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Abstract:

In this paper we derive a condition of transversality of two given hypersurfaces in pseudo-
Riemnnaian manifolds, along its boundary.This condition is given by the ellipticciy of the Newton

transformations.
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I. PRELIMINARIES

In this section we will recall basic
formulas and notions about hyper-
surfaces in pseudo-Riemannian space
forms that will be used later on.For
more details see [7].

LetM"an(n+1 )dimensionalpseudo-
Riemannianmanifoldofindex ¢ >0 and let
M"be a nondegenerate oriented
hypersurface of M""". If we denote by A
the corresponding shape operator, then at
each PEM", Arestrictstoaself-
adjointlinearmap

Ap: T,M = T,M.

Associatedto A, therearenalgebraicinvariantsdefi
nedby

Srzo-r(xl(p),-w,xn(p))'
Where
o, : R*" — R",

arethe elementary symmetric functions and

x1(p),...,xn(p) are the pricipale curvature of
the hypersurface.

For0<r<n, wedefinether"meancurvatureofthe
hypersurfaceby

n
— T —
(r) H, = &yS, = ar(eN X1, s EN xn).

Observe that Hy =0 and H; = %traceA is the
usual mean curvature of M which is one of the
most important extrinsic curvatures of the
hypersurface.

Let y(M)be the space of vector fields on the
manifold M . The classical Newton
transformations associated to the shape operator A
are defined inductively by

{TO = 0,
T, = ey S, — e YAT,_,forr = 1.

Or equivalently by
T, = eyS, — e 1S, A+ - . +(—1)TA".

wherel is the identity maps iny(M).
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Observe that the operator T, is self-adjoint and
commutes with A. Therefore all basis of T,,M that
diagonalizing A at pdiaginalizes all of the T,. Let
{ey, ..., e, } such basis.

Denoting by A; the restriction of Ato {(e;)*. It is
well know that :

n-—1
det(tl — A4;) = Z (-7 S, (Aptn—1-,
r=0

Where
Sy(4) = Z Xi, X
i< <iy
I,]il
It is immediate to check that

1 r

Tre; = eySy(A)e;.

We refer the reader to [2] and [7] for other details
about classical Newton tensors for hypersurfaces
in Riemannian and pseuo Riemannian spaces.

II. GENERALIZED NEWTON
TRANSFORMATIONSS

Let E be an n-dimensional real vector space and
End(E) be the vector space of endomorphisms of
E. Denote by N the set of nonnegative integers
and let N%be the one of multiindexu = (uy; u,),
with U; eEN
The length|u| of u is given by |u| = u; + u,.
FoA = (A;; A,) € End(E) X End(E),
t = (ty; t,) € R%and u € N2, we set

tA = t1A4 + t4,,

t¢ =t MtV
The generalized Newton transformations (GNT in
brief ) is a system of endomorphisms

T, =T,(A;; A,), u € N?
that satisfies the following recursive relations [4]

T(0,0) - O,
T jy = 0 pl = AaT(i-1,j) — AT j-1)
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ifi +j>1

Where o(; jare the coe¢cients of the Newton
polynomial

PiR?T — R
of A given by

PA(t) = det(] + tlAl + tzAz)

= Z O'(i’j)tll.tzj.

i+j<n
I11. MAIN RESULTS

Let M™?1 qv (v +1)
pseudo-Riemannian manifold of index 6, and
@: M"* — Ml
hypersurface of M™1 with smooth boundary
=M. Assume the boundary X = @(dM) is a
one codimensionsubmanifold of an oriented
connected hypersurfacesP™ c M™*1,

Consider the
operators, Ag, ASandA" corresponding to the
inclusions ¥ cp" ptc Mt M" c

M™*1respectively.

dimentional connected

be an oriented connected

second fundamental

Where ¢ and N are the unit normal vector
fields of the inclusions P* ¢ M™*! and
M™ c M™*1 respectivly

Following [2] we consider a local orthogonal
frame {ei,..,e,_1}in _X, v the out pointing
conormal unit vector field of X and 7 the
unitary vectorfield normal to_Xin P™.

We have
n—1
Veiej = Z Sk<veiej, ek>ek + Sv<veiej, V)V
k=0

+ en(AVe;, €)N.
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And
n—1
veiej = Z gk<veiej: ex)ex + ex(Ase;, e)n
k=0
+ E((A{ei, e])(
Thus

e,(Ve,e;, VIV + en(AVe;, €))N

= g;(Aze;, ;) + e;(Apey, €;)C.
Hence

(AVe;, e;) = e,(Ase;, €)(n, N)
+ S((Apei, €j)<<, N)
Suppose that P"is totally umbilic, so there exist a
smooth fucntionAsuch that
AP = Aln—l'
andwe have

A s = pAs + u(¢, N), ;.

This formula shows that the geometry of the
inclusion ¥ c P™ is codded by the couple
(As,I,_1), and the geometry of the inclusion
M™ c M™*1 is given by A.

We will use the Newton trasformations and the
generalized Newton transformations :

T, =T (4], ) andTy = Tiu(As, In-o).

and the correspondaingelementary symmetric
functions

oy (A | E) andoy ;(As, In—1).

In this case we have

o, (A|2) = Z pl. ukoy,.

k+l=r

And
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(Trv,v) = Z pt.ukay,

k+l=r
The matrix Ais writing in the basis{ey, ..., e,_1, v}

Y1 0 £1(Av, e;)
0 » :
VYn-1 En—1<AV: en—l)
£1(Av, e;) En-1({Av, 1) & (Av,v)
Puting

A=(A|z B).
BT ¢
El(Avlel>
B:< ; )
en-1({Av, ey_1)

c = &,(Av,v).
We have the following results.

Where,

and

Proposition 1.

Let M™! an (n+ 1) pseudo-Riemannian
manifold, and P™ a totally umbilical hypersurface
of M™!  Denoting by XcP" a
compacthypersurfaceof P".

Let ¢: M™ — M™*1 be an oriented connected
hypersurfaceof M™*1with boundary £ = @(dM).
Then along the boundary X, we have

(T,v,v) = o, (A | 5 )
Theorem1.

Under the above hypothesis, M™ and P™ are
transversealong X if for some 1 <7 <n the
Newton transformation Tis positif defined.
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