RESEARCH ARTICLE

OPEN ACCESS

The Impact of the Russia-Ukraine War: A Comparative Study of 10 Global Indices

Saumya Banerjee, Smikel Philip Tom, Dr. Rajkumar S Xavier Institute of Management and Entrepreneurship, Bangalore, India

ABSTRACT

This paper aims to study the reactions of 10 global indices to the ongoing war between Russia and Ukraine. We have used daily stock market returns as a sample which covers the period from 24th June 2021 to 31stOct 2022. We used an event study model to detect the impact of war on the selected global indices.

Keywords: global indices, stock market, war, Russia, Ukraine, Event study.

Objectives:

- 1. To understand the effect of the Russia Ukraine war on global market performance
- 2. Identify the most affected indices.
- 3. To identify the percentage of impact on each index.
- 4. To find out the reason for the major impact on global indices.

Findings:

A noticeable negative shift in stock market performance is visible from the findings reported herein. The Russian and Ukraine stock markets are the ones which took the most hitswhich is a given considering their present involvement in the ongoing war. Compared to the Asian stock markets, the European stock markets have endured more pressure presumably from their proximity to Russia and Ukraine as well as their dependency on both these nations for various commodities.

INTRODUCTION

ISSN: 2581-7175

Russia invaded Ukraine on 24th February 2022, making it the latest chapter to unfold in the Russia-Ukraine War that started as early as 2014. This event marked the biggest refugee crisis that Europe has witnessed since World War II, as the number of Ukrainians fleeing the country reached north of 6.3 million as well as a third of the whole population displaced. Since Russia and Ukraine are 2 of the largest exporters of food products in the world, the war also led to food shortages on a global scale.

In 2014, Russia annexed and attacked Crimea which sparked a regional war between the two countries. With the support of Russia, separatists were able to seize power in a portion of the Donbas region in southeast Ukraine. This region consists of the Luhansk and Donetsk oblasts. In 2021, Russia mobilized nearly 190,000 soldiers and sufficient equipment to establish a major military presence along its border with Ukraine. In a televised speech moments before the invasion, Russian President Vladimir Putin challenged Ukraine's right to statehood and blamedthat the Ukrainian government is being run by "neo-Nazis" who were mistreating

Available at www.ijsred.com

the ethnic Russian minority. He expressed extreme irredentist views towards the entire situation in his speech. On February 21, 2022, Russia recognized the self-proclaimed breakaway quasi-states of Donbas, the Donetsk People's Republic and the Luhansk People's Republic, and the next day, use of force was approved by the Russian Federation Council. The Russian troops quickly followed suit. On February 24, Vladimir Putin announced a "special military operation" to "demilitarize and denazify" Ukraine, officially launching the invasion.

The stock market is a tool that can be used to analyze the performance of the economy. In this context of war, it can be used as an indicator to show the performance of various indices during these turbulent times. A sharp decline of an index after news of the war breaking out indicates a dent in investors' confidence about further repercussions and the uncertainties thereof. A war between two countries, one of which is a superpower, can lead to a lot of instability in the economy. The disruption caused in the normal lives of the citizens and the sanctions which may be imposed against and or by even one of these countries can cause a huge dent in the overall global economy. This is particularly true considering that Ukraine is one of the most gifted countries in terms of natural resource abundance as well as being a major player in the export of agricultural and industrial products.

The objective of this paper is to evaluate stock prices to find an indication of the effect of the disturbances between Russia and Ukraine. Tools like correlation and regression analysis will be used to analyze the relationship between the War and various global stock indices. These tools would provide the relationship between the event and the stock marketsand will additionally define the degree of relationship between these two. Models such as the "traditional valuation model" suggest that stock prices usually reflect expectations about the future of the economy and can therefore be used to predict the economy.

During the course of this paper, we will attempt to answer the following questions. First, is there an effect of the Russia-Ukraine war on the global stock market performance? If yes, to what extenthas each index been affected in percentage? We will calculate this by collecting data from 10 different indices from around the globe and comparing the market performance 5 months before the commencement of the war and 5 months afterward. Second, which are the most affected indices out of these 10, and what are the reasons for this impact? Third, what are the future implications of the current events?

LITERATURE REVIEW

ISSN: 2581-7175

The study titled "The impact of the Ukraine-Russia war on world stock market returns" investigates the reactions of global stock market indices to the conflict between Ukraine and Russia. The researchers found a negative correlation between the conflict and global stock market returns by analyzing daily stock market returns from a sample of 94 countries from January 22 to March 24, 2022. The impact on the European stock market illustrates how the situation in Russia and Ukraine has affected European stock markets. The European stock markets, which have strong trading ties with the Russian economy, generally responded poorly to this crisis due to the increase in political uncertainty, proximity to Russia, and the effects of new sanctions. It was also noted that European stocks experienced a significant negative abnormal return on February 21, 2022, the day that Russia recognized two governments in Ukraine as

Available at www.ijsred.com

autonomous regions. The negative stock price reactions also continued in the following days. The severity of the stock market responses to this crisis varied significantly between industries, countries, and firm sizes.

Hoffmann, Manuel, and Neuenkirch (2014) conducted a similar study to investigate the impact of the pro-Russian conflict on stock returns in Russia and Ukraine from November 21, 2013, to September 29, 2014. They used conflict-related news on the internet as an indicator for the level of de-escalation and found that the conflict was worsening and reducing stock returns in Russia and Ukraine. The pro-Russian conflict in Ukraine was found to account for a total variation of 6.5 percentage points in the Russian and Ukrainian stock markets.

Another research by Jonathan Federle, Gernot Müller, André Meier, and Victor Sehn in 2022 studiesthe response of stock markets to the Russian invasion of Ukraine and analyzes the economic spillovers that a country is exposed to during times of war are significantly influenced by how close it is to the area of conflict. This research paper demonstrates that the stock market's behavior around the beginning of the war exhibits a considerable sensitivity to changes in perceived disaster risk by focusing on the particular situation of the conflict in Ukraine. In this case, geography turns out to be important. During the first few weeks of the war, markets in nearby nations saw a significant proximity penalty in the form of steeply negative returns. Comparatively, distant nations performed significantly better. Trade linkages, which, on average, tend to be closer among countries, can be blamed for roughly half to two-thirds of this effect. The remaining amount most likely reflects risks of military spillover. In fact, neighbors of Ukraine generally saw a greater rise in independent geopolitical risk measures, increased their military aid to Ukraine, saw domestic defense companies significantly outperform the general stock market, and experienced higher perceptions of disaster risk as reflected in currency options. Also, location affects how war affects the economy. These spillovers will undoubtedly have an impact on geopolitics and could even change how the war plays out.

Generally, reactions of stock markets to international crises have been mostly negative, with one notable exception being the reaction to conflict in the Gulf on Wall Street. This suggests that all international crises do not have the same impact on stock markets, even in a highly interconnected global economy. These differences may reflect the markets' varying sensitivity to the same political event. According to Schneider and Troeger (2006), conflictive events have a stronger influence on stock market volatility compared to cooperative events. The reaction of stock markets to international crises depends largely on the severity of an anticipated or actual international event and the collective expectation that the event will occur. This is demonstrated in the study by Krishnan and Dagar (2022), which found that although the US-China trade war affected the proportion of Chinese exports to the US (due to higher tariff rates), stock volume traded was positive. This positive relationship between exchange rate and volume traded suggests that investors and companies were able to mitigate risk by trading in the stock market, particularly during the COVID-19 pandemic. In contrast, the trade war caused significant changes in international trade in goods and services, resulting in increased trading in the Indian market and high

Available at www.ijsred.com

volatility due to the impact on exchange rates. Trading in both the US and China increased significantly during both the trade war and the pandemic, but the markets were also highly volatile. Similar research by Shi, Wang, and Ke (2021) identified a spillover pattern where breakpoints occurred in the Chinese stock market after the official start of the trade war. On the other hand, a study by Fernandez (2007) specifically focused on conflicts in the Middle East found that structural breakpoints in volatility mainly occurred in the Middle Eastern and emerging Asian stock markets, while the rest of the world experienced volatility clustering as a result of the political instability in the Middle East, known as a Transitory Volatility Increase.

METHODS OF RESEARCH

To execute an event study properly, the event must be defined properly first along with event timeline, and the event window. We used February 24, 2022, as the event date of the Russian-Ukraine war because it has never been formally declared. The event window consists of a total of 10 months (24th June 2021 to 31stOct 2022), which are divided into two time periods which include the pre-war period and the post war period. We have used the closing price of all these 10 indices on a daily basis for our analysis and will only consider trading days in our analysis. We have examined these stock indices - SENSEX, CSI 300, DAX, FTSE 100, MOEX, NASDAQ Composite, PFTS, S&P 500, CAC 40, and NIKKEI 25.

Tools to be used to analyze the relationship between the selected 10 global indices and the Russia-Ukraine war are:

- ADF Test
- Johansen System Cointegration Test
- Correlation and Covariance
- Descriptive Statistics

SENSEX

Null Hypothesis: D(SENSEX_PRE_WAR) has a unit root Exogenous: Constant Lag Length: 12 (Automatic - based on AIC, maxlag=13)

1% level 5% level

10% level

Null Hypothesis: D(SENSEX_POST_WAR) has a unit root Exogenous: Constant Lag Length: 7 (Automatic - based on AIC, maxlag=13)

Prob.*

0.0000

_			t-Statistic	Prob.*
-	Augmented Dickey-Fuller to		-7.555111	0.0000
	Test critical values:	1% level	-3.471719	
		5% level	-2.879610	
=		10% level	-2.576484	

Augmented Dickey-Fuller test statistic
Test critical values: 1%

*MacKinnon (1996) one-sided p-values

CSI 300

Augmented Dickey-Fuller Test Eq Null Hypothesis: D(CSI_300_PRE_WAR) has a unit root Exogenous: Constant Method: Least Squares Lag Length: 13 (Automatic - based on AIC, maxlag=13) Date: 12/12/22 Time: 15:29 Sample (adjusted): 15 167 t-Statistic Included observations: 153 after a Augmented Dickey-Fuller test statistic
Test critical values: 1% -6.604148 -3.475500 Variable 1% level -2.881260 D(SENSEX_PRE_WAR(-1)) 10% level -2 577365

D(SENSEX_PRE_WAR(-1),2) D(SENSEX_PRE_WAR(-2),2) D(SENSEX_PRE_WAR(-3),2) D(SENSEX_PRE_WAR(-4),2) D(SENSEX_PRE_WAR(-5),2) D(SENSEX_PRE_WAR(-6),2) D(SENSEX_PRE_WAR(-7),2) D(SENSEX_PRE_WAR(-8),2) D(SENSEX_PRE_WAR(-9),2) D(SENSEX_PRE_WAR(-10),2)

D(SENSEX_PRE_WAR(-11),2)

D(SENSEX_PRE_WAR(-12),2)

R-squared Adjusted R-squared

S.É. of regression

Sum squared resid Log likelihood

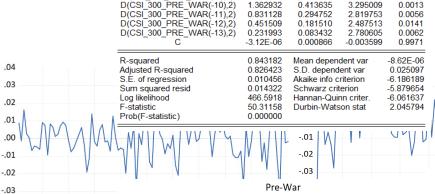
F-statistic Prob(F-statistic)

-.04

10 20 30

ISSN: 2581-7175

*MacKinnon (1996) one-sided p-values


Augmented Dickey-Fuller Test Equation
Dependent Variable: D(CSI_300_PRE_WAR,2) Method: Least Squares Date: 12/12/22 Time: 15:33 Sample (adjusted): 16 161

Included observations: 146 after adjustments

-6.464646

-2 880336 -2.576871 0.0000

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(CSI 300 PRE WAR(-1))	-9.578941	1.450443	-6.604148	0.0000
D(CSI 300 PRE WAR(-1),2)	7.666849	1.413429	5.424291	0.0000
D(CSI 300 PRE WAR(-2),2)	6.791944	1.346307	5.044871	0.0000
D(CSI 300 PRE WAR(-3),2)	5.965304	1.258920	4.738429	0.0000
D(CSI_300_PRE_WAR(-4),2)	5.199880	1.159518	4.484519	0.0000
D(CSI 300 PRE WAR(-5),2)	4.395287	1.046772	4.198898	0.0000
D(CSI_300_PRE_WAR(-6),2)	3.659433	0.925984	3.951941	0.0001
D(CSI_300_PRE_WAR(-7),2)	3.015862	0.795766	3.789886	0.0002
D(CSI 300 PRE WAR(-8),2)	2.405060	0.663841	3.622948	0.0004
D(CSI_300_PRE_WAR(-9),2)	1.806320	0.536174	3.368909	0.0010
D(CSI 300 PRE WAR(-10),2)	1.362932	0.413635	3.295009	0.0013
D(CSI_300_PRE_WAR(-11),2)	0.831128	0.294752	2.819753	0.0056
D(CSI_300_PRE_WAR(-12),2)	0.451509	0.181510	2.487513	0.0141
D(CSL 300 PRE WAR(-13) 2)	0.231993	0.083432	2 780605	0.0062

Null Hypothesis: D(CSI 300 POST WAR) has a unit root uat Exogenous: Constant PO Lag Length: 8 (Automatic - based on AIC, maxlag=13)

		t-Statistic	Prob.*
Augmented Dickey-Fuller	-8.125457	0.0000	
Test critical values:	1% level	-3.472534	
ŧ	5% level	-2.879966	
	10% level	-2.576674	

2.

-4.6

dju:

206

Augmented Dickey-Fuller Test Equation 0. Dependent Variable: D(CSI_300_POST_WAR,2)

Method: Least Squares

0.(Date: 12/12/22 Time: 15:34 0.(Sample (adjusted): 11 166

10

20

30

40

Included observations: 156 after adjustments

0.1	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	D(CSI_300_POST_WAR(-1)) D(CSI_300_POST_WAR(-1),2) D(CSI_300_POST_WAR(-2),2) D(CSI_300_POST_WAR(-3),2) D(CSI_300_POST_WAR(-4),2) D(CSI_300_POST_WAR(-5),2) D(CSI_300_POST_WAR(-6),2) D(CSI_300_POST_WAR(-7),2) D(CSI_300_POST_WAR(-7),2) D(CSI_300_POST_WAR(-8),2) C	-6.884221 4.912156 3.938519 2.996177 2.149250 1.464760 0.900590 0.460657 0.175009 9.24E-05	0.847241 0.804354 0.729332 0.632556 0.520690 0.399902 0.282074 0.174331 0.080706 0.001129	-8.125457 6.106959 5.400171 4.736618 4.127699 3.662802 3.192739 2.642433 2.168486 0.081781	0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0017 0.0091 0.0317 0.9349
	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.830430 0.819977 0.014100 0.029025 448.6223	Mean depend S.D. depend Akaike info c Schwarz crit Hannan-Quir	ent var riterion erion	2.95E-05 0.033231 -5.623362 -5.427859 -5.543957

D(CSI_300_POST_WAR(-8),2) C	0.175009 9.24E-05	0.080706 2.168486 0.001129 0.081781	0.0317 0.9349
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.830430 0.819977 0.014100 0.029025 448.6223 79.44455 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat	2.95E-05 0.033231 -5.623362 -5.427855 -5.543957 1.988974
//	V		

Post .06 .04 .02 .00 -.02 -.04 -.06

60

70

80

90

^{*}MacKinnon (1996) one-sided p-values

Available at www.ijsred.com

MOEX

Null Hypothesis: D(MOEX_POST_WAR) has a unit root Null Hypothesis: D(MOEX_PRE_WAR) has a unit root Exogenous: Constant Exogenous: Constant Lag Length: 8 (Automatic - based on AIC, maxlag=13) Lag Length: 4 (Automatic - based on AIC, maxlag=13) t-Statistic Prob.* t-Statistic Prob.* Augmented Dickey-Fuller test statistic 0.0000 Augmented Dickey-Fuller test statistic 0.0000 -11.80982 1% level Test critical values -3.4701795% level -2 881400 5% level -2.878937 10% level -2 577439 -2.576124 'Null Hypothesis: D(NASDAQ POST WAR) has a unit root Null Hypothesis: D(NASDAQ_PRE_WAR) has a unit root Exogenous: Constant *MacKinnon (1996) one-sided p Exogenous: Constant Lag Length: 9 (Automatic - based on AIC, maxlag=13) Lag Length: 10 (Automatic - based on AIC, maxlag=13) t-Statistic Prob * t-Statistic Prob.3 Augmented Dickey-Fuller Test Dependent Variable: D(MOEX Augmented Dickey-Fuller test statistic 0.0000 Augmented Dickey-Fuller test statistic -6.960818 0.0000 Method: Least Squares Test critical values: 1% level -3 472534 Date: 12/12/22 Time: 15:45 5% level -2.879966 5% level -2.879267 Sample (adjusted): 7 171 10% level -2.576674 10% level -2 576301 Included observations: 165 afte *MacKinnon (1996) one-sided p-values *MacKinnon (1996) one-sided p-values Augmented Dickey-Fuller Test Equation Augmented Dickey-Fuller Test Equation D(MOEX PRE WAR(-1)) Dependent Variable: D(NASDAQ_PRE_WAR,2) Dependent Variable: D(NASDAQ_POST_WAR,2) D(MOEX_PRE_WAR(-1),2) Method: Least Squares Method: Least Squares D(MOEX_PRE_WAR(-2),2) Date: 12/12/22 Time: 15:48 Date: 12/12/22 Time: 15:49 Sample (adjusted): 13 168 Included observations: 156 after adjustments D(MOEX PRE WAR(-3),2) Sample (adjusted): 12 173 Included observations: 162 after adjustments D(MOEX PRE WAR(-4),2) Variable Coefficient Std. Error t-Statistic Prob Std. Error t-Statistic Variable Coefficient Prob. R-squared D(NASDAQ PRE WAR(-1)) -7.137787 1.025424 -6.960818 0.0000 D(NASDAQ_POST_WAR(-1)) D(NASDAQ_POST_WAR(-1),2) -6.771918 0.892225 -7.589921 0.0000 Adjusted R-squared D(NASDAQ_PRE_WAR(-1),2) 5.234644 0.984157 5.318911 0.0000 0.0000 4 844648 0.855271 5 664457 S.E. of regression D(NASDAQ PRE WAR(-2),2) 4 436056 0.918320 4.830620 0.0000 D(NASDAQ_POST_WAR(-2),2) D(NASDAQ_POST_WAR(-3),2) 0.0000 3.979233 0.787283 5.054386 D(NASDAQ PRE WAR(-3),2) 3.729278 0.837800 4.451275 0.0000 Sum squared resid 3.168670 0.700519 4.523317 0.0000 D(NASDAQ_PRE_WAR(-4),2) 2.922818 0.749332 3.900565 0.0001 D(NASDAQ_POST_WAR(-4),2) 0.598914 4.125116 0.0001 Log likelihood 2.470589 D(NASDAQ_PRE_WAR(-5),2) 2.275073 0.640234 3.553505 0.0005 D(NASDAQ_POST_WAR(-5),2) 1.845754 0.491561 3.754885 0.0002 F-statistic D(NASDAQ_PRE_WAR(-6),2) D(NASDAQ_PRE_WAR(-7),2) 1 776704 0.518646 3 425656 0.0008 D(NASDAQ_POST_WAR(-6),2) D(NASDAQ_POST_WAR(-7),2) D(NASDAQ_POST_WAR(-8),2) 1 289144 0.381625 3 378035 0.0009 Prob(F-statistic) 1.419465 0.399580 3.552389 0.0005 0.0024 0.838027 0.271312 3.088798 D(NASDAQ_PRE_WAR(-8),2) 0.942067 0.297631 3.165222 0.0019 0.425054 0.169591 2.506348 0.0133 D(NASDAQ_PRE_WAR(-9),2) 0.500073 0.194787 2.567282 0.0113 D(NASDAQ_POST_WAR(-9),2) 0.210540 0.078847 0.0084 2.670227 D(NASDAQ_PRE_WAR(-10). 0.091762 1.427453 0.130986 0.1556 0.000232 0.001691 0.137270 0.8910 -0.000439 0.001033 -0 424319 0.6720 0.838007 3.97E-05 R-squared Mean dependent var R-squared 0.828819 Mean dependent var -4 82F-05 Adjusted R-squared 0.827279 0.051747 S.D. dependent var Adjusted R-squared 0.815742 0.030037 S.D. dependent var -4.775492 S.E. of regression 0.021506 Akaike info criterion S.É. of regression 0.012894 Akaike info criterion -5.790368 .04 Sum squared resid 0.069838 -4.565841 Schwarz criterion Sum squared resid 0.023939 Schwarz criterion -5.555763 -5.695082 Log likelihood 397.8149 Hannan-Quinn criter -4 690371 Log likelihood 463 6487 Hannan-Quinn criter .02 Durbin-Watson stat F-statistic 78.11375 Durbin-Watson stat 1.975362 63.38300 F-statistic 1.975369 Prob(F-statistic) 0.000000 Prob(F-statistic) 0.000000 .00 -.02 -.04 POST PRE-WAR -.06 .10 .03 -.08 .08 .02 -.10 .06 .01 -.12 10 20 30 40 .04 .00 .02 -.01 **NASDAQ** .00 -.02 -.02 -.03 -.04 -.04 -.06 -.05

10

20

30

40

50

60

60 70 80 90 100 110

40 50

10 20 30

ISSN: 2581-7175

70

80

90

100

Available at www.ijsred.com

DAX

Null Hypothesis: D(DAX_PRE_WAR) has a unit root

Exogenous: Constant

Null Hypothesis: D(DAX_POST_WAR) has a unit root

Exogenous: Constant

Exogenous: Constant Lag Length: 9 (Automatic - base	ed on AIC, maxlag=13)			gth: 7 (Autor		sed on AIC, maxlag=13)				
	t-Stat	tistic Prob.	*				t-Statistic	Prob.*		
5% I	tatistic -7.97; level -3.47; level -2.879; level -2.576	1192 9380		ted Dickey-fical values:		statistic 1% level 5% level 10% level	-8.433419 -3.469691 -2.878723 -2.576010	0.0000	S&P 500	
*MacKinnon (1996) one-sided p	Exogenous: Constant Lag Length: 10 (Automatic - I					Null Hypothesis: D(S_P_5 Exogenous: Constant Lag Length: 9 (Automatic				
Augmented Dickey-Fuller Test E Dependent Variable: D(DAX_PF				t-Statistic	Prob.*				t-Statistic	Prob.*
Method: Least Squares Date: 12/12/22 Time: 15:43 Sample (adjusted): 12 172 Included observations: 161 after	:	st statistic 1% level 5% level 10% level		-7.170965 -3.472534 -2.879966 -2.576674	0.0000	Augmented Dickey-Fuller Test critical values:	test statistic 1% le 5% le 10% le	vel	-7.238845 -3.470934 -2.879267 -2.576301	0.0000
	: *MacKinnon (1996) one-side	d p-values.				*MacKinnon (1996) one-si	ided p-values.			
D(DAX_PRE_WAR(-3) 3.6 D(DAX_PRE_WAR(-4) 2.8 D(DAX_PRE_WAR(-5) 2.1 D(DAX_PRE_WAR(-6) 1.5 D(DAX_PRE_WAR(-7) 1.0	Augmented Dickey-Fuller Te: Dependent Variable: D(S_P_ Method: Least Squares Date: 12/12/22 Time: 15:51 Sample (adjusted): 13 168 Included observations: 156 a	_500_PRE_WAR				Augmented Dickey-Fuller Dependent Variable: D(S_ Method: Least Squares Date: 12/12/22 Time: 15: Sample (adjusted): 12 173 Included observations: 16	.P_500_POS1 :51 3	Γ_WAR,2)		
D(DAX_PRE_WAR(-8) 0.6 D(DAX_PRE_WAR(-9) 0.2	Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coeffic	cient Std	d. Error t-Statistic	Prob.
C -0.0 R-squared 0.8 Adjusted R-squared 0.8 S.E. of regression 0.0 Sum squared resid 0.0 Log likelihood 513 F-statistic 74. Prob(F-statistic) 0.0	D(S P 500 PRE_WAR(-1) D(S P 500 PRE_WAR(-2) D(S P 500 PRE_WAR(-2) D(S P 500 PRE_WAR(-4) D(S P 500 PRE_WAR(-6) D(S P 500 PRE_WAR(-6) D(S P 500 PRE_WAR(-7)	2) 5.156005 2) 4.395551 2) 3.718043 2) 2.967943 2) 2.295915 2) 1.788156 2) 1.426622 2,2 0.529495	0.979848 0.940847 0.876861 0.799243 0.714052 0.609677 0.494047 0.383658 0.286651 0.188003 0.089299 0.000764	-7.170965 5.480172 5.012827 4.651953 4.156480 3.765790 3.619403 3.718471 2.335524 2.816412 2.201886 -0.471043	0.0000 0.0001 0.0002 0.0004 0.0003 0.0011 0.0055 0.0293	D(S P 500 POST WAR D(S P 500 POST WAR	R(-1 4.372 R(-2 3.551 R(-3 2.809 R(-4 2.186 R(-5 1.612 R(-6 1.115 R(-7 0.711 R(-8 0.358	2509 0.8 1895 0.7 9572 0.6 6248 0.5 2950 0.4 5804 0.3 1082 0.2 8666 0.1 6131 0.0	364656 -7.238845 329014 5.274347 763520 4.651998 579589 4.134222 582784 3.751389 480368 3.357736 375155 2.974246 268385 2.649487 167905 2.136131 078903 2.485727 001311 0.201184	0.0000 0.0000 0.0001 0.0003 0.0010 0.0034 0.0089 0.0343 0.0140
.04	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.820383 0.806662 0.009526 0.013067 510.8710 59.79142 0.000000	Mean deper S.D. depen Akaike info Schwarz cr Hannan-Qu Durbin-Wat	dent var criterion riterion iinn criter.	0.021665 -6.395782 -6.161178 -6.300496	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.826 0.816 0.016 0.04 439.0 72.16 0.000	5493 S.D 5674 Akai 1982 Sch 0398 Han 5935 Durl	an dependent var dependent var ike info criterion iwarz criterion inan-Quinn criter. bin-Watson stat	-1.29E-05 0.038818 -5.284442 -5.074790 -5.199320 1.965934
.01	1.1.1.1	PRE-V	.00 WAR		///////	<u> </u>	A ///	POST		
01 02 03 04 10 20 30 40	.03 .02 .01 .000102					.04 .03 .02 .01 .00 01 02 03 04	1			

90 100 110

20

ISSN: 2581-7175

10

20

30

40

50

90

100

Available at www.ijsred.com

NIKKEI 225

Null Hypothesis: D(NIKKEI_225_PRE_WAR) has a unit root Exogenous: Constant Lag Length: 10 (Automatic - based on AIC, maxlag=13)

Null Hypothesis: D(NIKKEI_225_POST_WAR) has a unit root Exogenous: Constant

Lag Length: 10 (Automatic - based on AIC, maxlag=13)

		t-Statistic	Prob.*			t-Statistic	Prob.*
Augmented Dickey-Fuller to Test critical values:	est statistic 1% level 5% level 10% level	-6.575020 -3.474265 -2.880722 -2.577077	0.0000	Augmented Dickey-Fuller tes Test critical values:	st statistic 1% level 5% level 10% level	-6.282174 -3.472534 -2.879966 -2.576674	0.0000

*MacKinnon (1996) one-sided p-values.

Included observations: 150 after adi

*MacKinnon (1996) one-sided p-values.

t-Statistic

Prob.*

ent == 23

31

72

Std Error

0.842037

0.812218

0.761252

PFTS

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(NIKKEL 225
Method: Least Squares
Date: 12/12/22 Time: 15:47
Sample (adjusted): 13 162

Augmented Dickey-Fuller Test Equation
has a unit root

'AR,2)

Ar,2)

Ar,2)

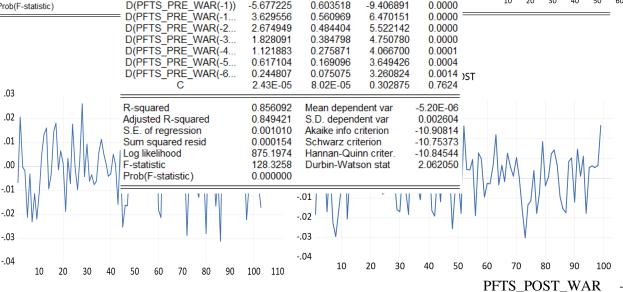
Variable	- Augmented Dickey-Fuller test statistic			-9.406891	0.0000		
D(NIKKEI 225 PRE_WAR(-1)) D(NIKKEI 225 PRE_WAR(-1),2) D(NIKKEI 225 PRE_WAR(-2),2) D(NIKKEI 225 PRE_WAR(-2),2)	Test critical values:		-3.471719 -2.879610 -2.576484	0			
D(NIKKEI_225_PRE_WAR(-4),2) D(NIKKEI_225_PRE_WAR(-5),2) D(NIKKEI_225_PRE_WAR(-6),2) D(NIKKEI_225_PRE_WAR(-7),2)	*MacKinnon (1996) one-sid	·					
D(NIKKEI 225_PRE_WAR(-8),2) D(NIKKEI 225_PRE_WAR(-9),2) D(NIKKEI 225_PRE_WAR(-10 C	Augmented Dickey-Fuller Test Equation Dependent Variable: D(PFTS_PRE_WAR,2) Method: Least Squares Date: 12/12/22 Time: 15:50						
R-squared Adjusted R-squared S.E. of regression	Sample (adjusted): 9 167 Included observations: 159 after adjustments						
Sum squared resid Log likelihood	Variable	Coefficient	Std. Error	t-Statistic	Prob.		
F-statistic Prob(F-statistic)	D(PFTS_PRE_WAR(-1))	-5.677225	0.603518	-9.406891	0.0000		

	.004											
	.002											
	.000 —			\neg \vdash						\/	1	Λ
	002							•		V		
	004											
	006											
=	008											
=	010	10	20	30	40	50	60	70	80	90	100	110
)							-					

Prob

0.0000

0.0000


0.0003 PRE-WAR

t-Statistic

-6.282174

4 255668

3.726325

available as all the values are equal to 0.

ISSN: 2581-7175

not

FTSE

Null Hypothesis: D(FTSE_PRE Exogenous: Constant Lag Length: 9 (Automatic - base			Exogenous:	Constan	ıt _	T_WAR) has a unit root ed on AIC, maxlag=13)					
	t-Statis	stic Prob.*					t-Statis	stic f	Prob.*		
5%	tatistic -7.605 6 level -3.471 6 level -2.879 % level -2.576	719 610	Augmented Test critical			statistic 1% level 5% level 10% level	-7.8968 -3.4709 -2.8792 -2.5768	934 267	.0000		
*MacKinnon (1996) one-sided p	Lag Length: 13 (Automatic - ba					Null Hypothesis: D(CAC Exogenous: Constant Lag Length: 7 (Automati		_		pot	
Augmented Dickey-Fuller Test I Dependent Variable: D(FTSE_F Method: Least Squares			t-S	Statistic	Prob.*					t-Statistic	Prob.*
Date: 12/12/22 Time: 15:54 Sample (adjusted): 12 170 Included observations: 159 after		1% level 5% level 10% level	-3.4 -2.8	140137 471719 879610 576484	0.0000	Augmented Dickey-Fulle Test critical values:	er test sta	atistic 1% leve 5% leve 10% leve		-8.005530 -3.469691 -2.878723 -2.576010	0.0000
D(FTSE_PRE_WAR(-1)) -7.	*MacKinnon (1996) one-sided	p-values.				*Mankingan (4000) and	-14-4			-2.570010	
D(FTSE_PRE_WAR(-1 5. D(FTSE_PRE_WAR(-2 4. D(FTSE_PRE_WAR(-3 3. D(FTSE_PRE_WAR(-4 2. D(FTSE_PRE_WAR(-5 2. D(FTSE_PRE_WAR(-6 1. D(FTSE_PRE_WAR(-7 0. D(FTSE_PRE_WAR(-8 0.	Augmented Dickey-Fuller Test Dependent Variable: D(CAC_4 Method: Least Squares Date: 12/12/22 Time: 15:53 Sample (adjusted): 16 174 Included observations: 159 after	0_PRE_WAR,2		-Statistic	Prob.	*MacKinnon (1996) one Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 12/12/22 Time: 1 Sample (adjusted): 10 1 Included observations: 1	er Test E CAC_40_ 5:53 76	quation _POST_V			
D(FTSE_PRE_WAR(-9 0. C -9.	D(CAC_40_PRE_WAR(-1)) D(CAC_40_PRE_WAR(-1).2)	-9.448278 7.511670		6.140137 4.984587	0.0000 0.0000		TOT UITOT	Coefficie		ror t-Statistic	Prob.
	D(CAC_40_PRE_WAR(-2),2) D(CAC_40_PRE_WAR(-3),2) D(CAC_40_PRE_WAR(-4),2) D(CAC_40_PRE_WAR(-5),2) D(CAC_40_PRE_WAR(-6),2) D(CAC_40_PRE_WAR(-7),2) D(CAC_40_PRE_WAR(-8),2)	6.557381 5.557394 4.716480 3.903138 3.221625 2.532102 1.996267 1.473603 1.053419 0.798587 0.510630	1.450937 1.371228 1.264468 1.142909 1.009863 0.867334 0.722854 0.576860 0.434930 0.297537 0.180782 0.083382	4.519411 4.052859 3.730011 3.415092 3.190160 2.919409 2.761644 2.554522 2.422039 2.683997 2.824560 2.697008 0.191155	0.0000 0.0001 0.0003 0.0008 0.0017 0.0041	D(CAC_40_POST_WAD(CAC_40_POST_POST_WAD(CAC_40_POST_POST_POST_POST_POST_POST_POST_POST	R(-1),2) R(-2),2) R(-3),2) R(-4),2) R(-5),2) R(-6),2)	-4.8804 3.0171 2.3148 1.6740 1.1419 0.8011 0.4065 0.0880 0.0004	97 0.6096 19 0.5673 65 0.5030 53 0.4272 79 0.3388 26 0.2461 91 0.1556 72 0.0730	541 -8.005530 5317581 508 4.602042 549 3.91821 565 3.370013 563 3.254457 543 2.612323 520 1.206131	0.0000 0.0000 0.0000 0.0001 0.0009 0.0014 0.0099 0.2296
.02	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.842009 0.826649 0.010753 0.016651 502.9418 54.81763 0.000000	Mean dependen S.D. dependent Akaike info crite Schwarz criteric Hannan-Quinn o Durbin-Watson	nt var t var erion on criter.	5.65E-05	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)		0.8214 0.8124 0.0150 0.0356 468.69 90.874 0.0000	28 S.D. de 29 Akaike i 87 Schwar 21 Hannan 21 Durbin-	ependent var pendent var nfo criterion z criterion -Quinn criter. Watson stat	-9.29E-05 0.034701 -5.505294 -5.337259 -5.437092 1.951380
01	O HAN MA ZANIANI	N N MA	01	NhV	MM	1/	1 ////		1		
02		PRE-W	AR			00		PC	OST		
04 04 10 20 30 4	.03 .02 0 .01 .00		M	M	M	.08	. Λ . Λ	A 1	M	AA	Λ. Μ
ISSN : 2581-7175	03		Y	V		.00	\bigvee	<u> </u>			$\int V V V$

-.06 90 100 110

10

20

30

70

80

90

100

-.05

Cointegration test Pre-War

Included observations: 150 after adjustments Trend assumption: Linear deterministic trend

Series: CAC 40 CSI 300 DAX FTSE 100 MOEX NASDAQ NIKKEI 225 PFTS S P500 SENSEX

Lags interval (in first differences): 1 to 10

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**	
None * At most 1 * At most 2 * At most 3 * At most 4 At most 5	0.485208 0.385609 0.294021 0.206337 0.172245 0.138335	354.0434 254.4445 181.3759 129.1505 94.48609 66.13041	239.2354 197.3709 159.5297 125.6154 95.75366 69.81889	0.0000 0.0000 0.0019 0.0299 0.0610 0.0950	_
At most 6 At most 7 At most 8 At most 9 *	0.102747 0.089109 0.054958 0.033144	43.79718 27.53450 13.53472 5.055882	47.85613 29.79707 15.49471 3.841465	0.1143 0.0892 0.0966 0.0245	

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None *	0.485208	99.59887	64.50472	0.0000
At most 1 *	0.385609	73.06862	58.43354	0.0011
At most 2	0.294021	52.22542	52.36261	0.0516
At most 3	0.206337	34.66439	46.23142	0.4814
At most 4	0.172245	28.35568	40.07757	0.5366
At most 5	0.138335	22.33322	33.87687	0.5818
At most 6	0.102747	16.26268	27.58434	0.6434
At most 7	0.089109	13.99979	21.13162	0.3650
At most 8	0.054958	8.478835	14.26460	0.3321
At most 9 *	0.033144	5.055882	3.841465	0.0245

Cointegration test Post-War

Included observations: 145 after adjustments

Trend assumption: No deterministic trend
Series: CAC_40 CSI_300 DAX FTSE_100 MOEX NASDAQ NIKKEI_225 S_P500 SENSEX
Lags interval (in first differences): 1 to 9

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None *	0.573251	355.8523	179.5098	0.0000
At most 1 *	0.406496	232.3763	143.6691	0.0000
At most 2 *	0.288374	156.7282	111.7805	0.0000
At most 3 *	0.223843	107.3988	83.93712	0.0004
At most 4 *	0.193276	70.65579	60.06141	0.0049
At most 5	0.100028	39.51357	40.17493	0.0582
At most 6	0.075378	24.23171	24.27596	0.0506
At most 7 *	0.055610	12.86800	12.32090	0.0404
At most 8 *	0.031037	4.571731	4.129906	0.0386

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

	Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
-	None *	0.573251	123.4760	54.96577	0.0000
	At most 1 *	0.406496	75.64807	48.87720	0.0000
	At most 2 *	0.288374	49.32940	42.77219	0.0082
	At most 3 *	0.223843	36.74302	36.63019	0.0485
	At most 4 *	0.193276	31.14222	30.43961	0.0408
	At most 5	0.100028	15.28186	24.15921	0.4836
į.	At most 6	0.075378	11.36371	17.79730	0.3526
	At most 7	0.055610	8.296264	11.22480	0.1564
_	At most 8 *	0.031037	4.571731	4.129906	0.0386

Descriptive Statistics & Analysis

Pre-War

	CAC_40	DAX	FTSE_100	CSI_300	SENSEX	PFTS	NIKKEI_225	NASDAQ	MOEX	S_P500
Mean	0.000810	0.000134	0.001063	-0.000388	0.000122	-0.000144	-0.000758	-5.81E-05	-0.000972	0.000567
Median	0.001875	0.001329	0.000772	0.000193	0.000528	0.000000	-0.000548	0.001962	-6.63E-05	0.001569
Maximum	0.029073	0.028162	0.016333	0.016566	0.017629	0.002611	0.026110	0.034081	0.035490	0.024348
Minimum	-0.047505	-0.041522	-0.036433	-0.022622	-0.028709	-0.008289	-0.031136	-0.037366	-0.064996	-0.024391
Std. Dev.	0.011201	0.011017	0.008308	0.008588	0.009739	0.001077	0.012816	0.013944	0.017363	0.009900
Skewness	-1.101324	-0.787969	-1.013210	-0.200527	-0.538649	-6.000070	-0.130326	-0.304401	-0.911819	-0.273561
Kurtosis	6.820758	5.341968	6.630421	2.415851	3.059578	43.65662	2.583879	3.142724	5.060882	2.986937
Jarque-Bera	80.23065	32.86963	71.30614	2.071056	4.802003	7412.478	0.994522	1.612920	31.23818	1.235489
Probability	0.000000	0.000000	0.000000	0.355039	0.090627	0.000000	0.608194	0.446436	0.000000	0.539159
Sum	0.080183	0.013247	0.105207	-0.038458	0.012075	-0.014247	-0.074996	-0.005750	-0.096241	0.056136
Sum Sq. Dev.	0.012295	0.011896	0.006764	0.007228	0.009295	0.000114	0.016096	0.019054	0.029544	0.009604
Observations	99	99	99	99	99	99	99	99	99	99

Post-War

* *	CAC 40	CSI 300	DAX	FTSE 100	S P500	SENSEX	MOEX	NASDAQ	NIKKEI 225	PFTS
Mean	-0.001399	-0.000354	-0.001000	-0.000388	-0.001277	-0.000902	-0.003469	-0.001749	0.000120	0.000000
Median	-0.002336	0.000446	-0.001291	0.000952	-0.000957	-0.002303	-0.003504	-0.001527	0.001465	0.000000
Maximum	0.071252	0.043242	0.079213	0.039138	0.029862	0.029060	0.200358	0.038171	0.039360	0.000000
Minimum	-0.049654	-0.049421	-0.044083	-0.038783	-0.040395	-0.047214	-0.332806	-0.049917	-0.030076	0.000000
Std. Dev.	0.018216	0.015983	0.018597	0.013608	0.017111	0.013969	0.049016	0.022983	0.014283	0.000000
Skewness	0.539538	-0.449676	0.731541	-0.159239	-0.357484	-0.257810	-2.813112	-0.189224	0.185955	NA
Kurtosis	5.345781	3.986161	6.226107	4.040290	2.537420	3.399332	29.45570	2.167267	2.928449	NA
Jarque-Bera	22.77923	6.086276	42.87363	4.044073	2.477627	1.453208	2499.492	2.858610	0.490073	NA
Probability	0.000011	0.047685	0.000000	0.132386	0.289728	0.483548	0.000000	0.239475	0.782676	NA
Sum	-0.114744	-0.029026	-0.082011	-0.031831	-0.104740	-0.073996	-0.284450	-0.143452	0.009849	0.000000
Sum Sq. Dev.	0.026877	0.020693	0.028014	0.014999	0.023716	0.015805	0.194610	0.042785	0.016525	0.000000
Observations	82	82	82	82	82	82	82	82	82	82

Covariance

ISSN: 2581-7175

Pre-War

									C	ovariance
	CAC_40	CSI_300	S_P500	SENSEX	PFTS	NASDAQ	NIKKEI_225	MOEX	FTSE_100	DAX
CAC_40	0.000124	-1.04E-05	2.09E-05	3.48E-06	-9.58E-07	3.19E-05	2.46E-05	-1.86E-05	3.95E-05	5.37E-05
CSI_300	-1.04E-05	7.30E-05	-4.34E-06	4.57E-06	-2.80E-07	-3.38E-06	-5.08E-06	-1.23E-05	4.94E-06	-7.42E-06
S_P500	2.09E-05	-4.34E-06	9.70E-05	1.78E-05	-1.69E-07	0.000128	-5.57E-06	4.27E-05	9.46E-06	1.80E-05
SENSEX	3.48E-06	4.57E-06	1.78E-05	9.39E-05	-2.34E-07	2.74E-05	-1.27E-05	2.12E-05	1.61E-05	7.81E-06
PFTS	-9.58E-07	-2.80E-07	-1.69E-07	-2.34E-07	1.15E-06	-7.10E-07	-1.01E-07	3.22E-06	3.54E-07	1.75E-06
NASDAQ	3.19E-05	-3.38E-06	0.000128	2.74E-05	-7.10E-07	0.000192	-6.10E-06	4.60E-05	1.45E-05	1.87E-05
NIKKEI	2.46E-05	-5.08E-06	-5.57E-06	-1.27E-05	-1.01E-07	-6.10E-06	0.000163	-3.36E-05	7.44E-06	1.67E-05
MOEX	-1.86E-05	-1.23E-05	4.27E-05	2.12E-05	3.22E-06	4.60E-05	-3.36E-05	0.000298	9.53E-06	5.82E-05
FTSE	3.95E-05	4.94E-06	9.46E-06	1.61E-05	3.54E-07	1.45E-05	7.44E-06	9.53E-06	6.83E-05	5.28E-05
DAX	5.37E-05	-7.42E-06	1.80E-05	7.81E-06	1.75E-06	1.87E-05	1.67E-05	5.82E-05	5.28E-05	0.000120

Post-War

									C	Covariance
	CAC_40	CSI_300	DAX	FTSE_100	MOEX	NASDAQ	NIKKEI_225	PFTS	S_P500	SENSEX
CAC_40	0.000328	3.98E-05	0.000327	0.000144	0.000270	0.000186	5.21E-05	0.000000	0.000148	7.77E-05
CSI_300	3.98E-05	0.000252	3.75E-05	3.45E-05	4.19E-05	1.86E-05	7.47E-05	0.000000	2.13E-05	1.93E-05
DAX	0.000327	3.75E-05	0.000342	0.000145	0.000281	0.000184	4.35E-05	0.000000	0.000147	7.77E-05
FTSE	0.000144	3.45E-05	0.000145	0.000183	0.000253	3.02E-05	3.18E-05	0.000000	3.59E-05	7.75E-05
MOEX	0.000270	4.19E-05	0.000281	0.000253	0.002373	-0.000121	5.23E-05	0.000000	-2.21E-05	0.000290
NASDAQ	0.000186	1.86E-05	0.000184	3.02E-05	-0.000121	0.000522	2.45E-05	0.000000	0.000375	-2.04E-05
NIKKEI	5.21E-05	7.47E-05	4.35E-05	3.18E-05	5.23E-05	2.45E-05	0.000202	0.000000	2.73E-05	3.34E-05
PFTS	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
S_P500	0.000148	2.13E-05	0.000147	3.59E-05	-2.21E-05	0.000375	2.73E-05	0.000000	0.000289	-1.90E-06
SENSEX	7.77E-05	1.93E-05	7.77E-05	7.75E-05	0.000290	-2.04E-05	3.34E-05	0.000000	-1.90E-06	0.000193

Correlation

	Correlation									
	CAC_40	CSI_300	DAX	FTSE_100	MOEX	NASDAQ	NIKKEI_225	S_P500	SENSEX	PFTS
CAC_40	1.000000	-0.108789	0.439432	0.429203	-0.096645	0.206075	0.172904	0.190025	0.032219	-0.080227
CSI_300	-0.108789	1.000000	-0.079230	0.070012	-0.083229	-0.028537	-0.046633	-0.051576	0.055175	-0.030599
DAX	0.439432	-0.079230	1.000000	0.582197	0.307181	0.122693	0.119491	0.167175	0.073562	0.149120
FTSE	0.429203	0.070012	0.582197	1.000000	0.066750	0.126325	0.070565	0.116233	0.200812	0.039965
MOEX	-0.096645	-0.083229	0.307181	0.066750	1.000000	0.191767	-0.152329	0.250909	0.126527	0.173877
NASDAQ	0.206075	-0.028537	0.122693	0.126325	0.191767	1.000000	-0.034476	0.938170	0.203534	-0.047777
NIKKEI	0.172904	-0.046633	0.119491	0.070565	-0.152329	-0.034476	1.000000	-0.044333	-0.103018	-0.007412
S_P500	0.190025	-0.051576	0.167175	0.116233	0.250909	0.938170	-0.044333	1.000000	0.186305	-0.016018
SENSEX	0.032219	0.055175	0.073562	0.200812	0.126527	0.203534	-0.103018	0.186305	1.000000	-0.022536
re-War PFTS	-0.080227	-0.030599	0.149120	0.039965	0.173877	-0.047777	-0.007412	-0.016018	-0.022536	1.000000

Post-War

									(Correlation
	CAC_40	CSI_300	DAX	FTSE_100	MOEX	NASDAQ	NIKKEI_225	PFTS	S_P500	SENSEX
CAC_40	1.000000	0.138223	0.975726	0.589261	0.305636	0.450071	0.202561	NA	0.480826	0.309266
CSI_300	0.138223	1.000000	0.127623	0.160766	0.054162	0.051297	0.331236	NA	0.078782	0.087575
DAX	0.975726	0.127623	1.000000	0.578833	0.312615	0.434851	0.165827	NA	0.466463	0.302811
FTSE	0.589261	0.160766	0.578833	1.000000	0.383359	0.097872	0.165493	NA	0.155946	0.412858
MOEX	0.305636	0.054162	0.312615	0.383359	1.000000	-0.109178	0.075631	NA	-0.026712	0.428753
NASDAQ	0.450071	0.051297	0.434851	0.097872	-0.109178	1.000000	0.075587	NA	0.964534	-0.064412
NIKKEI	0.202561	0.331236	0.165827	0.165493	0.075631	0.075587	1.000000	NA	0.112963	0.169263
PFTS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
S_P500	0.480826	0.078782	0.466463	0.155946	-0.026712	0.964534	0.112963	NA	1.000000	-0.008039
SENSEX	0.309266	0.087575	0.302811	0.412858	0.428753	-0.064412	0.169263	NA	-0.008039	1.000000

INTERPRETATION

ISSN: 2581-7175

The present study has used Augmented Dickey-Fuller (ADF) test to conduct tests for unit root in 10 global indices namely SENSEX, CSI 300, DAX, FTSE 100, MOEX, NASDAQ Composite, PFTS, S&P 500, CAC 40, and NIKKEI 225. It helps to identify the stationarity of the data series of all the 10 global indices of two time periods i.e. pre-war period and the post-war period.

Analysis of the Pre-War Period

All the data series were stationary at the I(1)level and its difference and intercept level as shown in Fig. 1.1 that data is stationary at the first level in the ADF test. The null hypothesis is (p-1) = 0 it possesses a unit root and is therefore rejected in each of the cases. In the first index SENSEX the null hypothesis in PRE_WAR has a unit root which is rejected at 1% level which implies the series is stationary. Its p value is 0.000. When p value is greater than 0.05 null hypothesis is accepted. If it is not, then null hypothesis is rejected. Here the null hypothesis is rejected.Likewise, in POST_WAR has a unit root test which is rejected in 1% level itself which implies the series is stationary. Null hypothesis in every PRE_WAR and in POST_WAR have unit root test which is rejected at 1% level. So the entire series are stationary.

In all the cases p-value of the pre-war period for all the 10 global indices is significant at a 5% level using differences with the intercept model. The P value of the ADF test is 0.000 which is less than 5% thus implying that the data is stationary. The coefficient value is negative in all cases. It suggested that the model is fit.

Fig. 1.1

INDEX	Calculated Value	P value
SENSEX	-6.465	0.000
CSI 300	-6.604	0.000
DAX	-7.973	0.000
FTSE 100	-7.606	0.000
MOEX	-11.810	0.000
NASDAQ	-6.961	0.000
PFTs	-9.407	0.000
S&P 500	-7.171	0.000
CAC 40	-6.140	0.000
NIKKEI	-6.575	0.000
225		

Analysis of the Post-War Period

All the data series were stationary at the I(1)level and its difference and intercept level as shown in Fig. 1.2 that data is stationary at the first level in the ADF test. The null hypothesis is (p-1) = 0 it possesses a unit root and is rejected in all the cases. In all the cases p-value of the post-war period for all the 10 global indices is significant at a 5% level using differences with the intercept model. The P value of the ADF test is 0.000 which is less than 5% thus implying that the data is stationary. The coefficient value is negative in all cases. It suggested that the model is fit.

Fig. 1.2

INDEX	Calculated Value	P value
SENSEX	-7.555	0.000
CSI 300	-8.125	0.000
DAX	-8.433	0.000

FTSE 100	-7.897	0.000
MOEX	-7.301	0.000
NASDAQ	-7.590	0.000
PFTs	N/A	0.000
S&P 500	-7.239	0.000
CAC 40	-8.006	0.000
NIKKEI	-6.282	0.000
225		

Cointegration test

Following the confirmation that each series is stationary at first difference, the Johansen cointegration test was conducted at the selected lag level to check for the existence of a long-term equilibrium between the various stock market indices. If the series are cointegrated, it means they have a common random trend, and any deviations from the long-term equilibrium may lead to short-term adjustments of the series to restore the equilibrium. Comparing trace and eigenvalue statistics to the critical values at 5% suggests that trace test indicates 4 cointegrating eqn(s) and max-eigenvalue tests indicate 2 cointegrating eqn(s) for Pre-War and Trace test indicates 5 cointegrating eqn(s) and Max-eigenvalue test indicates 5 cointegrating eqn(s) for Post-War.

CONCLUSIONS

This study examines how the conflict between Ukraine and Russia has affected the movement of 10 global stock market indices. The daily stock return data of 10 global indices over the period starting from 24th June 2021 to 31stOct 2022 shows significant negative effects of the Russia-Ukraine war on these global stock indices. During the first few weeks of the war, markets in neighboring nations saw a significant proximity penalty in the form of steeply negative returns. Comparatively, faraway nations performed significantly better. We anticipated that the European stock market, which is an important trading partner for Russia's economy, would react poorly to this issue because of the country's closeness, rising political unrest, and the effects of any sanctions.

We observed that the event of February 24, 2022, had an immediate, significant negative influence on the global indices, followed by an immediate, significant positive impact. PFTs was an exception to this, even if the overall impact on the international stock markets was unfavorable. Our research also shows that a prolonged war will have a negative impact on the global economy.

Since our research was conducted at the start of the ongoing Russia-Ukraine conflict, it is possible that it does not fully reflect the outcome of the crisis. We recommend that future researchers thoroughly investigate the repercussions of this event comprehensively.

REFERENCES

ISSN: 2581-7175

1. Boungou, W., & Yatié, A. (2022). The impact of the Ukraine–Russia war on world stock market returns. *Economics Letters*, 215, 110516.

Available at www.ijsred.com

- 2. Federle, J., Meier, A., Müller, G. J., & Sehn, V. (2022). Proximity to War: The stock market response to the Russian invasion of Ukraine.
- 3. Ahmed, S., Hasan, M. M., & Kamal, M. R. (2022). Russia–Ukraine crisis: The effects on the European stock market. *European Financial Management*.
- 4. Kollias, C., Kyrtsou, C., & Papadamou, S. (2013). The effects of terrorism and war on the oil pricestock index relationship. *Energy Economics*, 40, 743-752.
- 5. Yousaf, I., Patel, R., & Yarovaya, L. (2022). The reaction of G20+ stock markets to the Russia-Ukraine conflict. *Available at SSRN*.
- 6. Gordon, A. J. G., & Recio, L. A. H. (2019). External Effects of the War in Ukraine: The Impact on the Price of Oil in the Short-term. *International Journal of Energy Economics and Policy*, 9(2), 267.
- 7. Khudaykulova, M., Yuanqiong, H., & Khudaykulov, A. (2022). Economic Consequences and Implications of the Ukraine-Russia War. *International Journal of Management Science and Business Administration*, 8(4), 44-52.
- 8. Schneider, G., & Troeger, V. E. (2006). War and the world economy: Stock market reactions to international conflicts. *Journal of conflict resolution*, 50(5), 623-645.
- 9. Hoffmann, M., & Neuenkirch, M. (2017). The pro-Russian conflict and its impact on stock returns in Russia and the Ukraine. *International Economics and Economic Policy*, *14*(1), 61-73.
- 10. Kholodilin, K. A., & Netsunajev, A. (2016). Crimea and punishment: The impact of sanctions on Russian and European economies.