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Abstract:
This article proposes the exponentiated generalized exponentiated exponential distribution (written as EGEEx),
which has four parameters (i.e., three shape parameters and one scale parameter). Some well-known sub-models of
the EGEEx distribution are derived using the EGEEx cumulative distribution function. A few essential statistical
properties of the proposed EGEEx distribution are derived. The method of maximum likelihood estimation (MLE)
is used to estimate the parameters of the EGEEx distribution. The performance of the MLE estimates is assessed
by employing a Monte Carlo simulation study. The results of the simulation study show that an increase in sample
size leads to a decrease in average estimates (i.e., average estimates converge to the true parameter values), and the
average bias, mean square error, and root mean square error also decrease as n increases. Real data is used to fit
the EGEEx distribution and its sub-models and compare their performances. A conclusion can be drawn from the
fitted data set that the proposed EGEEx distribution performs better than its sub-models.
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I. INTRODUCTION

In statistics, the basic concept that is commonly used
practically and/or theoretically is a probability distribu-
tion. In most areas of study, researchers have relied
on data analysis to communicate, but some of these
data may show behaviour such as monotonic hazard
rates, non-monotonic failure rates, skewness, kurtosis,
etc. With such data characteristics, a large number of
distributions and families of distributions, especially the
classical distributions such as the exponential distribu-
tion, Rayleigh distribution, and the family of distribu-
tions such as the Alpha Power family of distributions,
the Gull Alpha Power family of distributions, etc., are in-
capable of handling more than one of the data behavours
due to the single shape parameter of their cumulative
distribution function (CDF).

Mathematicians and statisticians, on the other hand,
have introduced methods on the fundamental or classi-
cal distributions and on some weaker families of distri-
butions by introducing new distributions that are flexible
and tangible enough to accommodate two or more data
characteristics simultaneously; this method was accom-
plished by adding extra shape parameter(s) to the classi-
cal or fundamental distributions.
The method of adding extra shape parameters to distri-
butions has been accomplished in several ways, such as
the combination of two or more distributions method,
the quantile method, variable transformation methods,
and the exponentiated method, which involves raising
the cumulative distribution function (CDF) to a parame-
ter introduced by [1].

With the aid of the above methods, new distribu-
tions and families of distributions have been intro-
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duced, the exponentiated expontiatal distribution intro-
duced by [2], the exponentiated Rayleigh distribution
using Bayesian analysis introduced by [3], the expo-
nentiated generalized class of distributions introduced
by [4], Statistical properties of the exponentiated gen-
eralized inverted exponential (EGIE) distribution intro-
duced by [5], Slashed exponentiated rayleigh distri-
bution introduced by [6], Assessing the flexibility of
the exponentiated generalized exponential (EGE) dis-
tribution introduced by [7], The exponentiated gener-
alized extended exponential (εgεε) distribution intro-
duced by [8], the exponentiated Rayleigh distribution
based on generalized Type-II hybrid censored data intro-
duced by [9], exponentiated Rayleigh distribution using
MCMC approach introduced by [10], the generalized
Marshall-Olkin Kumaraswamy-G family introduced by
[11], the Kumaraswamy alpha power-G family intro-
duced by [12], An extended Kumaraswamy-Gull Alpha
Power Exponential (K-GAPE) distribution introduced
by [13], the exponentiated generalized gull alpha power
exponential (EGGAPE) distribution introduced by [14],
the Kumaraswamy-Gull Alpha Power Rayleigh (Kw-
GAPR) distribution introduced by [15].
This paper introduces the EGEEx distribution, which
has four parameters.

In 2013, [4] defined the CDF, F (x) and PDF, f(x) of
the Exponentiated Generalized (EG) family of distribu-
tions as:

F (x) = [1− {1−M(x)}a]α (1)

f(x) = αam(x){1−M(x)}a−1[1−{1−M(x)}a]α−1

(2)
for a, α > 0 are the shape parameters.
While the CDF and PDF of the Exponentiated exponen-
tial (EEx) distribution defined by [2] is given as

M(x) = (1− e−βx)b (3)

m(x) = βbe−βx(1− e−βx)b−1 (4)

for b > 0 is the shape parameter and β > 0 being the
scale parameter.

The CDF and PDF of the exponentiated exponential
(EEx) distribution are used as baseline distributions to
develop the EGEEx distribution, which has four param-
eters. The main objective of creating the EGEEx dis-
tribution is to provide more flexibility by handling two

or more of the characteristics that data sets usually pos-
sess, such as unimodality, bimodality, skewness, kurto-
sis, monotonic, and non-monotonic behaviors that are
normally encountered in the real world.

The remaining part of this paper is arranged as fol-
lows:
Section “Developing the distribution" presents the pro-
posed EGEEx distribution, and its sub-models, Section
“Statistical properties" presents some statistical proper-
ties of the EGEEx distribution, Section “Parameters Es-
timation" presents the maximum likelihood estimation
(MLE) and the simulation study results of the EGEEx
parameters. The proposed EGEEx distribution is then
used with its competing models to analyze real data set
in Section “Application of data", and Section “conclu-
sion" presents the concluding remarks about the EGEEx.

II. DEVELOPING THE DISTRI-
BUTION

A. The Exponentiated Generalized Expo-
nentiated Exponential (EGEEx) Distribu-
tion

The Exponentiated Generalized Exponentiated Expo-
nential (EGEEx) distribution CDF is obtained by sub-
stituting Eq. (3) into Eq. (1), and Eqs. (3) and (4) into
Eq. (2) to obtain the EGEEx PDF.
Eqs. (5) and (6) show the CDF and PDF of the EGEEx
distribution.

F
EGEEx

(x) =
[
1−

{
1− (1− e−βx)b

}a]α
(5)

f
EGEEx

(x) = αβabe−βx
(
1− e−βx

)b−1
{

1− (1− e−βx)b
}a−1 [

1−
{

1− (1− e−βx)b
}a]α−1

(6)

for x > 0, α, a, b > 0 are the shape parameters, and
β > 0 being the scale parameter.
The survival function (S(x)) and hazard rate function
(h(x)) of the EGEEx are given as

S(x) = 1− F
EGEEx

(x)

and

h(x) =
f
EGEEx

(x)

S(x)
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The density shapes of the EGEEx distribution are shown
in Fig. 1. These shapes include J-shaped, reversed
J-shaped, left-skewed, almost symmetric, and right-
skewed, with a heavy tail, and extremely high flexible
kurtosis, which makes the EGEEx distribution the per-
fect choice for modeling a wide range of data sets.
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Fig. 1: The EGEEx density shapes

From Fig. 2 it is observed that the hazard rate func-
tion for different combinations of parameter values
shows a multiplicity of shapes, which include increas-
ing, decreasing, bathtub shapes, increasing-decreasing-
constant shapes, and decreasing-increasing shapes. The
proposed EGEEx distribution has some very appealing
hazard rate shapes that make it appropriate for mod-
eling monotonic and non-monotonic hazard behaviors
that are more likely to be observed in real-world circum-
stances such as human mortality, reliability analysis, and
biomedical applications by increasing its adaptability to
fit different survival data.
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Fig. 2: The EGEEx Hazard rate function shapes

B. The EGEEx Sub-Models

Five sub-models of the proposed EGEEx distribution
have been considered by letting the parameter(s) of the
EGEEx CDF equal one.

1. For α = a = b = 1, this reduces the CDF of the
EGEEx distribution to the Exponential (Ex) distribution
with CDF given as
F
Ex

(x) =
[
1− e−βx

]
, for β > 0, x > 0.

2. For α = a = 1 this reduces the CDF of the EGEEx
distribution to the Exponentiated Exponential (EEx) dis-
tribution with CDF given as
F
EEx

(x) = (1− e−βx)b, for b > 0, β, x > 0.

3. For α = b = 1, this reduces the CDF of the EGEEx
distribution to the Generalized Exponential (GEx) dis-
tribution with CDF given as
F
GEx

(x) = 1 −
{

1− (1− e−βx)
}a

, for a, β > 0, x >

0.

4. For b = 1, this reduces the CDF of the EGEEx dis-
tribution to the Exponentiated Generalized Exponential
(EGEx) distribution with CDF given as
F
EGEx

(x) =
[
1−

{
1− (1− e−βx)

}a]α
,

for α > 0, a > 0, β > 0, x > 0.

5. For α = 1, this reduces the CDF of the EGEEx dis-
tribution to the Generalized Exponentiated Exponential
(GEEx) distribution with CDF given as

F
GEEx

(x) = 1 −
{

1−
(
1− e−βx

)b}a
, for β, a, b >

0, x > 0.

Table 1: Summary of the Sub-models

α β a b Sub-model
1 - 1 1 The Ex distribution
1 - 1 - The EEx distribution
1 - - 1 The GEx distribution
- - - 1 The EGEx distribution
1 - - - The GEEx distribution

III. STATISTICAL PROPERTIES

The statistical properties of the proposed EGEEx distri-
bution are derived in this section of the paper.
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A. Quantile function

The median, skewness, and kurtosis have all been com-
puted by researchers using the quantile function, along
with other things like conducting simulation studies.
The quantile function of the EGEEx distribution is ob-
tained by inverting CDF shown in Eq. (5). The quan-
tile function is the real solution to the general expression
given as

F (x) = p, (7)

for x is a random variable.
Substituting eq. (5) into Eq. (7) we have

=
[
1−

{
1− (1− e−βx)b

}a]α
= p (8)

Using Mathematica software, eq. (8) becomes

x =
1

β
log

− 1(
1−

(
1− p 1

α

) 1
a

) 1
b

− 1

 (9)

Some quantile function values for different parame-
ters values of α, β, a, and b respectively are shown in
Table 2. For p = 0.25, 0.50, and 0.75 being the 1st

quantile, median, and 3rd quantile respectively.

Table 2: Summary of some Quantile values of the
EGEEx distribution.

p (0.7, 1.2, 0.6, 0.4) (1.7, 0.2,1.5,2.3)
0.1 0.1319043 0.4326408
0.2 0.3671447 0.7116475
0.25 0.5156701 0.8466258
0.3 0.6851431 0.9830418
0.4 1.0931910 1.2687990
0.50 1.6125590 1.5856390
0.6 2.2841530 1.9548390
0.7 3.1882950 2.4125070
0.75 3.7766800 2.6955750
0.8 4.5084120 3.0369290
0.9 6.8333550 4.0751070

B. The rth Moments

The rth Moments general form is given as

ρ
′

r =

∫ ∞

0

xrf(x)dx (10)

for r = 1, 2, ..., n and f(x) being the distribution PDF,
by substituting Eq. (6) into Eq. 10 gives:

ρ
′

r =

∫ ∞
0

xrαβabe−βx
(
1− e−βx

)b−1 {
1− (1− e−βx)b

}a−1
[
1−

{
1− (1− e−βx)b

}a]α−1
dx (11)

Binomial expansion representation.

(1− x)s−1 =

∞∑
k=0

(−1)k

(
s− 1

t

)
xk

Employing binomial expansion in Eq. (11), we have

(
1− e−βx

)b−1
=

∞∑
l=0

(−1)l

(
b− 1

l

)
(e−βx)l,

{
1− (1− e−βx)b

}a−1
=

∞∑
m=0

(−1)m

(
a− 1

m

)
(1−e−βx)bm,

(1− e−βx)bm =

∞∑
s=0

(−1)s

(
bm

s

)
(e−βx)s,

[
1−

{
1− (1− e−βx)b

}a]α−1
=

∞∑
t=0

(−1)t

(
α− 1

t

)
{

1− (1− e−βx)b
}at

,

{
1− (1− e−βx)b

}at
=

∞∑
u=0

(−1)u

(
at

u

)
(1−e−βx)bu,

(
1− e−βx

)bu
==

∞∑
v=0

(−1)v

(
bu

v

)
(e−βx)v

By substituting the binomial expansions above, Eq. (11)
leads to;

ρ
′

r = αβab

∞∑
l=0

∞∑
m=0

∞∑
s=0

∞∑
t=0

∞∑
t=0

∞∑
u=0

∞∑
v=0

∫ ∞
0

xr(−1)(l+m+s+t+u+v)

(
b− 1

l

)(
a− 1

m

)(
bm

s

)(
α− 1

t

)(
at

u

)(
bu

v

)
{

1− (1− e−βx)b
}at (

1− e−βx
)b(m+u) (

e−βx
)1+l+s+v

dx

(12)

By using R software, the first four moments of the
EGEEx distribution values for several parameter values
are given in Table 3. I: α = 2.1, β = 0.9, a = 0.5,
b = 2.2; II: α = 21.9, β = 3.8, a = 4.6, b = 9.8; III:
α = 14.9, β = 1.14, a = 5.9, b = 3; VI: α = 1.9,
β = 1.1, a = 2.9, b = 2.
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The EGEEx distribution has a wide range of means and
variance, as observed in Table 3 .
The EGEEx distribution skewness values, as shown in
Table 3 can be left-skewed (BS < 0) and right-skewed
(BS > 0). The kurtosis values (in Table 3) depict that
the EGEEx distribution can be leptokurtic (MK > 3),
almost mesokurtic ((almost MK = 3)), and platykurtic
(MK < 3).

Table 3: Summary of rth moments, Bowley skewness
(BS), and Moors kurtosis (MK) of the EGEEx

ρ
′

r I II III IV
ρ

′

1 1.5542850 0.0215194 0.0164127 0.2287956
ρ

′

2 3.7063216 0.0051762 0.0030818 0.0826628
ρ

′

3 12.1028139 0.0012310 0.0005755 0.0414004
ρ

′

4 50.6767564 0.0010220 0.0001440 0.0267424
SD 1.1360105 0.0073847 0.0062295 0.1741132
CV 0.7308895 0.3431648 0.3795534 0.7609991
BS 1.5896264 -2.9240020 -2.3847080 1.6322412
MK 6.9927431 0.5059890 3.0941400 7.1770186

C. Skewness and Kurtosis

To demonstrate the influence or effect of the additional
shape parameters on the measure of shape skewness and
kurtosis, the Bowley skewness and Moors kurtosis co-
efficients are computed using quartiles and octiles, re-
spectively. In spite of the presence of outliers, Bowley
skewness, and Moors kurtosis are unaffected by them
and are nonetheless guaranteed to exist.
According to [16], the Bowley skewness based on quar-
tiles is given as:

BS =
Q(0.75) +Q(0.25)− 2Q(0.5)

Q(0.75)−Q(0.25)

and [17] defines the Moors kurtosis based on octiles as

MK =
Q(0.875)−Q(0.625) +Q(0.375)−Q(0.125)

Q(0.75)−Q(0.25)

for Q is the quantile function.
By using Eq. (9), the Bowley skewness and the Moors
kurtosis are obtained.

In Fig. 3, Bowley’s skewness is depicted in three di-
mensions (3D) with fixed baseline parameter values of
α = 1.6 and β = 1.4. Noticed that the additional pa-
rameters affect the shapes of the skewness coefficient.
This improves the EGEEx distribution’s adaptability and
flexibility and supports the significance of the extra pa-
rameters.

(a) (b)

Fig. 3: Plots of Bowley skewness for fixed baseline
parameter values of α = 1.6 and β = 1.4.

In Fig. 4, Moors’ kurtosis is depicted in three di-
mensions (3D) with fixed baseline parameter values of
α = 1.6 and β = 1.4. Noticed that the additional
parameters affect the shapes of the kurtosis coefficient.
This improves the EGEEx distribution’s adaptability and
flexibility and supports the significance of the extra pa-
rameters.

(a) (b)

Fig. 4: Plots of Moors kurtosis for fixed baseline pa-
rameter values of α = 1.6 and β = 1.4.

D. Entropy of EGEEx Distribution

Entropy has been employed as a gauge of the uncertainty
or variation of a random variable in a variety of contexts,
including science, engineering, probability theory, etc.
As described by [18], the Rényi entropy for a random
variable X with any distribution and order ϕ is given as

Rϕ(X) =
1

1− ϕ
log

{∫ ∞
0

[f(x)]
ϕ
dx

}
(13)

for ϕ > 0, 6= 1.
Substituting Eq. (6) into Eq. (13), we have

Rϕ(X) =
1

1− ϕ
log

{∫ ∞
0

(
αβabe−βx

(
1− e−βx

)b−1
wz
)ϕ

dx

}
(14)
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for w =
{

1− (1− e−βx)b
}a−1

, and

z =
[
1−

{
1− (1− e−βx)b

}a]α−1
The binomial expansions can be used in Eq. (14) to
express the Rényi entropy of the EGEEx distribution,
which leads to

Rϕ(X) =
1

1− ϕ
log{(αβab)ϕ

∞∑
l=0

∞∑
m=0

∞∑
s=0

∞∑
t=0

∞∑
t=0

∞∑
u=0

∞∑
v=0

∫ ∞
0

((−1)(l+m+s+t+u+v)

(
b− 1

l

)
×(

a− 1

m

)(
bm

s

)(
α− 1

t

)(
at

u

)
×(

bu

v

){
1− (1− e−βx)b

}at (
1− e−βx

)b(m+u)

×
(
e−βx

)1+l+s+v
)ϕdx} (15)

The entropy values of the EGEEx distribution for vari-
ous parameter values are shown in Table 4. The entropy
values were obtained through numerical integration us-
ing R software by fixing the parameters α, β, a, and b
respectively.

Table 4: Some Rényi entropy values of EGEEx.
Rϕ (1.4, 0.2, 1.8, 0.4) (2.7, 1.4, 3.1, 2.9)
R(0.1) 4.52712 0.110187
R(0.6) 3.34614 -0.95698
R(1.7) 2.93027 -1.31034
R(2.5) 2.82319 -1.40174
R(3.4) 2.75287 -1.46240

E. Order Statistic

The ith order statistic have the general form given as

f(i:n)(x) =
n!

(i− 1)!(n− i)!
f(x)[F (x)]i−1[1−F (x)]n−i

(16)
The ith order statistic of the EGEEx distribution’s PDF
is obtained by substituting Eqs. (5) and (6) into Eq.(16),

which is given by:

f
(i:n)

(x) =
n!

(i− 1)!(n− i)!
αβabe−βx

(
1− e−βx

)b−1
{

1− (1− e−βx)b
}a−1 [

1−
{

1− (1− e−βx)b
}a]α−1

{[
1−

{
1− (1− e−βx)b

}a]α}i−1×{
1−

[
1−

{
1− (1− e−βx)b

}a]α}n−i
(17)

The PDF of the maximum order statistic, f(n:n)(x) is
given as

f
(n:n)

(x) = nαβabe−βx
(
1− e−βx

)b−1 {
1− (1− e−βx)b

}a−1×[
1−

{
1− (1− e−βx)b

}a]α−1 {[
1−

{
1− (1− e−βx)b

}a]α}n−1
(18)

while the PDF of the minimum order statistic, f(1:n)(x)

is given as

f
(1:n)

(x) = nαβabe−βx
(
1− e−βx

)b−1 {
1− (1− e−βx)b

}a−1×[
1−

{
1− (1− e−βx)b

}a]α−1 {
1−

[
1−

{
1− (1− e−βx)b

}a]α}n−1
(19)

The range, r
i,n

(x) can be calculated with the help of the
maximum and minimum order statistic of the EGEEx
distribution, i.e. ri,n(x) = f

(n:n)
(x)− f

(1:n)
(x).

IV. PARAMETERS ESTIMATION

This section of the paper presents the maximum like-
lihood estimations (MLEs) and the simulation study of
EGEEx parameters.

A. Maximum Likelihood Estimation

Assume an independent random sample of size n, with
X1, X2, ..., Xn drawn from a distribution, then the like-
lihood function (`) is given as;

` =
n∏

i=1

f(xi), x > 0, f(xi) = f
EGEEx

(xi)

(20)
The MLEs of the parameters are obtained by simulta-
neously taking the partial derivatives with respect to the
parameters. For the MLEs of the EGEEx distribution pa-
rameters α, β, a, and b, substitute (6) into (20) and take
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the log of likelihood function (`), as shown below:

log(`) = nlog(αβab)− β
n∑
i=1

xi + (b− 1)

n∑
i=1

log(1− e−βxi) + (a−1)

n∑
i=1

log
{

1− (1− e−βxi)b
}

+

(α− 1)

n∑
i=1

log
[
1−

{
1− (1− e−βxi)b

}a]
(21)

The values that maximize the log-likelihood function
presented in Eq. (21) are the maximum likelihood es-
timates (α̂, β̂, â, and b̂) for the parameters (α.β, a, and
b). The partial derivatives of the log-likelihood (log(`))
function of Eq. (21) with respect to α.β, a, and b and
equating each parameter to zero are as follows:

∂log(`)

∂α
=
n

α
+

n∑
i=1

log
[
1−

{
1− (1− e−βxi)b

}a]
= 0

(22)

∂log(`)

∂β
=
n

β
−

n∑
i=1

xi + (b− 1)

n∑
i=1

xi
e−βxi

1− e−βxi
+

b(a− 1)

n∑
i=1

xi
e−βx(1− e−βxi)b−1

(1− e−βxi)b−1
+ a(α− 1)b

n∑
i=1

xi
e−βxi(1− e−βxi)b−1(1− (1− e−βxi)b)a−1

1− (1− (1− e−βxi)b)a)
= 0

(23)

∂log(`)

∂a
=
n

a
+

n∑
i=1

log
{

1− (1− e−βxi)b
}

+(α− 1)

n∑
i=1

[
1− (1− e−βxi)b

]a
log
[
1− (1− e−βxi)b

]
[1− (1− e−βxi)b]a − 1

= 0

(24)

∂log(`)

∂b
=
n

b
+

n∑
i=1

log(1− e−βxi) + (a− 1)

n∑
i=1

(
1− e−βxi

)b
log(1− e−βxi)

(1− e−βxi)b − 1
+ a(α− 1)

n∑
i=1(

1− e−βxi
)b
log(1− e−βxi)

(
1−

(
1− e−βxi

)b)a−1
1−

(
1− (1− e−βxi)b

)a = 0

(25)

The solutions of Eqs. (22)-(25) are found using a numer-
ical optimization method due to the lack of closed-form
solutions.
The Broyden-Fletcher-Goldfarb-Shannon (BFGS) algo-
rithm was used in this article to estimate the parameters
of the EGEEx distribution, and both the Hessian matrix
and the gradient vector of the log-likelihood function
were required. The square matrix, called the Hessian
matrix, consists of the second-ordered partial derivatives
of the log-likelihood function with respect to the param-
eters. The observed information matrix of the EGEEx
distribution is provided as

H−1(φ) =


∂2log(`)
∂α2

∂2log(`)
∂α∂β

∂2log(`)
∂α∂a

∂2log(`)
∂α∂b

∂2log(`)
∂β2

∂2log(`)
∂β∂a

∂2log(`)
∂β∂b

∂2log(`)
∂a2

∂2log(`)
∂a∂b

∂2log(`)
∂b2


for φ̂ = (α̂, β̂, â, b̂)′.

B. Simulation study

A Monte Carlo simulation study was carried out on the
maximum likelihood estimators for the parameters of
the EGEEx distribution to calculate or approximate the
average estimate (AE), average bias (AB), mean square
error (MSE), and root means square error (RMSE).

The algorithm in the Monte Carlo simulation:
To begin, a random sample of sizes n = 200, 400, ...,
1000 was generated using the quantile function given in
Eq. (9), with 1000 iterations for each value of n in the
EGEEx distribution.
In the second step, initial parameter values for α, β, a,
and b were selected:
Set I: (α, β, a, b)=(0.7, 1.3, 1.4, 0.2), and
set II: (α, β, a, b)=(1.6, 0.9, 0.8, 1.9).
Finally, the simulation results for each set’s average
estimate (AE), average bias (AB), mean square error
(MSE), and root mean square error (RMSE) are shown
in Tables 5 and 6.
To estimate the Average Bias (AB), the Mean Squared
Errors (MSE), and the Root Mean Squared Error
(RMSE) the following formulas were used

AB(ψ) =
1

N

N∑
i=1

(ψ̂i − ψ) (26)

MSE(ψ) =
1

N

N∑
i=1

(ψ̂i − ψ)2 (27)
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and

RMSE(ψ) =

√√√√ 1

N

N∑
i=1

(ψ̂i − ψ)2 (28)

For N is the number of iterations in each value of n, and
ψ̂i is an estimator of ψ.
The EGEEx distribution simulation results from Tables
5 and 6 show that the average estimate (AE) converges
to the true values of the parameters as the sample size
(n) increases, and the AB, MSE, and RMSEs for the pa-
rameter estimators decrease as the sample size (n) in-
creases.

Table 5: Monte Carlo simulation study results
Set I: (α, β, a, b)=(0.7, 1.3, 1.4, 0.2)

AE AB
n α̂ β̂ â b̂ α̂ β̂ â b̂

200 0.711113 1.294406 1.394701 0.204491 0.011113 -0.005594 -0.005299 0.004491
400 0.704262 1.296734 1.396951 0.202029 0.004262 -0.003266 -0.003049 0.002029
600 0.702241 1.297679 1.397835 0.201661 0.002241 -0.002321 -0.002165 0.001661
800 0.702585 1.298116 1.398244 0.201173 0.002585 -0.001884 -0.001756 0.001173
1000 0.702508 1.298578 1.398667 0.201463 0.002508 -0.001422 -0.001334 0.001463

MSE RMSE
n α̂ β̂ â b̂ α̂ β̂ â b̂

200 0.003932 0.000147 0.000132 0.000449 0.062703 0.011214 0.011489 0.021169
400 0.001951 0.000059 0.000052 0.000216 0.044176 0.007701 0.007184 0.014714
600 0.001287 0.000030 0.000026 0.000157 0.035869 0.005511 0.005102 0.012520
800 0.000901 0.000019 0.000016 0.000105 0.030020 0.004366 0.004039 0.010228
1000 0.000692 0.000012 0.000011 0.000059 0.026305 0.003523 0.003298 0.009306

Table 6: Monte Carlo simulation study results
set II: (α, β, a, b)=(1.6, 0.9, 0.8, 1.9)

AE AB
n α̂ β̂ â b̂ α̂ β̂ â b̂

200 1.626545 0.903649 0.807350 1.893601 0.026545 0.003649 0.007350 -0.006399
400 1.611138 0.900955 0.804345 1.895433 0.011138 0.000955 0.004345 -0.004566
600 1.610117 0.900978 0.804254 1.896089 0.010117 0.000978 0.004254 -0.003911
800 1.610085 0.900740 0.803364 1.896332 0.010085 0.000740 0.003364 -0.003668
1000 1.608787 0.900638 0.802752 1.896578 0.008787 0.000638 0.002752 -0.003422

MSE RMSE
n α̂ β̂ â b̂ α̂ β̂ â b̂

200 0.026561 0.001175 0.001209 0.000685 0.162974 0.034282 0.034773 0.026179
400 0.012420 0.000556 0.000635 0.000321 0.111448 0.023570 0.025195 0.017906
600 0.008913 0.000440 0.000458 0.000226 0.094411 0.020967 0.021407 0.015017
800 0.006692 0.000288 0.000381 0.000150 0.081808 0.016982 0.019525 0.012245
1000 0.005453 0.000255 0.000289 0.000105 0.073847 0.015969 0.017005 0.010246

Remarks on the MLE based on the simulation results
Since an increase in sample size n leads to conver-

gence of the estimates to the true or initial parameter
values, and the AB, MSE, and RMSE of the parameters
decrease, this shows that the method of parameter esti-
mation using the maximum likelihood method performs
well in estimating the parameters of the EGEEx distri-
bution.

V. APPLICATION OF DATA

In this section of the article, a real data set is fit-
ted to the EGEEx distribution and its competing
models to examine the importance, adaptability, and
flexibility of the EGEEx distribution by using the

goodness-of-fit measures; the negative log-likelihood
(−log(`)), Anderson darling (A∗), Cramer-von mises
(W ∗), Kolmogorov-Smirnov (D) test, Akaike informa-
tion criteria (AIC), Consistent Akaike information cri-
teria (CAIC), Bayesian information criteria (BIC), and
Hannan and quin information criteria (HQIC) .
The goodness-of-fit measures are calculated using the
following mathematical formulae;

A∗ = −n− 1

n

n∑
i=1

(2i−1){logF (xi)+log[1−F (xn−i+1)]}

(29)

W ∗ =

n∑
i=1

(
F (xi)−

2i− 1

2n

)2

+
1

12n
(30)

D = max{|F (xi)−F̂ (xi)|, |F (xi)−F̂ (xi−1)|}, (31)

for i = 1, 2, ..., n

AIC = 2[−log(`) + k] (32)

CAIC = −2log(`) + k[log(N) + 1] (33)

BIC = −2log(`) + klog(N) (34)

HQIC = 2{−log(`) + klog[log(N)]} (35)

where k denotes the number of estimated parameters in
the model, ` denotes the maximum value of the likeli-
hood function for the distribution, and N denotes the
number of sample size/data points.

Data set: An extensive fatigue life of 6061-
T6 aluminum coupons

The data comprises of 101 fatigue life of 6061-T6 alu-
minum coupons cut parallel to the direction of rolling
and oscillated at 18 cycles per second, which are shown
in Table 7. The same data set was used by [19].

Table 7: Fatigue life of 6061-T6 aluminum coupons.
70 90 96 97 99 100 103 104
104 105 107 108 108 108 109 109
112 112 113 114 114 114 116 119
120 120 120 121 121 123 124 124
124 124 124 128 128 129 129 130
130 130 131 131 131 131 131 132
132 132 133 134 134 134 134 134
136 136 137 138 138 138 139 139
141 141 142 142 142 142 142 142
144 144 145 146 148 148 149 151
151 152 155 156 157 157 157 157
158 159 162 163 163 164 166 166
168 170 174 196 212
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Table 8 summarizes the most relevant descriptive statis-
tics of the fatigue life of 6061-T6 aluminum coupons.
The skewness value indicates that the data are right-
skewed due to its positive sign, and the kurtosis value
indicates leptokurtosis characteristics, i.e. the value is
greater than 3, which is associated with the normal dis-
tribution as observed in Table 8.

Table 8: Descriptive statistics for the fatigue life of
6061-T6 aluminum coupons.

Statistic min. max. mean median mode var. sd. skewness kurtosis

Value 70 212 133.7327 133 142 499.7778 22.35571 0.3305 4.0528

The Total Time in Test (TTT)-transform plot from
Fig. 5(a) indicates that the data has a concave hazard
rate shape (i.e., monotonic increasing) defined by [20]
with few outliers.
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Fig. 5: (a) TTT-transform plot, (b) Boxplot, and (c)
Histogram for the data set

The parameter estimates for the fitted models are shown
in Table 9, along with their standard errors in parenthe-
ses. All of the parameters of the fitted models are signif-
icant at the 5% significance level. The conclusion that
all of the parameters of the fitted models are significant
at the 5% level of significance can be drawn from the
standard error test, which states that a parameter is con-
sidered to be significant at the 5% level of significance if
the standard error is less than half the parameter value.
From Tables 10 and 11, when compared to the compet-
ing models, a lower value of goodness-of-fit measures
indicate a better fit, and thus the EGEEx distribution fits
the fatigue life of 6061-T6 aluminum coupon data bet-
ter than its competing models, with the exception of the
exponential (Ex) distribution, which does not fit due to
p− value < 0.05.

Table 9: The estimates and SEs (in parentheses) for
the fatigue life of 6061-T6 aluminum coupons.

Model α̂ β̂ â b̂

EGEEx 11.3152(1.9578) 0.1897(0.0694) 1.0860 (0.3982) 0.1033(0.0376)
GEEx - 6.9862(1.1798) 0.4939(0.0926) 0.0358(0.0067)
EGEx 7.1712(1.0989) 0.0048(0.0007) 3.9106(0.6294) -
EEx - 0.0161(0.0013) - 5.4602(0.8707)
GEx - 3.2391(0.4669) 0.0023(0.0002) -
Ex - 0.0075(0.0007) - -

Table 10: Summary of A∗, W ∗, D, and p− values for
the fatigue life of 6061-T6 aluminum coupons.

Model A∗ W ∗ D p− value
EGEEx 0.301 0.049 0.085 0.769
GEEx 0.444 0.076 0.268 0.724
EGEx 0.440 0.075 0.267 0.731
EEx 0.426 0.072 0.275 0.456
GEx 0.380 0.063 0.490 0.051
Ex 0.382 0.065 0.496 0.003

Table 11: The−log(`) and information criteria results
for the fatigue life of 6061-T6 aluminum coupons.

Model −log(`) AIC CAIC BIC HQIC

EGEEx 501.552 1011.104 1011.520 1021.564 1015.338
GEEx 515.233 1036.467 1036.714 1044.312 1039.643
EGEx 514.313 1034.626 1034.873 1042.471 1037.802
EEx 523.041 1050.083 1050.205 1055.313 1052.200
GEx 595.483 1194.966 1195.088 1200.196 1197.083
Ex 595.480 1192.960 1193.001 1195.575 1194.019

The fitted densities plot for the EGEEx and its sub-
models in Fig. 6 shows that the EGEEx distribution
best fit or mimic the fatigue life of 6061-T6 aluminum
coupon data than its sub-models.
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Fig. 6: Fitted densities for the fatigue life of 6061-T6
aluminum coupons
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VI. CONCLUSION

When it comes to the most commonly used baseline
distribution by mathematicians and statisticians in the
modification or extending distribution then the exponen-
tial distribution is no exception. This article proposes
the exponentiated generalized exponentiated exponen-
tial distribution (written as EGEEx). Some basic statis-
tical properties of the proposed EGEEx distribution are
investigated, including the hazard rate function, quan-
tile function, moments, entropy, and order statistic. The
maximum likelihood estimators of the EGEEx parame-
ters are derived, and a Monte Carlo simulation analysis
was conducted to compute the asymptotic properties of
the MLEs, the average estimates, the average bias, the
mean square error, and the root mean square error. The
simulation analysis shows that the estimates converge to
the true value of the parameter as the sample size in-
creases, and the values of the average biases, the mean
square errors, and the root mean square errors decrease
with an increase in the sample size. Finally, the flexi-
bility and adaptability of the EGEEx distribution were
tested by applying the fatigue life of the 6061-T6 alu-
minum coupon data set, and the results show that the
EGEEx distribution is flexible enough to analyze data
that exhibit heavy tails and that the EGEEx distribution
performs better than its competing models in analyzing
the data set.
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