long time [1]. Input from users may also be automatically completed with 

engineering sketch generation, which is another option. The capability to infer recurring instructions 

based on visual or physical input might significantly minimise the amount of work that is required of 

the user when designing complicated engineering designs. 

2. Related work 

Recent developments in deep learning have made it feasible to build models for neural networks that 

can assess geometric data as well as infer parametric forms. Using ParSeNet, a three-dimensional 

point cloud may be broken down into a number of different parametric surface patches. In order to 

derive parametric boundary curves, PIE-NET makes use of 3D point clouds. Both UV-Net and 

BrepNet are primarily concerned with the encoding of a parametric model's boundary curves and 

surfaces. We trained a neural network using artificial data to convert user doodling in two dimensions 



 

 
 

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 3, May-June 2023 

 Available at www.ijsred.com 

ISSN : 2581-7175                                           ©IJSRED:All Rights are Reserved Page 90 

 

Embedding 

Average 

pooling 
Encoder E 

Decoder D Linear z 

into computer-aided design (CAD) procedures. A neural-guided search was recently utilised to infer 

CAD modelling series from parametric solid objects.  

Over the last several years, there has been a significant uptick in the number of studies that 

investigate deep computational models for 3D forms. The majority of the currently available 

methods, including voxelized shapes, point clouds, polygon meshes, and indirect signed distance 

fields [12], build three-dimensional objects in discrete forms. The user is unable to directly alter the 

produced forms, and the shapes may include noise. Furthermore, the created shapes lack exact 

geometric properties. As a consequence of this, newer study has focused on developing neural 

network models with the goal of constructing a three-dimensional shape by performing a series of 

geometric operations. UCSG-Net moves the inference ahead without the assistance of ground truth 

CSG trees, whereas CSGNet infers a series of Constructive Solid Geometry (CSG) processes using 

voxelized shape input. Using a variational autoencoder, Shape Assembly, a domain-specific language 

that builds 3D structures by hierarchically and symmetrically assembling cuboid proxies, may 

produce the structure. 

 In the preceding study, the use of Bézier curves was often seen. Primitives such as lines, arcs, and 

circles are preferred in engineering drawings rather than NURBS surfaces. Layout as well as 

technical drawings Layouts are two-dimensional representations of multidimensional computer-aided 

design (CAD) models, while technical drawing are two-dimensional projections of CAD models, with 

important information indicated by dimensions, annotations, or section views.  

The dataset was created especially for use in games that need some level of spatial reasoning. Their 

method allows designers to make freehand drawings that have the same appearance as engineering 

sketches, which are employed in the process of creating a 3D model. They begin by estimating the 

characteristics of edges and Bézier curves via a network that is based on transforms, and then they 

enhance those values through optimisation. On the other hand, the primary focus of our technological 

solutions is the generation of new sketch geometries that are compatible with 3D CAD modelling 

processes.. 

3. Generative Models 

We build and analyse two different neural networks for engineering sketch generation: Curve Gen and 

TurtleGen. 

 CurveGen 

CurveGen is an engineering sketch generating application of the PolyGen architecture. CurveGen 

automatically generates the sketch hypergraph representation. We separate the creation of G into two 

parts based on the chain rule, as we did with the original PolyGen implementation: 1) create the 

sketch vertices V, and 2) create the sketch hy peredges E based on the vertices. 
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Figure 1. The structure of our network. 

Before being input into the encoder E, the input CAD model, which is in the form of a command 

sequence, is projected onto an embedding space, which ultimately produces a latent vector denoted 

by the letter z. The learnt constant embeddings, in addition to the latent vector z, are both sent as 

input to the decoder D. After that, the command sequence that was projected is outputThe notation 

p(.) refers to several probability distributions. The two-step generation process is shown in Figure 1, 

where it starts with the vertex model (located on the left) and concludes with the curve model (located 

on the right). When dealing with 2D vertex coordinates, we make direct use of the PolyGen vertex 

model. When training the vertex and curve models on the ground truth data, negative log likelihood 

loss is used as the primary loss measure. 

 TurtleGen 

An artificial neural network that creates a series of instructions using the Turtle format is called a 

sequence generator. We generate a random turtle sequence for each supplied sketch according to the 

hypergraph format by choosing at random the loop order, loop starting vertex, & loop drawing 

direction. This is referred to as randomising the construction of the turtle sequence. Long sequences 

consisting of more than 100 directions for the turtle are thrown out. The network is made up of seven 

input-output linear branches, each of which has its own matching command and coordinates. In 

instructions with a number that is fewer than three, zeros are used. The output branches are related to 

the Amplifier encoding during the phase of the sequence that came before it. After that, the sketch 

hypergraph representation, together with the geometry and topology, is reconstructed for every 

sequence that was sampled. 

4. Network-friendly Representation 

The CAD model M specification that we have available is written in plain language. The sentences in 

the language are built up from the individual CAD instructions that are stated consecutively. The 

sketch profile acts as the subject of a sentence, while the extrusion performs the function of the 

predicate. This analogy hints that we may be able to accomplish our objective by using network 

architectures that have proven effective in natural language processing, such as the Transformer 

network. On the other hand, computer-aided design (CAD) instructions are not the same as regular 

language in a number of respects. The amount of arguments that are required by each command is 

different. In some instructions, such as the extrusion command, the parameters take on a mix of 

continuous and discrete values, and the parameter values might cover a variety of different ranges. 

Because of these properties, the instruction sequences are not appropriate for use in neural networks. 

In order to find a solution to this issue, the dimensions of command sequences have been regularised. 

To begin, the parameters of each command are concatenated into a 161 vector.  

5. Autoencoder for CAD Models 

A self-encoding network that makes use of our CAD input representation will be the topic of our next 

discussion. Once the network has been trained, the decoder component of the network will, of its own 

accord, function as a CAD generative model. The effectiveness of the Transformer network in 

handling sequential data served as the impetus for the development of our autoencoder, which is 

based on that network. The input that our autoencoder accepts is a CAD command sequence that goes 

as follows: M = [C1, , CNC], where NC is a constant number. First, an individual projection of each 

command Ci is made onto a continuous embedding space with a dimension of dE equal to 243. 

 Encoder. 
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Each of the encoder E's four layers of Transformer blocks has eight attention heads and a feed-

forward dimension of five hundred. The embedding sequence is taken as an input by the encoder, 

which then generates vectors with the same dimension (dE = 256) as the input. The next step is to 

take the average of the output vectors in order to get a single dE-dimensional latent vector z.. 

 Decoder. 

The hyper-parameter settings of our decoder D, which is similarly constructed out of Transformer 

blocks, are identical to those of the encoder. As input, it makes use of previously learned constant 

embeddings while also taking into consideration the latent vector z; a structure for input very similar 

to this one was applied. The output of the very last Transformer block is sent into a linear layer, 

which then makes a prediction about the CAD command sequence M = [C1, , CNC]. This sequence 

comprises both the command type ti and the command parameters pi for each command. In place of 

the autoregressive approach, which is more often utilised in natural language processing, we make 

use of the feed-forward technique. 

6. Results 

Comparing the CurveGen and TurtleGen generating models to the SketchGraphs generative model 

allows us to present quantitative and qualitative conclusions on the task of engineering sketch 

production. 

 Quantitative Results 

We carried out a perceptual assessment with the help of human volunteers in order to find out how 

the deep engineering drawings produced by each model compare to the designs that were made by 

humans. The question "Which sketch is more realistic?" is posed to each participant as they are 

shown with a human-designed and a computer-generated deep engineering sketch, respectively. in 

our experiment with a forced decision between two options. The negative log-likelihood over the test 

set is calculated as bits per sketch. Over 1000 created sketches, Unique, Valid, and Novel are 

calculated. 

Table 1. The findings of quantitative sketch generation. 

Model Bits per sketch Unique % Valid % Novel % 

Curve Gen 31.09 98 82 92 

Turtle Gen 55.06 85 44 84 

Sketch Graphs 98.87 77 67 73 

Sketch Graphs 

(Duplicate) 

95.06 61 72 50 

In addition to some brief directions, this document provides an example of a detailed engineering 

drawing set inside its context. The results of the production of quantitative sketches are shown in 

table 1 above. Bits per Sketch is the name given to the negative log-likelihood calculated across the 

whole of the test set. The words "unique," "valid," and "novel" are computed based on the over one 

thousand different drawings that were made. 
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The findings of our perceptual investigation with human volunteers, shown here in Figure 2, which 

aimed to establish which engineering drawing was the most realistic. Right: the proportion of 

drawings that were produced that were judged to have a higher level of realism than sketches that 

were done by humans.  

 Qualitative Results 

For example, Curve Gen is able to create drawings that include complete loops, symmetrical features, 

perpendicular lines, and parallel lines on a consistent basis; here, we demonstrate other qualitative 

outcomes. CAD Models, Beginning with Sketch and Ending with Solid The goal of this work is to 

make it possible to create solid CAD models with a combination of synthesis and composition. 

 

 

 

Figure 3. The restoration of a CAD model from point clouds. input point clouds (top). CAD 

models that have been recreated (bottom) 

picture 3 demonstrates how engineering drawings made in CurveGen with closed loop profiles may 

be lifted procedurally into 3D utilising the extrude modelling method. This is seen in the picture 

above. Diagram of the Constraints Post-processing of the geometric output of our generative network 

models allows for the application of sketch constraints and the creation of a constraint graph. 

7. Conclusion and Discussion 

Our method for developing the CAD generative model has a number of shortcomings that need to be 

addressed. So far, we have examined the three most popular kinds of curve instructions, which are a 

line, an arc, and a circle; however, it is simple to add more curve commands. For example, the 

definition of a cubic Bézier curve may be created by using three control points in addition to the 

beginning point that is determined by the finishing position of the preceding curve. The same 

structure may also be used to these other variables. It is possible to express other processes, such as 

spinning a drawing, in the same manner that the extrusion instruction is represented. Certain CAD 

procedures, such as fillet, act on regions of the form boundary. Because of this, a reference to the 

model's B-rep is required in addition to any other instructions that may be given. The incorporation of 

such commands into the generative model will be left as an exercise for further research. There is no 

guarantee that any given sequence of CAD commands will produce a topologically valid form. 

Because of this, the output CAD sequences from our generative network cannot be guaranteed to be 

topologically sound. In actual use, the CAD command sequence that was developed almost never 

fails. The longer the command sequence is, the higher the probability that something will go wrong.  
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