
International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 2,2023 

Available at www.ijsred.com 

ISSN : 2581-7175                             ©IJSRED: All Rights are Reserved Page 1458 

 

Chess Puzzle Generation using Stockfish and Genetic Algorithms 

 
Department of Computer Science & Engineering, Sikkim Manipal Institute of Technology,  

Sikkim Manipal University, Rangpo, Sikkim 

Email: laveshnk@gmail.com 

----------------------------------------************************----------------------------------

Abstract: 
This paper proposes an approach to generate chess puzzles using genetic algorithms (GAs) and evaluate 

them using the Stockfish chess engine. The fitness function used in the GA approach penalizes the puzzle 

configuration that fails to meet specific criteria, such as the number of pieces on the board, the validity of 

the chess board configuration, and the presence or absence of knights. The goal is to minimize the penalty 

score, which indicates that the puzzle is closer to satisfying the criteria for an optimal puzzle 

configuration. The hyper-parameters of the fitness function can be adjusted to fine-tune the puzzle 

generation process. Additionally, the quality of the generated puzzles is evaluated using the Stockfish 

chess engine, which analyzes the moves and scores of the generated puzzles. The experimental results 

demonstrate that the proposed approach is effective in generating puzzles that meet the criteria of a "mate-

in" type of puzzle, using the given hyper-parameters. This approach can potentially be extended to 

generate other types of chess puzzles and can contribute to the development of puzzle-solving abilities 

among chess players. 
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I. INTRODUCTION 

Chess puzzles have been an integral way of 

improving chess players' tactical abilities for 

centuries. However, the process of manually 

creating high-quality puzzles can be a time-

consuming and challenging task. In recent years, 

there has been growing interest in automating the 

process of generating chess puzzles using various 

powerful computational techniques. Thus arose a 

requirement to generate high-quality chess puzzles 

that could be used for preparation at the highest 

level of chess. 

One popular approach is to use genetic 

algorithms [1] (GAs), which are a type of 

optimization algorithm inspired by the process of 

Charles Darwin’s theory of natural selection. GAs 

work by evolving a population of candidate 

solutions over many generations, using genetic 

operators such as mutation and crossover to 

generate new offspring. These offspring are 

evaluated using a fitness function [2], which 

measures how well they perform the task at hand. 

The fittest individuals are then selected to produce 

the next generation of offspring, and the process 

continues until a satisfactory solution is found. 

Generally for chess puzzles, the analysis is 

usually done on high-quality chess engines such as 

Stockfish [3]. Stockfish is a powerful chess engine 

that uses sophisticated evaluation functions to 

analyze chess positions and determine the best 

move to make. It is the most widely used chess 

engine that players use to train for their 

tournaments, at every level. By running generated 

puzzles through Stockfish, one can obtain a 

measure of their difficulty and quality. 

This paper aims to showcase the effectiveness of 

generating chess puzzles using GAs and evaluating 
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them using Stockfish. It aims to demonstrate 

effectiveness at generating puzzles that meet certain 

criteria, such as mate-in-x puzzles, and discuss the 

impact of various hyper-parameters on the puzzle 

generation process. 

II. METHODOLOGY 

 

The methodology of this research involved using 

a genetic algorithm to generate chess puzzles and 

evaluating them using the Stockfish chess engine. 

The chess boards were represented as a one

dimensional array of integers, and the genetic 

algorithm was used to evolve these arrays towards 

optimal puzzle configurations according to a 

predefined fitness function. The fitness function 

penalized configurations with a high penalty score 

and rewarded those with a low score. 

 

A. Genetic Algorithms 

First, Genetic algorithms (GAs) are a type of 

optimization algorithm based on the principles of 

natural selection and genetics. These algorithms are 

used to find optimal solutions to complex problems, 

especially in cases where traditional algorithms fail 

due to their complex nature. GAs are inspired by 

the process of natural selection, where the fittest 

individuals survive and reproduce, and the weaker 

ones are eliminated over time. The same principle is 

applied in GAs, where a population of solutions is 

evolved over generations to find the optimal 

solution. 

The basic idea behind GAs is to encode a 

potential solution to a problem in the form of a 

chromosome or a genotype, and then to use various 

operators such  
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evaluating them using the Stockfish chess engine. 

The chess boards were represented as a one-

dimensional array of integers, and the genetic 
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optimal puzzle configurations according to a 

predefined fitness function. The fitness function 

penalized configurations with a high penalty score 

(GAs) are a type of 

optimization algorithm based on the principles of 

natural selection and genetics. These algorithms are 

used to find optimal solutions to complex problems, 

especially in cases where traditional algorithms fail 

e. GAs are inspired by 

the process of natural selection, where the fittest 

individuals survive and reproduce, and the weaker 

ones are eliminated over time. The same principle is 

applied in GAs, where a population of solutions is 

find the optimal 

The basic idea behind GAs is to encode a 

potential solution to a problem in the form of a 

chromosome or a genotype, and then to use various 

 

Flowchart. 1  Chart representing the algorithm used for generating the 

puzzles. 

 

as selection, crossover, and mutation to generate 

new offspring. The fitness function is used to 

evaluate each chromosome's fitness, and then the 

selection operator is used to choose the fittest 

individuals to be parents for the next generation. 

Crossover and mutation operators are then used to 

generate new offspring. This process is repeated 

until the desired fitness level is achieved or a 

maximum number of generations is reached.

For this research, the python library 

‘geneticalgorithm’ was used as the optimization 

function for generating our puzzles. The library 

provides a developer - friendly interface that allows 

the user to customize various aspects of the genetic 

algorithm such as the selection mechanism, 

crossover and mutation functions, and
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population size. The library also allows the user to 

specify the number of generations for the algorithm 

to run and the stopping criteria for the algorithm.

This package solves continuous, combinatorial 

and mixed optimization problems with continuous,

discrete and mixed variables. The implementation 

of our function takes in the following arguments: 

 

• a well-defined penalty function

• the dimensions of the input variables

• variable type 

• variable boundaries (in this case it’s the 

number of valid pieces in t

squares) 

 

The library is built with NumPy, which is a 

powerful library for scientific computing in Python. 

This enables the library to handle large arrays and 

matrices efficiently, making it well

problems with high-dimensional search sp

Additionally, the library provides a built

visualization tool that allows the user to visualize 

the fitness values of the population over generations. 

This visualization can be used to identify the 

convergence of the population and the performance

of the algorithm. 

B. Fitness function 

In our code, we defined the fitness function as a 

way to evaluate the quality of each puzzle 

configuration. The function takes as input a chess 

board configuration represented as a one

dimensional array, and returns a fitness value. We 

designed the function to reward puzzle 

configurations that satisfy our criteria, and penalize 

those that do not. The criteria we used included the 

number of pieces on the board, the number of 

moves required to reach a checkmate position, and 

the number of empty spaces on the board.

To calculate the fitness value for each puzzle 

configuration, a penalty score was first computed

based on the criteria mentioned above. 

penalty score from a fixed value to obtain the 

fitness value [4]. The idea behind this approach is 
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of our function takes in the following arguments:  
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number of valid pieces in the chess 

The library is built with NumPy, which is a 

powerful library for scientific computing in Python. 

This enables the library to handle large arrays and 

matrices efficiently, making it well-suited for 

dimensional search spaces. 

Additionally, the library provides a built-in 

visualization tool that allows the user to visualize 

the fitness values of the population over generations. 

This visualization can be used to identify the 

convergence of the population and the performance 

In our code, we defined the fitness function as a 

way to evaluate the quality of each puzzle 

configuration. The function takes as input a chess 

board configuration represented as a one-

dimensional array, and returns a fitness value. We 

n to reward puzzle 

configurations that satisfy our criteria, and penalize 

those that do not. The criteria we used included the 

number of pieces on the board, the number of 

moves required to reach a checkmate position, and 

board. 

To calculate the fitness value for each puzzle 

a penalty score was first computed 

based on the criteria mentioned above. Then the 

penalty score from a fixed value to obtain the 

. The idea behind this approach is 

to reward puzzle configurations that have a lower 

penalty score with a higher fitness value.

The fitness function is designed to optimize for 

puzzles that require a specific number of moves to 

reach a checkmate position. To achieve this,

fitness value was set to zero for puzzle 

configurations that reach checkmate in a number of 

moves that deviates from our target value by more 

than a fixed threshold. In this way, the genetic 

algorithm is encouraged to generate puzzles that 

closely match our target criteria.

C. Chess Board Representation 

For the chess puzzle generation system, we 

represent the chess boards as one

arrays of integers in Python. Specifically, 

array was used to represent the chess board. Each 

element of the array represents a squa

chess board, and has an integer value that 

corresponds to the piece occupying that square. A 

value of 0 represents an empty square, while 

positive integers represent different types of pieces, 

such as pawns, knights, bishops, rooks, queens, and 

kings. We use the convention that positive integers 

represent white pieces, while negative i

represent black pieces. 

 

The one-dimensional array representation allows 

us to easily manipulate the chess board 

configurations using numpy array operations,

is more efficient than using a two

 

Fig. 1Value to piece representation used in the algorithm’s metric

 

representation. This representation also simplifies 

the process of generating offspring in the genetic 

algorithm, as it allows for easy crossover and 

mutation operations on the arrays. Furthermore, this 

representation is also easily interpretable by the 

Stockfish engine, which is used as an evaluation 

metric for the generated puzzles.

for representing the chess puzzles is well known 

‘Forsyth-Edwards Notation’ or FEN [5]. 
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representation is also easily interpretable by the 
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for representing the chess puzzles is well known 
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pass in the FEN value in the open-source chess site 

‘Lichess’ [6] to get a demonstration of our board. 

An example FEN and its visual represe

follows: 

 
8/2N1Pb2/3nnQ2/4p3/1K1N2R1/1Nq3Nq/Nq4QR/1kn1Q3 

w - - 0 1 

 

 
Fig. 2 . A representation of the above FEN as shown on Lichess

 

Stockfish [3] is a widely used open-

engine that can evaluate chess positions and provide 

a score representing its analysis of the best possible 

moves. In this approach, Stockfish was used 

evaluation metric to assess the quality of the chess 

puzzles generated by the genetic algorithm. 

Specifically, we used Stockfish to analyze the 

moves generated by the genetic algorithm and 

determine the quality of each move. We then used 

this analysis to assign a score to each generated 

puzzle. The Stockfish evaluation ensure

puzzles generated by the genetic algorithm were not 

only feasible, but also of sufficient quality to be 

presented to the end user 
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engine that can evaluate chess positions and provide 

a score representing its analysis of the best possible 

was used as an 

evaluation metric to assess the quality of the chess 

enerated by the genetic algorithm. 

Specifically, we used Stockfish to analyze the 

moves generated by the genetic algorithm and 

determine the quality of each move. We then used 

this analysis to assign a score to each generated 

on ensured that the 

puzzles generated by the genetic algorithm were not 

only feasible, but also of sufficient quality to be 

D. Hyper-parameters 

 

In this section, we will discuss the choice of 

hyperparameters used in the genetic algorithm. The 

hyperparameters chosen were: 

 

• max_num_iteration: 1000

• population_size: 20 

• mutation_probability: 0.05

• elit_ratio: 0.01 

• crossover_probability: 0.9

• parents_portion: 0.3 

• crossover_type: 'two_point'

• max_iteration_without_improv: 5000

 

These hyperparameters were chosen based on a 

combination of trial-and-error and prior literature. 

The population_size of 20 was chosen to strike a 

balance between exploring a wide range of 

solutions and maintaining computational efficiency. 

The mutation_probability of 0.05 was chosen to 

encourage sufficient exploration of the search space, 

while the elit_ratio of 0.01 was chosen to preserve 

the best individuals from each generation. The 

crossover_probability of 0.9 was chosen to promote 

mixing of genetic material between

the population. 

The parents_portion of 0.3 was chosen to allocate 

a greater proportion of the population to the 

selection of parents for crossover. The 

crossover_type of 'two_point' was chosen as it is a 

common and effective crossover method for binary 

strings. Finally, the max_iteration_without_improv 

of 5000 was chosen to ensure that the algorithm 

terminates if no improvement is made for a 

prolonged period of time, thus preventing the 

algorithm from running indefinitely without 

progress. 

Overall, these hyperparameters were chosen to 

balance the exploration and exploitation tradeoff, 

while ensuring efficient computation and the ability 

to converge to good solutions. 
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III. RESULTS 

 
A. Objective results 

In this section, we present the results obtained 

from running the genetic algorithm with different 

configurations. We evaluated the algorithm's 

performance using the objective function f(X), 

which aims to find chess board configurations that 

represent mate in three puzzles with the least value 

of pieces on the board. 

 

For the first experiment, we ran the algorithm for 

1000 iterations with a mate in three puzzle as the 

target. The resulting chess board configuration had 

an objective function value of 2.1, indicating that 

the puzzle was successfully solved. The graph of 

the objective function over time showed a step

ladder pattern, which means that even though a 

puzzle was generated, it did not converge to the 

most optimal answer. 

Fig. 3. Objective function vs Iteration graph of experiment 1
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Fig. 4. Puzzle generated for experiment number 

three puzzle, but there an unrealistically large amount of knights, questioning 
the integrity of the puzzle

 

In the second experiment, we increased the 

number of iterations to 5000, while keeping the 

same mate in three puzzle as the target. The 

resulting configuration had an objective function 

value of 1.4, indicating that the algorithm 

successfully found a better puzzle than the previous

The graph of the objective function over 

iterations shows that it converged closer 

more steps. 

Fig. 5. Objective function vs Iteration graph of experiment 2
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In the second experiment, we increased the 

number of iterations to 5000, while keeping the 

same mate in three puzzle as the target. The 

an objective function 

, indicating that the algorithm 

r puzzle than the previous. 

The graph of the objective function over number of 

iterations shows that it converged closer but with 

Fig. 5. Objective function vs Iteration graph of experiment 2 
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Fig. 6. Puzzle generated for experiment number 2. As you can see, there are a 

lot less pieces than in the first experiment, but the double dark square bishops 

and extra rook looks out of place. 

For the third experiment, we used a mate in 

puzzle as the target and ran the algorithm for 1

iterations. The resulting chess board configuration 

had an objective function value of 0, indicating that 

the algorithm successfully found a mate in 

puzzle. The graph of the objective function ove

time showed a similar pattern to the second 

experiment, but with a slower rate of improvement.

Fig. 7. Objective function vs Iteration graph of experiment 3
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experiment number 2. As you can see, there are a 
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For the third experiment, we used a mate in three 

puzzle as the target and ran the algorithm for 10000 

iterations. The resulting chess board configuration 

had an objective function value of 0, indicating that 

the algorithm successfully found a mate in three 

puzzle. The graph of the objective function over 

time showed a similar pattern to the second 

experiment, but with a slower rate of improvement. 

Iteration graph of experiment 3 

 
Fig. 8. Puzzle generated for experiment number 

puzzle where black has promoted to a queen on f8, but white has a clearance 

sacrifice to deliver mate in 3. 

 

For the fourth experiment, we used a mate in 

puzzle as the target and ran the algorithm for 

iterations. The resulting chess board configuration 

had an objective function value of 

that the algorithm successfully found a

mate in four puzzle. The graph of the objective 

function over time showed a similar pattern to the 

second experiment, but with a slower rate of 

improvement. However, it required a lot of 

computational  

Fig. 9. Objective function vs Iteration graph of experiment 3
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. Puzzle generated for experiment number 3. This looks like a real 
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experiment, we used a mate in four 

puzzle as the target and ran the algorithm for 5000 

iterations. The resulting chess board configuration 

tive function value of 1.0, indicating 

that the algorithm successfully found an optimal 

puzzle. The graph of the objective 

function over time showed a similar pattern to the 

second experiment, but with a slower rate of 

However, it required a lot of 

. Objective function vs Iteration graph of experiment 3 



International Journal of Scientific Research and Engineering Development

©IJSRED: All Rights are Reserved

resourcesand took significantly longer than 

experiments one and two, but not more than three 

which is as expected. 

Fig. 9. Puzzle generated for experiment number 3. This looks like a 

realistic mate-in-four puzzle.  

 

B. Human Feedback 

In addition to evaluating the generated chess 

puzzles using Stockfish, a survey was conducted 

amongst 30 chess experts and intermediate players. 

The survey aimed to judge the puzzles based on 

their perceived Difficulty Level, Realism, and 

Length using Human Feedback [7]. Each survey 

participant was presented with a random set of 

puzzles and asked to rate them on a scale of 1 to 10

for each of the aforementioned parameters.

The survey participants were selected based on 

their chess expertise and were categorized into two 

groups - 15 experts and 15 intermediate players. 

The experts were defined as individuals who have a 

rating of over 2000 Elo, and intermed

were defined as individuals who have a rating 

between 1200 and 2000 Elo according to 

chess.com’selo rating. 

The survey results were collected and analyzed, 

and the average rating for each puzzle was 

calculated for each parameter. An average of

results were used to further evaluate the 
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ntioned parameters. 

The survey participants were selected based on 

their chess expertise and were categorized into two 

15 experts and 15 intermediate players. 

The experts were defined as individuals who have a 

rating of over 2000 Elo, and intermediate players 

were defined as individuals who have a rating 

according to 

The survey results were collected and analyzed, 

and the average rating for each puzzle was 

An average of these 

results were used to further evaluate the 

effectiveness of the generated puzzles and to 

determine their overall quality. 

TABLE I 

USER CONDUCTED SURVEY

Puzzle 

No. 

Difficulty 

Level (of 10) 

Realism (of 

10) 

1 7.3 1.3 

2 5.2 2.1 

3 6.5 8.9 

4 3.4 6.4 

 

 

IV. CONCLUSIONS 

Looking at the aforementioned table and the 

generated puzzles, we can successfully determine 

the quality of the puzzles created using genetic 

algorithms. We can see that whilst puzzles were 

generated in each of the experiments, they were not 

all realistic. As the number of iterations increased, 

they became significantly better and clearer, with 

10000 iterations being one of the optimum values 

used with the computational resources available. 

However, the amount of computing power it took 

generate the puzzles was also quite significant.

In conclusion, the use of genetic algorithms and 

Stockfish chess engine provided an effective 

approach for generating chess puzzles that meet 

specific criteria. By using a fitness function that 

rewards configurations with low penalty scores, and 

penalizes those with high scores, the genetic 

algorithm was able to evolve chess board 

representations towards optimal puzzle 

configurations. The evaluation metric, which 

included analyzing the generated puzzles using 

Stockfish, provided an additional level of validation 

to the puzzle generation process. The survey 

conducted among 30 chess experts and 

intermediates further confirmed the effectiveness of 

the generated puzzles in terms of difficulty level, 

realism, and length. 

Overall, the combination of genetic algorithms, 

Stockfish, and the survey provided a comprehensive 

approach to generating high-quality chess puzzles 

that meet specific criteria. Future work could 

include exploring different fitness functions, chess 
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board representations, and evaluation metrics to 

improve puzzle generation. Additionally, the 

approach presented in this paper could be extended 

to other domains beyond chess, such as game 

design and optimization problems, where genetic 

algorithms could be utilized to evolve solutions 

towards specific objectives. 
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