Available at www.ijsred.com

RESEARCH ARTICLE

OPEN ACCESS

Transversal hypersurfaces in pseudo-Riemannian manifolds

Mohammed Abdelmalek*, *ESM TLEMCEN. ALGERIA Email: abdelmalekmhd@gmail.com

Abstract:

In this paper we derive a condition of transversality of two given hypersurfaces in pseudo-Riemnnaian manifolds, along its boundary. This condition is given by the ellipticcity of the Newton transformations.

Keywords —Newton transformations, Symmetric functions, Transversality.

I. PRELIMINARIES

In this section we will recall basic formulas and notions about hypersurfaces in pseudo-Riemannian space forms that will be used later on.For more details see [7].

Let M^{n+1} an (n+1) dimensional pseudo-Riemannian manifold of index $q \ge 0$ and let M^n be a nondegenerate oriented hypersurface of M^{n+1} . If we denote by A the corresponding shape operator, then at each $p \in M^n$, A restrict stoaself-adjoint linear map

 $A_p: T_pM \to T_pM.$

Associated to A_p there are *n* algebraic invariants defined by

 $S_r = \sigma_r(x_1(p), \dots, x_n(p)).$

Where

$$\sigma_r: \mathbb{R}^n \to \mathbb{R}^n$$
,

are the elementary symmetric functions and

 $x_1(p),...,x_n(p)$ are the pricipale curvature of the hypersurface.

For $0 \le r \le n$, we define the r^{th} mean curvature of the hypersurface by

$$\binom{n}{r}H_r = \varepsilon_N^r S_r = \sigma_r(\varepsilon_N x_1, \dots, \varepsilon_N x_n).$$

Observe that $H_0 = 0$ and $H_1 = \frac{1}{n} traceA$ is the usual mean curvature of M which is one of the most important extrinsic curvatures of the hypersurface.

Let $\chi(M)$ be the space of vector fields on the manifold M. The classical Newton transformations associated to the shape operator A are defined inductively by

$$\begin{cases} T_0 = 0, \\ T_r = \varepsilon_N^r S_r - \varepsilon_N^{r-1} A T_{r-1} forr \ge 1. \end{cases}$$

Or equivalently by

$$T_r = \varepsilon_N^r S_r - \varepsilon_N^{r-1} S_r A + \dots + (-1)^r A^r.$$

where *I* is the identity maps $in\chi(M)$.

International Journal of Scientific Research and Engineering Development-– Volume 6 Issue 2,Mar-Apr 2023 Available at www.ijsred.com

Observe that the operator T_r is self-adjoint and commutes with A. Therefore all basis of T_pM that diagonalizing A at pdiaginalizes all of the T_r . Let $\{e_1, \dots, e_n\}$ such basis.

Denoting by A_i the restriction of Ato $\langle e_i \rangle^{\perp}$. It is well know that :

$$\det(tI - A_i) = \sum_{r=0}^{n-1} (-1)^r S_r(A_i) t^{n-1-r}.$$

Where

$$S_r(A_i) = \sum_{\substack{i_1 < \cdots < i_r \\ i_i \neq i}} x_{i_1} \cdots x_{i_r}.$$

It is immediate to check that

$$T_r e_i = \varepsilon_N^r S_r(A_i) e_i.$$

We refer the reader to [2] and [7] for other details about classical Newton tensors for hypersurfaces in Riemannian and pseuo Riemannian spaces.

II. GENERALIZED NEWTON TRANSFORMATIONSS

Let *E* be an n-dimensional real vector space and End(E) be the vector space of endomorphisms of *E*. Denote by \mathbb{N} the set of nonnegative integers and let \mathbb{N}^2 be the one of multiindex $u = (u_1; u_2)$, with $u_i \in \mathbb{N}$. The length |u| of *u* is given by $|u| = u_1 + u_2$. Fo $A = (A_1; A_2) \in End(E) \times End(E)$, $t = (t_1; t_2) \in \mathbb{R}^2$ and $u \in \mathbb{N}^2$, we set $tA = t_1A_1 + t_2A_2$, $t^u = t_1^{u_1} \cdot t_2^{u_2}$.

The generalized Newton transformations (GNT in brief) is a system of endomorphisms

$$T_u=T_u(A_1;\,A_2),\ u\in\mathbb{N}^2$$

that satisfies the following recursive relations [4]

$$\begin{split} T_{(0,0)} &= 0, \\ T_{(i,j)} &= \sigma_{(i,j)} I - A_1 T_{(i-1,j)} - A_2 T_{(i,j-1)} \end{split},$$

if
$$i + j \ge 1$$

Where $\sigma_{(i,j)}$ are the coeccients of the Newton polynomial

 $P_A: \mathbb{R}^q \longrightarrow \mathbb{R}$

of A given by

$$P_A(t) = \det(I + t_1 A_1 + t_2 A_2)$$
$$= \sum_{i+j < n} \sigma_{(i,j)} t_1^{i} t_2^{j}$$

III. MAIN RESULTS

Let $M^{n+1} \alpha v (v + 1)$ dimentional connected pseudo-Riemannian manifold of index θ , and $\varphi: M^n \longrightarrow M^{n+1}$ be an oriented connected hypersurface of M^{n+1} with smooth boundary $\cong M$. Assume the boundary $\Sigma = \varphi(\partial M)$ is a one codimensionsubmanifold of an oriented connected hypersurfaces $P^n \subset M^{n+1}$.

Consider the second fundamental operators, A_{Σ} , A^{ζ} and A^N corresponding to the inclusions $\Sigma \subset P^n$, $P^n \subset M^{n+1}$, $M^n \subset M^{n+1}$ respectively.

Where ζ and N are the unit normal vector fields of the inclusions $P^n \subset M^{n+1}$ and $M^n \subset M^{n+1}$ respectivly

Following [2] we consider a local orthogonal frame $\{e_1, \dots, e_{n-1}\}$ in Σ , ν the out pointing conormal unit vector field of Σ and η the unitary vectorfield normal to Σ in P^n .

We have

$$\overline{\nabla}_{e_i} e_j = \sum_{k=0}^{n-1} \varepsilon_k \langle \overline{\nabla}_{e_i} e_j, e_k \rangle e_k + \varepsilon_\nu \langle \overline{\nabla}_{e_i} e_j, \nu \rangle \nu + \varepsilon_N \langle A^N e_i, e_j \rangle N.$$

International Journal of Scientific Research and Engineering Development-- Volume 6 Issue 2, Mar-Apr 2023 Available at www.ijsred.com

And

$$\overline{\nabla}_{e_i} e_j = \sum_{k=0}^{n-1} \varepsilon_k \langle \overline{\nabla}_{e_i} e_j, e_k \rangle e_k + \varepsilon_\eta \langle A_{\Sigma} e_i, e_j \rangle \eta + \varepsilon_{\zeta} \langle A^{\zeta} e_i, e_j \rangle \zeta.$$

Thus

$$\varepsilon_{\nu} \langle \overline{\nabla}_{e_i} e_j, \nu \rangle \nu + \varepsilon_N \langle A^N e_i, e_j \rangle N$$

= $\varepsilon_{\eta} \langle A_{\Sigma} e_i, e_j \rangle \eta + \varepsilon_{\zeta} \langle A_{P} e_i, e_j \rangle \zeta.$

Hence

$$\begin{split} \langle A^N e_i, e_j \rangle &= \varepsilon_\eta \langle A_\Sigma e_i, e_j \rangle \langle \eta, N \rangle \\ &+ \varepsilon_\zeta \langle A_{\rm P} e_i, e_j \rangle \langle \zeta, N \rangle. \end{split}$$

Suppose that P^n is totally umbilic, so there exist a smooth function λ such that

 $A_{\rm P} = \lambda I_{n-1},$ and we have

$$A\Big|_{\Sigma} = \rho A_{\Sigma} + \mu \langle \zeta, N \rangle I_{n-1}.$$

This formula shows that the geometry of the inclusion $\Sigma \subset P^n$ is codded by the couple (A_{Σ}, I_{n-1}) , and the geometry of the inclusion $M^n \subset M^{n+1}$ is given by *A*.

We will use the Newton trasformations and the generalized Newton transformations :

$$T_{\mathrm{r}} = T_{\mathrm{r}}\left(A \mid_{\Sigma}\right) and T_{k,l} = T_{k,l}(A_{\Sigma}, I_{n-1}).$$

and the correspondaingelementary symmetric functions

$$\sigma_{\mathrm{r}}\left(A\mid_{\Sigma}\right)$$
 and $\sigma_{k,l}(A_{\Sigma}, I_{n-1})$.

In this case we have

$$\sigma_{\rm r}\left(A\left|_{\Sigma}\right) = \sum_{k+l=r} \rho^l . \, \mu^k \sigma_{k,l}$$

And

$$\langle T_{\rm r}\nu,\nu\rangle = \sum_{k+l=r} \rho^l.\,\mu^k\sigma_{k,l}$$

The matrix *A* is writing in the basis $\{e_1, \dots, e_{n-1}, \nu\}$

$$\begin{pmatrix} \gamma_1 & 0 & \dots & \varepsilon_1 \langle A\nu, e_1 \rangle \\ 0 & \gamma_2 & \dots & \vdots \\ & & \gamma_{n-1} & \varepsilon_{n-1} \langle A\nu, e_{n-1} \rangle \\ \varepsilon_1 \langle A\nu, e_1 \rangle & \dots & \varepsilon_{n-1} \langle A\nu, e_{n-1} \rangle & \varepsilon_{\nu} \langle A\nu, \nu \rangle \end{pmatrix}$$

Puting

$$A = \begin{pmatrix} A \mid \Sigma & B \\ B^T & c \end{pmatrix}.$$

Where,

$$B = \begin{pmatrix} \varepsilon_1 \langle A\nu, e_1 \rangle \\ \vdots \\ \varepsilon_{n-1} \langle A\nu, e_{n-1} \rangle \end{pmatrix},$$

and

$$c = \varepsilon_{\nu} \langle A\nu, \nu \rangle.$$

We have the following results.

Proposition 1.

Let M^{n+1} an (n + 1) pseudo-Riemannian manifold, and P^n a totally umbilical hypersurface of M^{n+1} . Denoting by $\Sigma \subset P^n$ a compacthypersurfaceof P^n . Let $\varphi: M^n \longrightarrow M^{n+1}$ be an oriented connected hypersurfaceof M^{n+1} with boundary $\Sigma = \varphi(\partial M)$. Then along the boundary Σ , we have

$$\langle T_{\mathbf{r}}\nu,\nu\rangle=\sigma_{\mathbf{r}}\left(A\mid_{\Sigma}\right).$$

Theorem1.

Under the above hypothesis, M^n and P^n are transversealong Σ if for some $1 \le r \le n$ the Newton transformation T_r is positif defined.

International Journal of Scientific Research and Engineering Development--- Volume 6 Issue 2,Mar-Apr 2023 Available at <u>www.ijsred.com</u>

REFERENCES

- [8] K. B. Petersen, M. S. Pedersen, The Matrix Cookbook, publish, Technical University of Denmark. (2012).
- [9] H. Rosenberg, Hypersurfaces of constant curvature in space forms, y on Bull. Sc. Math. 117. (1993), 211.239.
- M. Abdelmalek, M. Benalili, Transversality versus ellipticity on pseudo-Riemannian manifolds, International Journal of Geometric Methods in Modern Physics, Vol 12, Issue 7. (2015), 12 pp.
- [2] L. J. Alias, J. H. S. de Lira, J. M. Malacarne, Constant higher-order mean curvature hypersurfaces in Riemannian spaces, J. Inst. Math. Jussieu 5(4). (2006), 527.562.
- [3] L. J. Alias, A. Brasil, Jr., and A. G. Colares, Integral formulae for spacelikehypersurfaces in conformally stationary spacetimes and applications, Proc. Edinb. Math. Soc. (2) 46 (2003), no. 2, 465.488.
- [4] K. Andrzejewski, W. Kozlowski, K. Niedziałomski, Generalized Newton transformation and its applications to extrinsic geometry, arXiv:1211.4754.
- [5] D. Impera, On the Geometry of Newton operators (Doctorat thesis), UniversitadegliStudi di Milano, Dipartimento di Matematica F. Enriques. (2011).
- [6] P. Lucas, H. F. R Ospina :Hypersurfaces in pseudo-Euclidean spaces satisfying a linear condition on the linearized operator of a higher order mean curvature. Di¤erential Geometry And Its Applications. Vol 31, No 1,. (2013), 175-189.
- [7] B. O.Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York. (1983).