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Abstract:
In this paper, a new four-parameter distribution called the Kumaraswamy-Gull Alpha Power Rayleigh distribution
(abbreviated as Kw-GAPR) has been proposed. Some well-known sub-models are obtained from the proposed
Kw-GAPR distribution. Some statistical properties of the proposed Kw-GAPR distribution are investigated. The
distribution parameters are estimated by using the method of maximum likelihood estimation. To assess the
performance of the MLE estimates, a Monte Carlo simulation study was conducted. According to the results of
the simulation study, as the sample size is increased, average estimates converge to the parameters’ true values and
average bias, MSE, and RMSE generally decrease. The proposed Kw-GAPR distribution and its sub-models are
then compared by fitting the models to an HIV/AIDS data set. From the fitted data set, a conclusion can be drawn
that the proposed Kw-GAPR distribution outperforms its competing sub-models.
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I. INTRODUCTION

When it comes to the fundamental concept of statistics
that is most widely used in both theory and practice then
probability distributions are at the lead. In some fields of
study data analysis is the key but these data may exhibit
two or more data characteristics such as skewness, kur-
tosis, monotonic hazard rates, and non-monotonic fail-
ure rates at the same time while a majority of fundamen-
tal distributions and some families of distributions are
unable to accommodate due to the single shape parame-
ter of their cumulative density function. In other to han-
dle the aforementioned data characteristics, mathemati-
cians and statisticians have introduced the idea of devel-
oping new distributions that are flexible enough to han-
dle two or more of the data characteristics at the same
time by adding extra shape parameter(s) to the classi-

cal or fundamental distributions. This addition of extra
shape parameters to distributions have been done many
ways such as the variable transformation, exponentia-
tion method, Quantile method, the combination of two
or more distributions/models method, etc.

However, a large number of novel distributions and
families of distributions have been developed and ex-
tended with the help of the aforementioned tech-
niques, these novel developed distributions including
the exponentiated Rayleigh distribution using Bayesian
analysis by [1], Slashed exponentiated rayleigh dis-
tribution by [2], the exponentiated rayleigh distribu-
tion based on generalized Type-II hybrid censored
data by [3], Exponentiated Rayleigh distribution us-
ing MCMC approach by [4], the exponentiated gen-
eralized class of distributions by [5], a note on Ku-
maraswamy exponentiated Rayleigh distribution by [6],

ISSN:2581-7175 ©IJSRED:All Rights are Reserved Page 431



International Journal of Scientific Research and Engineering Development–Volume 6 Issue 1, Jan-Feb 2023
Available at www.ijsred.com

the Kumaraswamy Marshall-Olkin family by [7], the
Kumaraswamy Transmute-G family of distributions by
[8], the generalized Marshall-Olkin Kumaraswamy-G
family by [9], the Kumaraswamy alpha power-G family
by [10] and among others.

In 2020, [11] introduced a new distribution called the
Gull Alpha power Weibull distribution which was ap-
plied in real and simulated data sets. The Gull alpha
Power is a family of distributions with a single shape
parameter of its cumulative density function (CDF).
For the past two years, researchers have been extend-
ing the Gull Alpha power to make the family flexible by
handling two or more of the data characteristics, these
extensions including the Gull Alpha Power Chen-G type
by [12], the Gull Alpha Power Ampadu-G type by [13],
the exponentiated generalized gull alpha power Rayleigh
(EGGAPR) distribution by [14], the exponentiated gen-
eralized gull alpha power exponential (EGGAPE) distri-
bution by [15], the exponentiated gull alpha power ex-
ponential (EGAPE) distribution by [16], An extended
Kumaraswamy-Gull Power Exponential (K-GAPE) dis-
tribution by [17].
This paper introduces a four-parameterized model
known as the Kw-GAPR distribution.

According to [11] the Gull Alpha Power Family
(GAPF) of distributions with CDF, G(x) and PDF, g(x)

respectively are given as:

G(x) =

{
ηG(x)
ηG(x) , if η > 0, η 6= 1

G(x), if η = 1
(1)

g(x) = log(η)η1−G(x)(−g(x)G(x)) + g(x)η1−G(x),

(2)
for η > 0, η 6= 1

The GAPF’s CDF and PDF are used as a baseline to
develop the new family known as the Kamuraswamy-
Gull Alpha Power Family, the Kumaraswamy family of
distributions, which was introduced by [18]. The main
objective of extending this family is to create a distri-
bution that has various shapes (i.e. different hazard rate
shapes), gives a distribution that offers a better fit com-
pared to other models with the same baseline distribu-
tion, and have heavy-tailed to model various real data
sets. The Kumaraswamy-Gull Alpha Power Rayleigh
distribution, written as Kw-GAPR, was developed using
the Rayleigh distribution as a baseline distribution in the
new family of distributions.

The remainder of the article is organized as fol-
lows: Section “Development of Kw-GAPR distribution"

presents the newly developed family, the proposed dis-
tribution, and its sub-models, Section “Statistical prop-
erties" presents some statistical properties of the Kw-
GAPR distribution, Section “Parameters Estimation"
presents the parameters estimation and the Monte Carlo
simulation study results. The proposed distribution is
then used with its competing sub-models to analyze
HIV/AIDS data set in Section “Application", and con-
cluding remarks are presented in Section “conclusion".

II. DEVELOPMENT OF THE
Kw-GAPR DISTRIBUTION

A. The Kumaraswamy-Gull Alpha Power
Family (Kw-GAPF) of Distributions

The CDF, G(x) of Kumaraswamy family of distributions
defined by [18] is given as

GKw(x) = 1− {1− [G(x)]a}b,a > 0, b > 0 (3)

with PDF, g(x) as

g
Kw

(x) = abg(x)[G(x)]a−1{1− [G(x)]a}b−1 (4)

where x > 0, a > 0, and b > 0

To develop the new family of distributions called Kw-
GAPF, we substitute Eqs. (1) and (2) of GAPF into Eqs.
(3) and (4). The new family will have a CDF defined by

GKw−GAPF (x) = 1−
{

1−
[
ηG(x)

ηG(x)

]a}b
(5)

and PDF defined by

gKw−GAPF (x) = ab(log(η)η1−G(x)(−g(x)G(x))+g(x)η1−G(x))

×
[
ηG(x)

ηG(x)

]a−1

×
{

1−
[
ηG(x)

ηG(x)

]a}b−1

(6)

for a > 0, b > 0.

B. The Kw-GAP Rayleigh distribution

The proposed Kw-GAPR (x, a, b, η, µ) distribution has
the CDF, PDF, and h(x) defined as:

G(x) = 1−

1−

η(1− e−
x2

2µ2 )

η1−e
− x2

2µ2

a
b

(7)
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g(x) = ab(ηe
− x2

2µ2 x

µ2
e
− x2

2µ2 − log(η)ηe
− x2

2µ2 x

µ2
(1−

e
− x2

2µ2 )e
− x2

2µ2 )

[
(1− e−

x2

2µ2 )ηe
− x2

2µ2

]a−1

×

{
1−

[
(1− e−

x2

2µ2 )ηe
− x2

2µ2

]a}b−1

(8)

h(x) =

M

[
η(1−e

− x2

2µ2 )

ηe
− x2

2µ2

]a−1 {
1−

[
η(1−e

− x2

2µ2 )

η1−e
− x2

2µ2

]a}b−1

{
1−

[
(1− e−

x2

2µ2 )ηe
− x2

2µ2

]a}b
(9)

for M = ab(ηe
− x2

2µ2 x
µ2 e
− x2

2µ2 − log(η)ηe
− x2

2µ2 x
µ2 (1 −

e
− x2

2µ2 )e
− x2

2µ2 ), x > 0, µ > 0.

From Fig. 1, the Kw-GAPR density function can be
unimodal, J-shaped, right-skewed, virtually symmetric,
left-skewed, with a heavy-tail, and highly flexible kurto-
sis, making it ideal for modeling variety of data sets.
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Fig. 1: Kw-GAPR density shapes for some parame-
ters values

It is observed from Fig. 2 that the plots of the haz-
ard rate function for different parameter values show
a variety of shapes, which include decreasing, increas-
ing, inverted bathtub shapes, and increasing-decreasing
shapes. The Kw-GAPR distribution has very attractive
characteristics that make it suitable for modeling mono-
tonic and non-monotonic hazard behaviors that are more
likely to be encountered in real-world situations like re-
liability analysis, human mortality, and biomedical ap-

plications, thus increasing its adaptability to fit various
survival data.
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Fig. 2: Kw-GAPR Hazard rate function shapes

C. Sub-Models of the Kw-GAPR

The Kw-GAPR distribution have some special sub-
models. These sub-models include:

(i) The Rayleigh (R) distribution

When η = a = b = 1, the Kw-GAPR distribution’s
CDF reduces to the Rayleigh (R) distribution with CDF

defined by GR(x) =

(
1− e−

x2

2µ2

)
, for µ > 0, x > 0.

(ii) The Exponentiated Rayleigh (ER) distribution

When η = b = 1, the Kw-GAPR distribution’s CDF
reduces to the Exponentiated Rayleigh (ER) distribution

with CDF defined by GER(x) =

(
1− e−

x2

2µ2

)a
, for

µ > 0, a > 0, 6= 1, x > 0.

(iii) The Gull Alpha Power Rayleigh (GAPR) distribu-
tion

When a = b = 1, the Kw-GAPR distribution’s CDF
reduces to the Gull Alpha Power Rayleigh (GAPR)
distribution with CDF defined by GGAPR(x) =[
η(1−e

− x2

2µ2 )

η1−e
− x2

2µ2

]
, for η > 0, 6= 1, µ > 0, x > 0
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(iv) The Exponentiated Gull Alpha Power Rayleigh
(EGAPR) distribution

When b = 1 the Kw-GAPR distribution’s CDF
reduceS to the Exponentiated Gull Alpha Power
Rayleigh (EGAPR) distribution with CDF defined by

GEGAPR(x) =

[
η(1−e

− x2

2µ2 )

η1−e
− x2

2µ2

]a
, for η, a > 0, 6= 1,

µ > 0, x > 0

(v) The Kumaraswamy Rayleigh (KR) distribution

When η = 1, the Kw-GAPR distribution’s CDF reduces
to the Kumaraswamy Rayleigh (KR) distribution with

CDF defined byGKR(x) = 1−
[
1−

(
1− e−

x2

2µ2

)a]b
,

for µ > 0, a, b > 0, 6= 1, x > 0.
Table 1 displays a summary of Kw-GAPR some special
sub-models.

Table 1: Summary of some special sub-models of the
Kw-GAPR distribution.

η a b Sub-model
1 1 1 The R distribution
1 a 1 Th ER distribution
η 1 1 The GAPR distribution
η a 1 The EGAPR distribution
1 a b The KR distribution

III. STATISTICAL PROPERTIES

In this section of the paper, the statistical properties of
the proposed Kw-GAPR distribution are investigated.

A. Quantile function

The quantile function has been used to compute the me-
dian, skewness, kurtosis, and to conducted simulation
studies, among other things.
Eq. (10) shows the quantile function (i.e. inverse CDF)
of the Kw-GAPR distribution which was obtained by us-

ing Mathematica software.

Qx(k) = µ·

√√√√√√√√√√log


logη2(

W (z)(−
(

1−(1−k)
1
b

) 1
a log(η)

η ) + log(η)

)2


,

(10)
for η > 0, 6= 1

where productLog function W (z) is defined by

W (z) =

∑∞
n=1(−1)n−1nn−2

(n− 1)!
zn

Table 2 displays some quantile function values for dif-
ferent combinations of parameter values. For k = 0.5

being the median.

Table 2: Summary of some Quantile values of the Kw-
GAPR distribution.
k η = 0.7, µ = 0.3, a = 1.4, b = 2.6 η = 0.7, µ = 0.3, a = 1.8, b = 3.2

0.1 0.162123 0.199292
0.2 0.212372 0.247268
0.3 0.251508 0.283478
0.4 0.286391 0.315175
0.5 0.319925 0.345275
0.6 0.354168 0.375733
0.7 0.391438 0.408649
0.8 0.435743 0.447548
0.9 0.498250 0.502136

B. The rth Moments

Given the general form of the rth Moments as

δ
′

r =

∫ ∞

0

xrg(x)dx (11)

where r = 1, 2, 3, 4, ..., n and g(x) is the PDF of any
distribution, then by substituting the Kw-GAPR PDF as
in Eq. (8) into Eq. (11) we have:

δ
′

r = ab(ηe
− x2

2µ2 x

µ2
e
− x2

2µ2 − log(η)ηe
− x2

2µ2 x

µ2
(1−

e
− x2

2µ2 )e
− x2

2µ2 )

[
(1− e−

x2

2µ2 )ηe
− x2

2µ2

]a−1

×

{
1−

[
(1− e−

x2

2µ2 )ηe
− x2

2µ2

]a}b−1

dx (12)
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Necessary representation for the binomial expansion.

(1− x)r−1 =

∞∑
t=0

(
r − 1

t

)
(1)n−1−t(−x)t

=

∞∑
t=0

(−1)t

(
r − 1

t

)
xt

Using the necessary binomial expansion representation
in Eq. (12),
we have[

(1− e−
x2

2µ2 )ηe
− x2

2µ2

]a−1

=

(
ηe
− x2

2µ2

)a−1 ∞∑
s=0

(−1)s

(
a− 1

s

)(
e
− x2

2µ2

)s

{
1−

[
(1− e−

x2

2µ2 )ηe
− x2

2µ2

]a}b−1

=

∞∑
t=0

(−1)t

(
b− 1

t

)[
(1− e−

x2

2µ2 )ηe
− x2

2µ2

]at
but[

(1− e
x2

2µ2
−

)ηe
− x2

2µ2

]at
=

(
ηe
− x2

2µ2

)at ∞∑
z=0

(−1)z

(
at

z

)(
e
− x2

2µ2

)z
By employing the three binomial expansions above, Eq.
(12) can now be written as;

δ
′

r = (
ab

µ2
)

∞∑
s=0

∞∑
t=0

∞∑
z=0

∫ ∞
0

xr+1(−1)s+t+z

(
ηe
− x2

2µ2

)a+at−1(
a− 1

s

)(
b− 1

t

)(
at

z

)
(
e
− x2

2µ2

)s+z (
ηe
− x2

2µ2

e
− x2

2µ2

)s+z
[

(1− e−
x2

2µ2 )ηe
− x2

2µ2

]at(
1− log(η)(1− e−

x2

2µ2 )

)
dx

(13)

It is noticeable that Eq. (13) is not in closed form, hence,
the moments are acquired by numerical integration using
R software.

The first five moments of the Kw-GAPR distribution val-
ues for various parameter values are shown in Table 3.
I: η = 0.1, µ = 0.4, a = 1.1, b = 4; II: η = 2, µ = 0.4,
a = 1.1, b = 4; III: η = 0.1, µ = 0.8, a = 1.1, b = 4;
VI: η = 0.1, µ = 1.4, a = 1.6, b = 4; V: η = 0.1,
µ = 0.4, a = 1.1, b = 1.3.
It is observed from Table 3 that the Kw-GAPR distribu-
tion is versatile in both means and variance.
Table 3 also depicts that the Kw-GAPR distribution
skewness values can be right-skewed (i.e. S > 0) and
left-skewed (i.e. S < 0) while the kurtosis values de-
pict that the Kw-GAPR can be platykurtic (i.e. K < 3),
almost mesokurtic (i.e. almost K = 3), and leptokurtic
(i.e K > 3).

Table 3: Summary of rth moments, skewness (S), and
kurtosis (K)
δ
′

r I II III IV V
δ
′

1 0.4942589 0.1960544 0.9885179 0.5941964 0.6867672
δ
′

2 0.2701488 0.0482603 1.0805952 0.3740137 0.5224169
δ
′

3 0.1586705 0.0139796 1.2693640 0.2467171 0.4302878
δ
′

4 0.0986716 0.0046031 1.5787457 0.1693993 0.3790027
δ
′

5 0.0643761 0.0016864 2.0600344 0.1204957 0.3541442
Var. 0.02585689 0.00982298 0.10342757 0.02094425 0.05076775
SD 0.1608008 0.0991109 0.3216016 0.1447213 0.2253170
CV 0.3253371 0.5055277 0.3253371 0.2435580 0.3280835
S -0.0993212 0.6843949 -0.0993203 -0.1354240 0.1554067
K 2.8564070 3.5005446 2.8563956 3.0737262 3.1035235

C. Skewness and Kurtosis

The Bowley skewness and Moors kurtosis coefficients
are calculated using quartiles and octiles, respectively,
to show the influence or effect of the extra shape pa-
rameters on the measure of shape skewness and kurtosis.
Bowley skewness and Moors kurtosis are insensitive to
outliers and are guaranteed to exist even for distributions
without moments. The Bowley skewness based on quar-
tiles defined by [19] is given as:

S =
Q(0.75) +Q(0.25)− 2Q(0.5)

Q(0.75)−Q(0.25)

and the Moors kurtosis based on octiles defined by [20]
is given as

K =
Q(0.875)−Q(0.625) +Q(0.375)−Q(0.125)

Q(0.75)−Q(0.25)

where Q is the quantile function.
The Bowley skewness and the Moors kurtosis are ob-
tained using Eq. (10)
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A 3D representation of Bowley’s skewness with fixed
baseline parameter values of η = 0.3 and µ = 0.7 is
shown in Fig. 3. As observed, the extra parameters have
an impact on the skewness coefficient’s shapes. This in-
creases the adaptability/flexibility of the Kw-GAPR dis-
tribution and supports the significance of the additional
parameters.

(a)

(b)

Fig. 3: Plots of Bowley’s skewness for the Kw-GAPR
distribution for fixed baseline parameter values of
η = 0.3 and µ = 0.7.

A 3D representation of Moors’ kurtosis with fixed
baseline parameter values of η = 0.3 and µ = 0.7 is
shown in Fig. 4. As observed, the extra parameters have
an impact on the kurtosis coefficient’s shapes. This in-
creases the adaptability/flexibility of the Kw-GAPR dis-
tribution and supports the significance of the additional
parameters.

D. Entropy of Kw-GAPR Distribution

In various situations such as in science, engineering,
probability theory etc., Entropy has been used as a mea-
sure of uncertainty or variation of a random variable.
The Rényi Entropy for a random variable X with any

(a)

(b)

Fig. 4: Plots of Moors kurtosis for the Kw-GAPR
distribution for fixed baseline parameter values of
η = 0.3 and µ = 0.7.

distribution and order γ defined by [21] is given as

Rγ(X) =
1

1− γ
log

{∫ ∞
0

[g(x)]
γ
dx

}
(14)

for γ > 0, 6= 1, γ > 1.
Substituting Eq. (8) into Eq. (14), we have

Rγ(X) =
1

1− γ
log{

∫ ∞
0

(ab(ηe
− x2

2µ2 x

µ2
e
− x2

2µ2−

log(η)ηe
− x2

2µ2 x

µ2
(1− e−

x2

2µ2 )e
− x2

2µ2 )[
(1− e−

x2

2µ2 )ηe
− x2

2µ2

]a−1

×

{
1−

[
(1− e−

x2

2µ2 )ηe
− x2

2µ2

]a}b−1

)γdx} (15)

Using the necessary binomial representations in Eq.
(15), the Rényi entropy of the Kw-GAPR distribution
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can be written as

Rγ(X) =
1

1− γ
log[(

ab

µ2
)γ
∞∑
s=0

∞∑
t=0

∞∑
z=0

∫ ∞
0

xγ

{(−1)s+t+z(
ηe
− x2

2µ2

)a+at−1(
a− 1

s

)(
b− 1

t

)(
at

z

)
(
e
− x2

2µ2

)s+z (
ηe
− x2

2µ2

e
− x2

2µ2

)s+z
[

(1− e−
x2

2µ2 )ηe
− x2

2µ2

]at(
1− log(η)(1− e−

x2

2µ2 )

)
}γdx]

(16)

Table 4 displays the Kw-GAPR distribution entropy val-
ues for different parameter values
I: η = 0.7, µ = 0.9, a = 2.9, b = 1.7; II: η = 0.3,
µ = 1.5, a = 1.3, b = 2.5; III: η = 0.5, µ = 0.4,
a = 1.9, b = 1.3. These entropy values were obtained
through numerical integration.

Table 4: Some values of the Rényi entropy for the Kw-
GAPR distribution.

Rγ I II III
R(0.3) 0.877354 1.320951 0.218472
R(0.7) 0.621273 1.112078 -0.026330
R(1.2) 0.483811 0.992315 -0.160581
R(1.8) 0.395330 0.911272 -0.248079
R(2.4) 0.340423 0.859521 -0.302702
R(3.1) 0.296916 0.817843 -0.346111

E. Order Statistic

The general form of the ith order statistic is given by

g(i:n)(x) =
n!

(i− 1)!(n− i)!
[G(x)]i−1[1−G(x)]n−ig(x)

(17)
Therefore, by substituting Eqs. (7) and (8) into Eq. (17),
the ith order statistic of the K-GAPE distribution’s PDF

is given by:

g
(i:n)

(x) =
n!

(i− 1)!(n− i)!
ab(

x

µ2
ηe
− x2

2µ2

e
− x2

2µ2−ηe
− x2

2µ2

log(η)
x

µ2
(1−e−

x2

2µ2 )e
− x2

2µ2 )

[
(1− e−

x2

2µ2 )ηe
− x2

2µ2

]a−1

×

{
1−

[
(1− e−

x2

2µ2 )ηe
− x2

2µ2

]a}b−1

×1−

[
1−

(
(1− e−

x2

2µ2 )ηe
x2

2µ2

)a]b
i−1

×


[

1−

(
(1− e−

x2

2µ2 )ηe
− x2

2µ2

)a]b
n−i

(18)

while the PDF of the minimum order statistic, f(1:n)(x)

is given by

g
(1:n)

(x) = nab
x

µ2
e
− x2

2µ2 ηe
− x2

2µ2

(
1− log(η)(1− e−

x2

2µ2 )

)
[

(1− e−
x2

2µ2 )ηe
− x2

2µ2

]a−1{
1−

[
(1− e−

x2

2µ2 )ηe
− x2

2µ2

]a}b−1

×
[

1−

(
(1− e−

x2

2µ2 )ηe
− x2

2µ2

)a]b
n−1

(19)

and the PDF of the maximum order statistic, f(n:n)(x)

is given by

g
(n:n)

(x) = nab
x

µ2
e
− x2

2µ2 ηe
− x2

2µ2

(
1− log(η)(1− e−

x2

2µ2 )

)
[

(1− e−
x2

2µ2 )ηe
− x2

2µ2

]a−1{
1−

[
(1− e−

x2

2µ2 )ηe
− x2

2µ2

]a}b−1

×1−

[
1−

(
(1− e−

x2

2µ2 )ηe
− x2

2µ2

)a]b
n−1

(20)

With the minimum and maximum order statistic, the
range (R) of the distribution can be calculated by
R(i:n)(x) = g

(n:n)
(x)− g

(1:n)
(x).

IV. PARAMETERS ESTIMATION

The log-likelihood function is employed in Eq. (8) for
the model parameters a, b, η, µ, to determine the MLEs
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of the given parameter estimation, which is given as

log(`) = 2nlog(ab) + 2

n∑
i=1

log(xi)− 4nlog(µ)−

1

µ2

n∑
i=1

(x2
i ) + log(log(η)) +

n∑
i=1

log(1− e−
x2i
2µ2 )+

(a− 1)

n∑
i=1

log

η(1− e−
x2i
2µ2 )

η1−e
−
x2
i

2µ2

+

(b− 1)

n∑
i=1

log

1−

η(1− e−µx2
i )

η1−e
−
x2
i

2µ2


a (21)

The maximum likelihood estimates ( â , b̂, η̂, µ̂) for the
parameters a, b, η, and µ are the values that maximize
the log-likelihood function shown in Eq. (21).
The partial derivatives of the log-likelihood function in
Eq. (21) with respect to a, b, η, µ are given by:
For ease of differentiation, let

j = 2nlog(ab) + 2

n∑
i=1

log(xi)− 4nlog(µ)−

1

µ2

n∑
i=1

(x2
i ) + log(log(η)) +

n∑
i=1

log(1− e−
x2i
2µ2 ),

m = (a− 1)

n∑
i=1

log

η(1− e−
x2i
2µ2 )

η1−e
−
x2
i

2µ2

,
and

k = (b− 1)

n∑
i=1

log

1−

η(1− e−µx2
i )

η1−e
−
x2
i

2µ2


a

Hence, Eq. (21) can now be written as

log(`) = j +m+ k (22)

From Eq. (21), we can express the log-likelihood in
terms of j, m, and k (as in Eq. 22) and perform their
partial derivatives w.r.t. a, b, η, µ as shown.

∂j

∂a
=

2n

a
,
∂j

∂b
=

2n

b
,
∂j

∂η
=

1

η log η
,

∂j

∂µ
= −4n

µ
+

2

µ3

n∑
i=1

x2
i −

1

µ3

n∑
i=1

x2
i e
− x2i

2µ2

1− e−
x2
i

2µ2

∂m

∂a
=

n∑
i=1

log

η(1− e−
x2i
2µ2 )

η1−e
−
x2
i

2µ2

, ∂m
∂b

= 0,

∂m

∂η
= (a− 1)

n∑
i=1

e
− x2i

2µ2

η
,

∂m

∂µ
= (a− 1)

n∑
i=1

x2
i e
− x2i

2µ2 [log(η)(1− e−
x2i
2µ2 )− 1]

µ3(1− e−
x2
i

2µ2 )

∂k

∂a
= (b−1)

n∑
i=1

η(1−e
−
x2i
2µ2 )

η1−e
−
x2
i

2µ2

a

log

η(1−e
−
x2i
2µ2 )

η1−e
−
x2
i

2µ2


η(1−e

−
x2
i

2µ2 )

η1−e
−
x2
i

2µ2

a

− 1

 ,

∂k

∂b
=

n∑
i=1

log

1−

η(1− e−
x2i
2µ2 )

η1−e
−
x2
i

2µ2


a

∂k

∂η
= a(b−1)

n∑
i=1

e
− x2i

2µ2

(
(1− e−

x2i
2µ2 )ηe

−
x2i
2µ2

)a

η

[(
ηe
−
x2
i

2µ2 (1− e−
x2
i

2µ2 )

)a
− 1

] , ∂k
∂µ

= a(b−1)

n∑
i=1

(
(1− e−

x2i
2µ2 )ηe

−
x2i
2µ2

)a
x2
i e
− x2i

2µ2 [log(η)(1− e−
x2i
2µ2 )− 1]

µ3

((
(1− e−

x2
i

2µ2 )ηe
−
x2
i

2µ2

)a
− 1

)
(1− e−

x2
i

2µ2 )

Therefore, the partial derivatives of log(`) for each pa-
rameter and equating them to zero are as follows:

∂log(`)

∂a
=
∂j

∂a
+
∂m

∂a
+
∂k

∂a
= 0 (23)

∂log(`)

∂b
=
∂j

∂b
+
∂m

∂b
+
∂k

∂b
= 0 (24)

∂log(`)

∂η
=
∂j

∂η
+
∂m

∂η
+
∂k

∂η
= 0 (25)

∂log(`)

∂µ
=
∂j

∂µ
+
∂m

∂µ
+
∂k

∂µ
= 0 (26)

From observation, a numerical optimization method is
required to find the solutions of Eqs. (23)-(26) due to
the fact that they lack closed-form solutions. In this
paper, to estimate the Kw-GAPR distribution’s param-
eters, the Broyden-Fletcher-Goldfarb-Shannon (BFGS)
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algorithm was utilized, and both the gradient vector of
the log-likelihood function and the Hessian matrix is re-
quired.The second-ordered partial derivatives of the log-
likelihood function with respect to the parameters make
up the square matrix known as the Hessian matrix.
The Kw-GAPR distribution’s observed information ma-
trix is given by

J−1(ϕ) =


∂2log(`)
∂η2

∂2log(`)
∂η∂µ

∂2log(`)
∂η∂a

∂2log(`)
∂η∂b

∂2log(`)
∂µ2

∂2log(`)
∂µ∂a

∂2log(`)
∂µ∂b

∂2log(`)
∂a2

∂2log(`)
∂a∂b

∂2log(`)
∂b2


evaluated at ϕ̂ = (η̂, µ̂, â, b̂)′.

Monte Carlo simulation study

To investigate the average biases (ABs), mean square er-
rors (MSEs), root mean square errors (RMSEs), and the
average estimates (AEs) of the maximum likelihood es-
timators for the parameters of the Kw-GAPR distribu-
tion a Monte Carlo simulation study was conducted.
Steps involved in conducting a Monte Simulation study:
Step 1. A random sample of sizes n=100, 200, ...,
500 with 1000 iterations/replications in each n value
was generated from the Kw-GAPR distribution using the
quantile function given in Eq. (10)
Step 2. Two selected sets of initial values for parameters
were used:
Set I (η, µ, a, b)=(0.5, 0.3, 1.5, 1.3), and set II: (η, µ, a,
b)=(0.6, 0.8, 1.6, 1.8).
Step 3. In each set, the simulation results for the average
estimates (AEs), average biases (ABs), mean square er-
rors (MSEs), and root mean square errors (RMSEs) are
recorded shown in Tables 5 and 6.
To calculate the Average Biases (ABs), the Mean
Squared Errors (MSEs), and the Root Mean Squared Er-
rors (RMSEs) the following formulae were used

AB(Θ) =
1

Z

Z∑
i=1

(Θ̂i −Θ) (27)

MSE(Θ) =
1

Z

Z∑
i=1

(Θ̂i −Θ)2 (28)

and

RMSE(Θ) =

√√√√ 1

Z

Z∑
i=1

(Θ̂i −Θ)2 (29)

Where Z is the number of iterations, and Θ̂i is an esti-
mator of Θ.
The simulation results for the Kw-GAPR distribution
show that the average estimates (AEs) approach the true
values of the parameters as the sample size increases as
shown in Tables 5 and 6 . The ABs, MSEs, and RMSEs
for the estimators of the parameters decrease, in general,
as the sample size presented increases (shown in Tables
5 and 6).

Table 5: Monte Carlo simulation study results for set
I parameters

(η, µ, a, b)=(0.5, 0.3, 1.5, 1.3)
AEs ABs

n η̂ µ̂ â b̂ η̂ µ̂ â b̂

100 0.6485 0.3508 1.6749 2.7632 0.1485 0.0508 0.1749 1.4632
200 0.5838 0.3168 1.5156 2.5967 0.0838 0.0168 0.0156 1.2967
300 0.5767 0.3017 1.4993 2.7489 0.0767 0.0017 -0.0007 1.4489
400 0.5439 0.3045 1.4561 2.6222 0.0439 0.0045 -0.0439 1.3222
500 0.5364 0.3015 1.4637 2.4308 0.0364 0.0015 -0.0363 1.1308

MSEs RMSEs
n η̂ µ̂ â b̂ η̂ µ̂ â b̂

100 0.3536 0.0497 0.9326 37.2979 0.5947 0.2229 0.9657 6.1072
200 0.2062 0.0375 0.3049 13.1912 0.4542 0.1937 0.5522 3.6320
300 0.1588 0.0331 0.1804 16.9572 0.3985 0.1818 0.4248 4.1179
400 0.1257 0.0293 0.1116 15.8453 0.3646 0.1711 0.3340 3.9806
500 0.1055 0.0256 0.0979 11.6312 0.3248 0.1599 0.3129 3.4105

Table 6: Monte Carlo simulation study results for set
II parameters

(η, µ, a, b)=(0.6, 0.8, 1.6, 1.8)
AEs ABs

n η̂ µ̂ â b̂ η̂ µ̂ â b̂

100 0.7439 0.9728 1.7378 3.7846 0.1439 0.1728 0.1378 1.9846
200 0.6616 0.9150 1.5828 3.4882 0.0616 0.1150 -0.0172 1.6881
300 0.6245 0.8894 1.5460 3.4301 0.0245 0.0894 -0.0540 1.6301
400 0.6305 0.8544 1.5500 3.3321 0.0305 0.0544 -0.0500 1.5321
500 0.6486 0.8357 1.5689 3.2129 0.0486 0.0357 -0.0311 1.4129

MSEs RMSEs
n η̂ µ̂ â b̂ η̂ µ̂ â b̂

100 0.3750 0.4610 0.8031 80.4086 0.6124 0.6789 0.8962 8.9671
200 0.2361 0.3399 0.2404 32.2097 0.4859 0.5830 0.4903 5.6754
300 0.1663 0.3075 0.1665 27.1264 0.4078 0.5545 0.4081 5.2082
400 0.1481 0.2735 0.1178 18.0321 0.3849 0.5230 0.3432 4.2464
500 0.1451 0.2350 0.0974 17.9782 0.3809 0.4848 0.3121 4.2401

Concluding comments on the simulation results

(a) The values of parameter estimates converge gener-
ally towards the true values with increasing sample size.

(b) The AB, MSE, and RMSE of the parameters de-
crease generally as the sample size increases.

(b) It is observable that the method of parameter es-
timation using the maximum likelihood method works
well because each estimator performs fairly well and
produces low AB, MSE, and RMSE values.
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V. APPLICATION

This section of the paper examines the relevance and
adaptability of the Kw-GAPR distribution through an
examination of HIV/AIDS data. The data set is used
to examine the fits of the Kw-GAPR distribution and its
sub-models using the goodness-of-fit test and informa-
tion criterion approaches.

Data set: Wales HIV/AIDS annual death
cases data.

The data set consists of 30 HIV/AIDS annual death
cases in Wales ranging from 1990 to 2019, which are
shown in Table 7. The Wales HIV/AIDS annual death
cases data was obtained from https://ourworldindata.
org/hiv-aids.

Table 7: Wales HIV/AIDS annual death cases data.
18 22 22 28 32 32 25 18 12 12
12 13 14 15 14 15 16 16 15 16
16 14 14 14 12 15 14 13 12 12

A summary of the most important descriptive statistics
of Wales’s HIV/AIDS annual death cases data is shown
in Table 8. From Table 8, it is observed that the value
of the skewness is positive which implies that the data is
right-skewed, bimodal, and the value of the kurtosis is
greater than 3 which implies that the data is leptokurto-
sis (i.e. greater than the value of a normal distribution).

Table 8: Descriptive statistics for the Wales
HIV/AIDS data set.

Statistic min. max. mean median mode var. sd. skewness kurtosis

Value 12 32 16.8 15 12&14 32.46092 5.697449 1.598322 4.523297

From Fig. 5, it is observed that the data has two outliers
and the TTT-transform plot depicts that the data has a
monotonic increasing (or concave) hazard rate shape
defined by [22].

The estimates for the parameters together with their
standard errors in parentheses of the fitted models are
shown in Table 9. Going by the Standard error test
which states that a parameter is considered to be signif-
icant at 5% level of significance if the standard error is
less than half the parameter value, then conclusion can
be made that all the parameters of the fitted models are
significant at 5% significance level.
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Fig. 5: (a) Boxplot, (b) TTT-transform plot, and (c)
Histogram for the data set

Table 9: Summary of the estimates and SEs (in paren-
theses) for the HIV/AIDS data

Model â b̂ η̂ µ̂

Kw-GAPR 10.834(5.401) 0.263(0.089) 12.864(6.154) 0.020(0.005)
EGAPR 2.920(0.926) - 0.932(0.183) 0.006(0.001)
GAPR - - 1.552(0.594) 0.002(0.0003)
KR 1.588(0.322) 2.813(0.977) - 0.002(0.0002)
ER 0.007(0.001) - - 4.214(1.494)
R - - - 0.003(0.001)

From Tables 10 and 11, it is observed that the proposed
Kw-GAPR distribution has the smallest values of W ∗,
A∗, K − S, negative log-likelihood, and the informa-
tion criteria statistics compare to its sub-models. This
demonstrates that the Kw-GAPR distribution fits the
Wales’s HIV/AIDS annual death case data better than
its sub-models, though the sub-models also fit the data
with the exception of the exponentiated Rayleigh and
Rayleigh distribution, which their p− values < 0.05.

Table 10: Summary of goodness-of-fit results for the
HIV/AIDS data.
Model W ∗ A∗ K − S p− value
Kw-GAPR(proposed) 0.2931 1.6984 0.2564 0.3875
EGAPR 0.4119 2.3124 0.2559 0.2928
GAPR 0.4079 2.2920 0.3572 0.0712
KR 0.4574 2.5469 0.2890 0.3133
ER 0.3916 2.2077 0.2117 0.0238
R 0.4454 2.4855 0.3683 0.0006

Fig. 6 depicts a fitted density plot for the Kw-GAPR dis-
tribution and its sub-models using Wales HIV/AIDS an-
nual death cases data, and it is observed that the Kw-
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Table 11: The−log(`) and information criteria results
for the HIV/AIDS data
Model −log(`) AIC BIC CAIC HQIC

Kw-GAPR(proposed) 86.8904 181.7819 187.3867 183.3819 183.5749
EGAPR 90.7981 187.5963 191.7999 188.5194 188.9411
GAPR 98.6212 203.2423 206.1388 203.6868 204.1388
KR 93.6623 193.3247 197.5282 194.2477 194.6694
ER 94.2140 200.9598 203.7622 201.4043 201.8563
R 99.3020 198.6039 200.0051 198.7468 199.0522

GAPR distribution best mimics the data, hence exhibit-
ing a promising fit over its sub-models.

Histogram and fitted densities
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Fig. 6: The fitted densities for Wales HIV/AIDS an-
nual death cases data

Concluding comments on the data application

(a) For the Wales HIV/AIDS data set, one can draw
a conclusion that, when compared to other models (i.e.
sub-models), the Kw-GAPR provides the lowest values
for the information criteria, −log(`), K − S, the W ∗,
and A∗, as well as the highest p value.

(b) The best-fitting model for the Wales HIV/AIDS
data set, from Fig. 6 was Kw-GAPR distribution.

(c) The Rayleigh (R) and Exponentiated Rayleigh
(ER) distributions offer a poor fitting for the Wales
HIV/AIDS data set, as seen in Table 10.

(d) From the data application results, the Kw-GAPR
distribution provides the best fitting among its sub-
models, which indicates that the Kw-GAPR distribution
has a bigger advantage in fitting this type of data set.

VI. CONCLUSION

The Rayleigh distribution has widely been used as a
baseline distribution by mathematicians and statisti-
cians to modify or extend some families of distribu-
tions by making the family more flexible. In this pa-
per, a new four-parameterize distribution, namely the
Kumaraswamy-Gull Alpha Power Rayleigh distribution,
abbreviated as Kw-GAPR distribution has been pro-
posed. Some statistical properties of the proposed Kw-
GAPR distribution are investigated such as hazard rate
function, quantile function, moments, entropy, and order
statistic. The Kw-GAPR parameters’ maximum likeli-
hood estimators are determined, and a Monte Carlo sim-
ulation study was carried out. The Average Estimates,
the Average Biases, the Mean Square Errors, and the
Root Mean Square Errors were computed. From the re-
sults of the simulation study, the maximum likelihood
estimates converge generally to the true value of the
parameter as the sample size increases, and there is a
decrease (in general) in the Average Biases, the Mean
Square Errors, and the Root Mean Square Errors with
an increase in the sample size. Finally, the Kw-GAPR
distribution was applied to HIV/AIDS data set, and the
results demonstrate that, when compared Kw-GAPR to
its sub-models, the Kw-GAPR distribution provides the
greatest fit for the data set.
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