
International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 2,2023

Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 1458

Chess Puzzle Generation using Stockfish and Genetic Algorithms

Department of Computer Science & Engineering, Sikkim Manipal Institute of Technology,

Sikkim Manipal University, Rangpo, Sikkim

Email: laveshnk@gmail.com

--************************----------------------------------

Abstract:
This paper proposes an approach to generate chess puzzles using genetic algorithms (GAs) and evaluate

them using the Stockfish chess engine. The fitness function used in the GA approach penalizes the puzzle

configuration that fails to meet specific criteria, such as the number of pieces on the board, the validity of

the chess board configuration, and the presence or absence of knights. The goal is to minimize the penalty

score, which indicates that the puzzle is closer to satisfying the criteria for an optimal puzzle

configuration. The hyper-parameters of the fitness function can be adjusted to fine-tune the puzzle

generation process. Additionally, the quality of the generated puzzles is evaluated using the Stockfish

chess engine, which analyzes the moves and scores of the generated puzzles. The experimental results

demonstrate that the proposed approach is effective in generating puzzles that meet the criteria of a "mate-

in" type of puzzle, using the given hyper-parameters. This approach can potentially be extended to

generate other types of chess puzzles and can contribute to the development of puzzle-solving abilities

among chess players.

Keywords —Genetic Algorithms, GAs, Stockfish, hyper-parameters, fitness function

--************************----------------------------------

I. INTRODUCTION

Chess puzzles have been an integral way of

improving chess players' tactical abilities for

centuries. However, the process of manually

creating high-quality puzzles can be a time-

consuming and challenging task. In recent years,

there has been growing interest in automating the

process of generating chess puzzles using various

powerful computational techniques. Thus arose a

requirement to generate high-quality chess puzzles

that could be used for preparation at the highest

level of chess.

One popular approach is to use genetic

algorithms [1] (GAs), which are a type of

optimization algorithm inspired by the process of

Charles Darwin’s theory of natural selection. GAs

work by evolving a population of candidate

solutions over many generations, using genetic

operators such as mutation and crossover to

generate new offspring. These offspring are

evaluated using a fitness function [2], which

measures how well they perform the task at hand.

The fittest individuals are then selected to produce

the next generation of offspring, and the process

continues until a satisfactory solution is found.

Generally for chess puzzles, the analysis is

usually done on high-quality chess engines such as

Stockfish [3]. Stockfish is a powerful chess engine

that uses sophisticated evaluation functions to

analyze chess positions and determine the best

move to make. It is the most widely used chess

engine that players use to train for their

tournaments, at every level. By running generated

puzzles through Stockfish, one can obtain a

measure of their difficulty and quality.

This paper aims to showcase the effectiveness of

generating chess puzzles using GAs and evaluating

Lavesh Nama Kamalesh

RESEARCH ARTICLE OPEN ACCESS

International Journal of Scientific Research and Engineering Development

©IJSRED: All Rights are Reserved

them using Stockfish. It aims to demonstrate

effectiveness at generating puzzles that meet certain

criteria, such as mate-in-x puzzles, and discuss the

impact of various hyper-parameters on the puzzle

generation process.

II. METHODOLOGY

The methodology of this research involved using

a genetic algorithm to generate chess puzzles and

evaluating them using the Stockfish chess engine.

The chess boards were represented as a one

dimensional array of integers, and the genetic

algorithm was used to evolve these arrays towards

optimal puzzle configurations according to a

predefined fitness function. The fitness function

penalized configurations with a high penalty score

and rewarded those with a low score.

A. Genetic Algorithms

First, Genetic algorithms (GAs) are a type of

optimization algorithm based on the principles of

natural selection and genetics. These algorithms are

used to find optimal solutions to complex problems,

especially in cases where traditional algorithms fail

due to their complex nature. GAs are inspired by

the process of natural selection, where the fittest

individuals survive and reproduce, and the weaker

ones are eliminated over time. The same principle is

applied in GAs, where a population of solutions is

evolved over generations to find the optimal

solution.

The basic idea behind GAs is to encode a

potential solution to a problem in the form of a

chromosome or a genotype, and then to use various

operators such

cientific Research and Engineering Development-– Volume

Available at www.ijsred.com

©IJSRED: All Rights are Reserved

them using Stockfish. It aims to demonstrate

effectiveness at generating puzzles that meet certain

x puzzles, and discuss the

parameters on the puzzle

methodology of this research involved using

a genetic algorithm to generate chess puzzles and

evaluating them using the Stockfish chess engine.

The chess boards were represented as a one-

dimensional array of integers, and the genetic

evolve these arrays towards

optimal puzzle configurations according to a

predefined fitness function. The fitness function

penalized configurations with a high penalty score

(GAs) are a type of

optimization algorithm based on the principles of

natural selection and genetics. These algorithms are

used to find optimal solutions to complex problems,

especially in cases where traditional algorithms fail

e. GAs are inspired by

the process of natural selection, where the fittest

individuals survive and reproduce, and the weaker

ones are eliminated over time. The same principle is

applied in GAs, where a population of solutions is

find the optimal

The basic idea behind GAs is to encode a

potential solution to a problem in the form of a

chromosome or a genotype, and then to use various

Flowchart. 1 Chart representing the algorithm used for generating the

puzzles.

as selection, crossover, and mutation to generate

new offspring. The fitness function is used to

evaluate each chromosome's fitness, and then the

selection operator is used to choose the fittest

individuals to be parents for the next generation.

Crossover and mutation operators are then used to

generate new offspring. This process is repeated

until the desired fitness level is achieved or a

maximum number of generations is reached.

For this research, the python library

‘geneticalgorithm’ was used as the optimization

function for generating our puzzles. The library

provides a developer - friendly interface that allows

the user to customize various aspects of the genetic

algorithm such as the selection mechanism,

crossover and mutation functions, and

Volume 6 Issue 2,2023

www.ijsred.com

Page 1459

Chart representing the algorithm used for generating the

as selection, crossover, and mutation to generate

new offspring. The fitness function is used to

evaluate each chromosome's fitness, and then the

selection operator is used to choose the fittest

individuals to be parents for the next generation.

Crossover and mutation operators are then used to

generate new offspring. This process is repeated

until the desired fitness level is achieved or a

maximum number of generations is reached.

For this research, the python library

as the optimization

function for generating our puzzles. The library

friendly interface that allows

the user to customize various aspects of the genetic

algorithm such as the selection mechanism,

crossover and mutation functions, and the

International Journal of Scientific Research and Engineering Development

©IJSRED: All Rights are Reserved

population size. The library also allows the user to

specify the number of generations for the algorithm

to run and the stopping criteria for the algorithm.

This package solves continuous, combinatorial

and mixed optimization problems with continuous,

discrete and mixed variables. The implementation

of our function takes in the following arguments:

• a well-defined penalty function

• the dimensions of the input variables

• variable type

• variable boundaries (in this case it’s the

number of valid pieces in t

squares)

The library is built with NumPy, which is a

powerful library for scientific computing in Python.

This enables the library to handle large arrays and

matrices efficiently, making it well

problems with high-dimensional search sp

Additionally, the library provides a built

visualization tool that allows the user to visualize

the fitness values of the population over generations.

This visualization can be used to identify the

convergence of the population and the performance

of the algorithm.

B. Fitness function

In our code, we defined the fitness function as a

way to evaluate the quality of each puzzle

configuration. The function takes as input a chess

board configuration represented as a one

dimensional array, and returns a fitness value. We

designed the function to reward puzzle

configurations that satisfy our criteria, and penalize

those that do not. The criteria we used included the

number of pieces on the board, the number of

moves required to reach a checkmate position, and

the number of empty spaces on the board.

To calculate the fitness value for each puzzle

configuration, a penalty score was first computed

based on the criteria mentioned above.

penalty score from a fixed value to obtain the

fitness value [4]. The idea behind this approach is

cientific Research and Engineering Development-– Volume

Available at www.ijsred.com

©IJSRED: All Rights are Reserved

population size. The library also allows the user to

specify the number of generations for the algorithm

to run and the stopping criteria for the algorithm.

This package solves continuous, combinatorial

and mixed optimization problems with continuous,

discrete and mixed variables. The implementation

of our function takes in the following arguments:

defined penalty function

the dimensions of the input variables

variable boundaries (in this case it’s the

number of valid pieces in the chess

The library is built with NumPy, which is a

powerful library for scientific computing in Python.

This enables the library to handle large arrays and

matrices efficiently, making it well-suited for

dimensional search spaces.

Additionally, the library provides a built-in

visualization tool that allows the user to visualize

the fitness values of the population over generations.

This visualization can be used to identify the

convergence of the population and the performance

In our code, we defined the fitness function as a

way to evaluate the quality of each puzzle

configuration. The function takes as input a chess

board configuration represented as a one-

dimensional array, and returns a fitness value. We

n to reward puzzle

configurations that satisfy our criteria, and penalize

those that do not. The criteria we used included the

number of pieces on the board, the number of

moves required to reach a checkmate position, and

board.

To calculate the fitness value for each puzzle

a penalty score was first computed

based on the criteria mentioned above. Then the

penalty score from a fixed value to obtain the

. The idea behind this approach is

to reward puzzle configurations that have a lower

penalty score with a higher fitness value.

The fitness function is designed to optimize for

puzzles that require a specific number of moves to

reach a checkmate position. To achieve this,

fitness value was set to zero for puzzle

configurations that reach checkmate in a number of

moves that deviates from our target value by more

than a fixed threshold. In this way, the genetic

algorithm is encouraged to generate puzzles that

closely match our target criteria.

C. Chess Board Representation

For the chess puzzle generation system, we

represent the chess boards as one

arrays of integers in Python. Specifically,

array was used to represent the chess board. Each

element of the array represents a squa

chess board, and has an integer value that

corresponds to the piece occupying that square. A

value of 0 represents an empty square, while

positive integers represent different types of pieces,

such as pawns, knights, bishops, rooks, queens, and

kings. We use the convention that positive integers

represent white pieces, while negative i

represent black pieces.

The one-dimensional array representation allows

us to easily manipulate the chess board

configurations using numpy array operations,

is more efficient than using a two

Fig. 1Value to piece representation used in the algorithm’s metric

representation. This representation also simplifies

the process of generating offspring in the genetic

algorithm, as it allows for easy crossover and

mutation operations on the arrays. Furthermore, this

representation is also easily interpretable by the

Stockfish engine, which is used as an evaluation

metric for the generated puzzles.

for representing the chess puzzles is well known

‘Forsyth-Edwards Notation’ or FEN [5].

Volume 6 Issue 2,2023

www.ijsred.com

Page 1460

ward puzzle configurations that have a lower

re with a higher fitness value.

fitness function is designed to optimize for

puzzles that require a specific number of moves to

osition. To achieve this, the

to zero for puzzle

configurations that reach checkmate in a number of

moves that deviates from our target value by more

than a fixed threshold. In this way, the genetic

algorithm is encouraged to generate puzzles that

closely match our target criteria.

chess puzzle generation system, we

represent the chess boards as one-dimensional

arrays of integers in Python. Specifically, a numpy

to represent the chess board. Each

element of the array represents a square on the

chess board, and has an integer value that

corresponds to the piece occupying that square. A

empty square, while

integers represent different types of pieces,

such as pawns, knights, bishops, rooks, queens, and

ings. We use the convention that positive integers

represent white pieces, while negative integers

dimensional array representation allows

us to easily manipulate the chess board

configurations using numpy array operations, which

is more efficient than using a two-dimensional array

Value to piece representation used in the algorithm’s metrics

. This representation also simplifies

offspring in the genetic

algorithm, as it allows for easy crossover and

mutation operations on the arrays. Furthermore, this

representation is also easily interpretable by the

Stockfish engine, which is used as an evaluation

s. The notation used

for representing the chess puzzles is well known

’ or FEN [5]. We can

International Journal of Scientific Research and Engineering Development

©IJSRED: All Rights are Reserved

pass in the FEN value in the open-source chess site

‘Lichess’ [6] to get a demonstration of our board.

An example FEN and its visual represe

follows:

8/2N1Pb2/3nnQ2/4p3/1K1N2R1/1Nq3Nq/Nq4QR/1kn1Q3

w - - 0 1

Fig. 2 . A representation of the above FEN as shown on Lichess

Stockfish [3] is a widely used open-

engine that can evaluate chess positions and provide

a score representing its analysis of the best possible

moves. In this approach, Stockfish was used

evaluation metric to assess the quality of the chess

puzzles generated by the genetic algorithm.

Specifically, we used Stockfish to analyze the

moves generated by the genetic algorithm and

determine the quality of each move. We then used

this analysis to assign a score to each generated

puzzle. The Stockfish evaluation ensure

puzzles generated by the genetic algorithm were not

only feasible, but also of sufficient quality to be

presented to the end user

cientific Research and Engineering Development-– Volume

Available at www.ijsred.com

©IJSRED: All Rights are Reserved

source chess site

‘Lichess’ [6] to get a demonstration of our board.

and its visual representationare as

8/2N1Pb2/3nnQ2/4p3/1K1N2R1/1Nq3Nq/Nq4QR/1kn1Q3

2 . A representation of the above FEN as shown on Lichess

-source chess

engine that can evaluate chess positions and provide

a score representing its analysis of the best possible

was used as an

evaluation metric to assess the quality of the chess

enerated by the genetic algorithm.

Specifically, we used Stockfish to analyze the

moves generated by the genetic algorithm and

determine the quality of each move. We then used

this analysis to assign a score to each generated

on ensured that the

puzzles generated by the genetic algorithm were not

only feasible, but also of sufficient quality to be

D. Hyper-parameters

In this section, we will discuss the choice of

hyperparameters used in the genetic algorithm. The

hyperparameters chosen were:

• max_num_iteration: 1000

• population_size: 20

• mutation_probability: 0.05

• elit_ratio: 0.01

• crossover_probability: 0.9

• parents_portion: 0.3

• crossover_type: 'two_point'

• max_iteration_without_improv: 5000

These hyperparameters were chosen based on a

combination of trial-and-error and prior literature.

The population_size of 20 was chosen to strike a

balance between exploring a wide range of

solutions and maintaining computational efficiency.

The mutation_probability of 0.05 was chosen to

encourage sufficient exploration of the search space,

while the elit_ratio of 0.01 was chosen to preserve

the best individuals from each generation. The

crossover_probability of 0.9 was chosen to promote

mixing of genetic material between

the population.

The parents_portion of 0.3 was chosen to allocate

a greater proportion of the population to the

selection of parents for crossover. The

crossover_type of 'two_point' was chosen as it is a

common and effective crossover method for binary

strings. Finally, the max_iteration_without_improv

of 5000 was chosen to ensure that the algorithm

terminates if no improvement is made for a

prolonged period of time, thus preventing the

algorithm from running indefinitely without

progress.

Overall, these hyperparameters were chosen to

balance the exploration and exploitation tradeoff,

while ensuring efficient computation and the ability

to converge to good solutions.

Volume 6 Issue 2,2023

www.ijsred.com

Page 1461

In this section, we will discuss the choice of

genetic algorithm. The

max_num_iteration: 1000

mutation_probability: 0.05

crossover_probability: 0.9

crossover_type: 'two_point'

max_iteration_without_improv: 5000

se hyperparameters were chosen based on a

error and prior literature.

The population_size of 20 was chosen to strike a

balance between exploring a wide range of

solutions and maintaining computational efficiency.

bility of 0.05 was chosen to

encourage sufficient exploration of the search space,

while the elit_ratio of 0.01 was chosen to preserve

the best individuals from each generation. The

crossover_probability of 0.9 was chosen to promote

ial between individuals in

The parents_portion of 0.3 was chosen to allocate

a greater proportion of the population to the

selection of parents for crossover. The

crossover_type of 'two_point' was chosen as it is a

sover method for binary

strings. Finally, the max_iteration_without_improv

of 5000 was chosen to ensure that the algorithm

terminates if no improvement is made for a

prolonged period of time, thus preventing the

efinitely without any

Overall, these hyperparameters were chosen to

balance the exploration and exploitation tradeoff,

while ensuring efficient computation and the ability

International Journal of Scientific Research and Engineering Development

©IJSRED: All Rights are Reserved

III. RESULTS

A. Objective results

In this section, we present the results obtained

from running the genetic algorithm with different

configurations. We evaluated the algorithm's

performance using the objective function f(X),

which aims to find chess board configurations that

represent mate in three puzzles with the least value

of pieces on the board.

For the first experiment, we ran the algorithm for

1000 iterations with a mate in three puzzle as the

target. The resulting chess board configuration had

an objective function value of 2.1, indicating that

the puzzle was successfully solved. The graph of

the objective function over time showed a step

ladder pattern, which means that even though a

puzzle was generated, it did not converge to the

most optimal answer.

Fig. 3. Objective function vs Iteration graph of experiment 1

cientific Research and Engineering Development-– Volume

Available at www.ijsred.com

©IJSRED: All Rights are Reserved

In this section, we present the results obtained

from running the genetic algorithm with different

configurations. We evaluated the algorithm's

performance using the objective function f(X),

which aims to find chess board configurations that

puzzles with the least value

For the first experiment, we ran the algorithm for

1000 iterations with a mate in three puzzle as the

target. The resulting chess board configuration had

ndicating that

the puzzle was successfully solved. The graph of

the objective function over time showed a step-

which means that even though a

did not converge to the

Iteration graph of experiment 1

Fig. 4. Puzzle generated for experiment number

three puzzle, but there an unrealistically large amount of knights, questioning
the integrity of the puzzle

In the second experiment, we increased the

number of iterations to 5000, while keeping the

same mate in three puzzle as the target. The

resulting configuration had an objective function

value of 1.4, indicating that the algorithm

successfully found a better puzzle than the previous

The graph of the objective function over

iterations shows that it converged closer

more steps.

Fig. 5. Objective function vs Iteration graph of experiment 2

Volume 6 Issue 2,2023

www.ijsred.com

Page 1462

. Puzzle generated for experiment number 1. It is a definite mate in

three puzzle, but there an unrealistically large amount of knights, questioning
the integrity of the puzzle

In the second experiment, we increased the

number of iterations to 5000, while keeping the

same mate in three puzzle as the target. The

an objective function

, indicating that the algorithm

r puzzle than the previous.

The graph of the objective function over number of

iterations shows that it converged closer but with

Fig. 5. Objective function vs Iteration graph of experiment 2

International Journal of Scientific Research and Engineering Development

©IJSRED: All Rights are Reserved

Fig. 6. Puzzle generated for experiment number 2. As you can see, there are a

lot less pieces than in the first experiment, but the double dark square bishops

and extra rook looks out of place.

For the third experiment, we used a mate in

puzzle as the target and ran the algorithm for 1

iterations. The resulting chess board configuration

had an objective function value of 0, indicating that

the algorithm successfully found a mate in

puzzle. The graph of the objective function ove

time showed a similar pattern to the second

experiment, but with a slower rate of improvement.

Fig. 7. Objective function vs Iteration graph of experiment 3

cientific Research and Engineering Development-– Volume

Available at www.ijsred.com

©IJSRED: All Rights are Reserved

experiment number 2. As you can see, there are a

es than in the first experiment, but the double dark square bishops

For the third experiment, we used a mate in three

puzzle as the target and ran the algorithm for 10000

iterations. The resulting chess board configuration

had an objective function value of 0, indicating that

the algorithm successfully found a mate in three

puzzle. The graph of the objective function over

time showed a similar pattern to the second

experiment, but with a slower rate of improvement.

Iteration graph of experiment 3

Fig. 8. Puzzle generated for experiment number

puzzle where black has promoted to a queen on f8, but white has a clearance

sacrifice to deliver mate in 3.

For the fourth experiment, we used a mate in

puzzle as the target and ran the algorithm for

iterations. The resulting chess board configuration

had an objective function value of

that the algorithm successfully found a

mate in four puzzle. The graph of the objective

function over time showed a similar pattern to the

second experiment, but with a slower rate of

improvement. However, it required a lot of

computational

Fig. 9. Objective function vs Iteration graph of experiment 3

Volume 6 Issue 2,2023

www.ijsred.com

Page 1463

. Puzzle generated for experiment number 3. This looks like a real

as promoted to a queen on f8, but white has a clearance

experiment, we used a mate in four

puzzle as the target and ran the algorithm for 5000

iterations. The resulting chess board configuration

tive function value of 1.0, indicating

that the algorithm successfully found an optimal

puzzle. The graph of the objective

function over time showed a similar pattern to the

second experiment, but with a slower rate of

However, it required a lot of

. Objective function vs Iteration graph of experiment 3

International Journal of Scientific Research and Engineering Development

©IJSRED: All Rights are Reserved

resourcesand took significantly longer than

experiments one and two, but not more than three

which is as expected.

Fig. 9. Puzzle generated for experiment number 3. This looks like a

realistic mate-in-four puzzle.

B. Human Feedback

In addition to evaluating the generated chess

puzzles using Stockfish, a survey was conducted

amongst 30 chess experts and intermediate players.

The survey aimed to judge the puzzles based on

their perceived Difficulty Level, Realism, and

Length using Human Feedback [7]. Each survey

participant was presented with a random set of

puzzles and asked to rate them on a scale of 1 to 10

for each of the aforementioned parameters.

The survey participants were selected based on

their chess expertise and were categorized into two

groups - 15 experts and 15 intermediate players.

The experts were defined as individuals who have a

rating of over 2000 Elo, and intermed

were defined as individuals who have a rating

between 1200 and 2000 Elo according to

chess.com’selo rating.

The survey results were collected and analyzed,

and the average rating for each puzzle was

calculated for each parameter. An average of

results were used to further evaluate the

cientific Research and Engineering Development-– Volume

Available at www.ijsred.com

©IJSRED: All Rights are Reserved

and took significantly longer than

experiments one and two, but not more than three

generated for experiment number 3. This looks like a

In addition to evaluating the generated chess

puzzles using Stockfish, a survey was conducted

amongst 30 chess experts and intermediate players.

rvey aimed to judge the puzzles based on

their perceived Difficulty Level, Realism, and

. Each survey

participant was presented with a random set of

o rate them on a scale of 1 to 10

ntioned parameters.

The survey participants were selected based on

their chess expertise and were categorized into two

15 experts and 15 intermediate players.

The experts were defined as individuals who have a

rating of over 2000 Elo, and intermediate players

were defined as individuals who have a rating

according to

The survey results were collected and analyzed,

and the average rating for each puzzle was

An average of these

results were used to further evaluate the

effectiveness of the generated puzzles and to

determine their overall quality.

TABLE I

USER CONDUCTED SURVEY

Puzzle

No.

Difficulty

Level (of 10)

Realism (of

10)

1 7.3 1.3

2 5.2 2.1

3 6.5 8.9

4 3.4 6.4

IV. CONCLUSIONS

Looking at the aforementioned table and the

generated puzzles, we can successfully determine

the quality of the puzzles created using genetic

algorithms. We can see that whilst puzzles were

generated in each of the experiments, they were not

all realistic. As the number of iterations increased,

they became significantly better and clearer, with

10000 iterations being one of the optimum values

used with the computational resources available.

However, the amount of computing power it took

generate the puzzles was also quite significant.

In conclusion, the use of genetic algorithms and

Stockfish chess engine provided an effective

approach for generating chess puzzles that meet

specific criteria. By using a fitness function that

rewards configurations with low penalty scores, and

penalizes those with high scores, the genetic

algorithm was able to evolve chess board

representations towards optimal puzzle

configurations. The evaluation metric, which

included analyzing the generated puzzles using

Stockfish, provided an additional level of validation

to the puzzle generation process. The survey

conducted among 30 chess experts and

intermediates further confirmed the effectiveness of

the generated puzzles in terms of difficulty level,

realism, and length.

Overall, the combination of genetic algorithms,

Stockfish, and the survey provided a comprehensive

approach to generating high-quality chess puzzles

that meet specific criteria. Future work could

include exploring different fitness functions, chess

Volume 6 Issue 2,2023

www.ijsred.com

Page 1464

effectiveness of the generated puzzles and to

URVEY

(of Length (minutes)

3 minutes

2 minutes

4 minutes

2 minutes

Looking at the aforementioned table and the

generated puzzles, we can successfully determine

the quality of the puzzles created using genetic

algorithms. We can see that whilst puzzles were

generated in each of the experiments, they were not

As the number of iterations increased,

they became significantly better and clearer, with

10000 iterations being one of the optimum values

used with the computational resources available.

However, the amount of computing power it took to

les was also quite significant.

In conclusion, the use of genetic algorithms and

Stockfish chess engine provided an effective

approach for generating chess puzzles that meet

specific criteria. By using a fitness function that

w penalty scores, and

penalizes those with high scores, the genetic

algorithm was able to evolve chess board

representations towards optimal puzzle

configurations. The evaluation metric, which

included analyzing the generated puzzles using

ded an additional level of validation

to the puzzle generation process. The survey

conducted among 30 chess experts and

intermediates further confirmed the effectiveness of

the generated puzzles in terms of difficulty level,

he combination of genetic algorithms,

Stockfish, and the survey provided a comprehensive

quality chess puzzles

that meet specific criteria. Future work could

include exploring different fitness functions, chess

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 2,2023

Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 1465

board representations, and evaluation metrics to

improve puzzle generation. Additionally, the

approach presented in this paper could be extended

to other domains beyond chess, such as game

design and optimization problems, where genetic

algorithms could be utilized to evolve solutions

towards specific objectives.

ACKNOWLEDGMENT

I would like to express my gratitude to the

Department of Computer Science and Engineering

at Sikkim Manipal Institute of Technology, Sikkim

Manipal University for their support during the

course of this research. I would also like to thank

the 30 chess experts and intermediates who

participated in my survey and provided me with

valuable feedback. Their input was essential in

evaluating the effectiveness of my chess puzzle

generation approach.

Finally, I would like to thank the open-source

community for providing me with the necessary

tools and resources to conduct this research.

Without their contributions, this project would not

have been possible.

REFERENCES
[1] Holland, J. H. (1992). Genetic Algorithms. Scientific American, 267(1),

66–73. http://www.jstor.org/stable/24939139.
[2] Kour, H., Sharma, P., &Abrol, P. (2015). Analysis of fitness function

in genetic algorithms. International Journal of Scientific and Technical

Advancements, 1(3), 87-89.
[3] Romstad T., Costalba M., Kiiski J. (2008). Stockfish – A Strong Chess

Engine.

[4] Whitley, L. D. (1994). A genetic algorithm tutorial. Statistics and
computing, 4(2), 65-85.

[5] Forsyth, D., & Edwards, S. (1986). "Forsyth-Edwards Notation (FEN)

for chess game description". The Computer Journal, 19(5), 389-392.

[6] Lichess. (2023). Lichess.org. [online] Available at:

https://lichess.org/[Accessed 30 Apr. 2023].

[7] J. Krause, T. Stöcker, T. Wettig, and M. Hovestadt, “Experiments in

Human Feedback Control of Nonlinear Systems,” IEEE Transactions

on Control Systems Technology, vol. 15, no. 3, pp. 416-422, May

2007. doi: 10.1109/TCST.2007.89411

