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Abstract—The sheer increase in volume of RDF data demands efficient solutions for the triple indexing problem, that is 

to devise a compressed data structure to compactly represent RDF triples by guaranteeing, at the same time, fast 

pattern matching operations. This problem lies at the heart of delivering good practical performance for the resolution 

of complex SPARQL queries on large RDF datasets. In this work, we propose a trie-based index layout to solve the 

problem and introduce two novel techniques to reduce its space of representation for improved effectiveness.  

Introduction: 

  Resource Description Framework (RDF1) is a W3C 
standard offering a general graph-based model for de- 

 
 

 
 
 
access and query RDF graph-structured data efficiently. In 
this direction we can identify four relevant research topics. 

scribing information as a set of (subject, predicate, object) 
relations, known as triples. Representing data in RDF allows 
subject and object entities to be unambiguously identified 
and connected through directed and explainable relation- 
ships, thus favoring the integration and reuse of different 
information sources. Although RDF was initially conceived 
as a metadata model for the Semantic Web and the Linked 
Data [1], its generality and flexibility favoured its diffusion 
in other domains ranging from digital libraries to bioin- 
formatics and business intelligence. Moreover, the success 
of initiatives such as schema.org and opengraph2 made RDF 
the de-facto standard format for publishing semi-structured 
information in social networks and Web sites. In fact, 
major search engines like Google and Bing are providing 
increasingly-better support for RDF. 

Such wide popularity encouraged the development of 
several data management systems able to deal with large 
RDF datasets and the complexity of querying them via 
SPARQL3, a query language that understands the RDF 
model and allows to select and join graph-structured data 
based on both content and patterns. Not surprisingly, the 
increasing volume of RDF data available on-line and in 
various repositories pushed researchers to investigate spe- 
cific solutions enabling users and software agents to store, 

• Compressed string dictionaries. Each RDF statement has 
three components: a subject (S), an object (O), and a 
predicate (P, also called a property) that denotes a 
relationship. Each one of these components is a URI 
string (or even a literal in the case of an object). Since 
URI strings can be very long and the same URI 
generally appears in many RDF statements, the 
components of triples are commonly mapped to integer 
IDs to save space, so that each triple in the dataset can 
be represented with three integers. 

• Triple indexing data structures. Indexes built over the 
set of triples should allow fast access to data for 
processing complex SPARQL queries involving large 
sequences of triple selection patterns over RDF graphs 
[2], [3]. 

• Query-planning algorithms. An effective query-planning al- 
gorithm has to find a suitable order to the set of atomic 
selection patterns that are needed to solve a SPARQL 
query, in order to speed up its execution and optimize 
expensive join operations [4], [5], [6]. 

• Inference. RDF triples are used to infer new 
relationships in order to improve the quality of the data and 
discover possible inconsistencies [7], [8]. 

In this work, we focus on the triple indexing problem that 
is to design a static index for the integer triples that attains 
to efficient resolution of all possible selection patterns 
using as little space as possible. This is crucial to guarantee 
practical SPARQL query evaluation. Therefore, we do not 
directly manage a string dictionary mapping URIs to 
integer IDs that, as discussed above, is a different 
problem. 

Moving from a critical analysis of the state-of-the-art, 
we note that existing solutions to the problem require 
too much space, because either: rely on materializing all pos- 
sible permutations of the S-P-O components [9], [5]; use 
expensive additional supporting structures [10], [5]; do not 
use sophisticated data compression techniques to effectively 
reduce the space for encoding triple identifiers [11], [6]. Fur- 
thermore, this additional space overhead does not always. 

pay off in terms of reduced query response time. The aim of 
this work is that of addressing these issues by proposing 
compressed indexes for RDF data that are both compact and 
fast. 

  contributions. In particular,   detailed contributions are as 
follows. 

1)  propose the use of a trie-based index layout delivering a 
considerably better efficiency for all triple selection patterns, 
thanks to the cache-friendly nature of its pattern matching 
algorithm. Specifically, the index materializes three different 
permutations of the triples in order to (symmetrically) 
support all triple selection patterns with one or two wildcard 
symbols. By leveraging on well- engineered compression 
techniques, we show that this design is already as compact as 
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the most space-efficient competitor in the literature and 2 
– 4     faster on average for all selection patterns. 

2) Starting from the aforementioned index layout, we de- 
vise two optimization aimed at reducing the redundancy 
of the representation. The first technique builds on the 
observation that the order of the triples given by a 
permutation can be actually exploited to compress an- 
other permutation, hence cross-compressing the index. The 
second technique shows that it is possible to eliminate a 
permutation without affecting (or even improving) triple 
retrieval efficiency. 

3) Extensive and thorough experiments aimed to   assess 
the space and time performance of our proposal versus 
state-of-the-art competitors are conducted on publicly 
available RDF datasets with a number of triples ranging 
from 88 millions up to 2 billions and show that our best 
space/time trade-off configuration substantially outper- 
forms existing solutions at the state-of-the-art, by taking 
30 – 60% less space and speeding up query execution by 
a factor of 2 – 81×. 

Source code. In the interest of reproducibility, our code is 
available at https://github.com/jermp/rdf indexes. 

THE  PERMUTED  TRIE  INDEX 

In this section we introduce our trie-based index that solves 
the triple indexing problem mentioned in Section 1: compress- 
ing a large set of integer triples by granting the efficient 
resolution of sequences of triple selection patterns. In par- 
ticular, in Section 3.1 we introduce the base indexing data 
structure and in Section 3.2 and 3.3 we discuss two variants 
aimed at reducing redundancies in the representation. 

In order to better support our design choices and ex- 
plain the intuition behind the described ideas, we show in 
the following the results of some motivating experiments 
conducted on the DBpedia dataset – “the nucleus for  a 
Web of Data” [23] – that is the English version of DBpedia 
(version 3.9) containing more than 351 millions of triples. 
(See also Table 3 at page 9). In Section 4 we will report on the 
comprehensive set of experiments conducted to assess the 
performance in space and time of our implementations ver- 
sus state-of-the-art competitors on publicly available RDF 
datasets of varying size and characteristics. 

 
 Data structure 

As a high-level overview, our index maintains three dif- 
ferent permutations of the triples, with each permutation 
sorted to allow efficient searches and effective compression. 
The permutations chosen are SPO, POS and OSP in order 
to (symmetrically) support all the six different triple selec- 
tion patterns with one or two wildcard symbols: SP? and 
S?? over SPO; ?PO and ?P? over POS; S?O and ??O 

over OSP. The two additional patterns with, respectively, 

 
Fig. 1. A trie data structure representing a set of triples. Shaded 

boxes indicate pointers whereas the others refer to the nodes of the 
trie. Nodes in the first level are implicit, thus are not part of the 
data structure but reported here in smaller font for better visualization. 
Similarly, the dashed arrows are just for representational purposes 
and point to the position written in the corresponding originating box. 
Lastly, we highlight in thick stroke the nodes and pointers that are 

accessed during the resolution of the pattern (1, 2, ?). 

 
 

all symbols specified or none, can be resolved over any 
permutation, e.g., over the canonical SPO in order to 
avoid permuting back each returned triple. 

Each permutation of the triples is represented as a 3- 
level trie data structure, with nodes at the same level 
con- catenated together to form an integer sequence. We 

keep track of where groups of siblings begin and end in 
the concatenated sequence of nodes by storing such 

pointers as absolute positions in the sequence of nodes. 
Therefore, the pointers are integer sequences as well. 

Moreover, since the triples are represented by the trie 
data structure in sorted order, the n node IDs in the first 

level of each trie are always complete sequences of integers 
ranging from 0 to n 1 
and, thus, can be omitted. We can model each trie data 

structure with an array levels[0, 1, 2] of three objects, each 
one having two integer sequences of nodes and pointers. An 
exception is represented by levels[0] for which, as discussed 

above, nodes are missing, and by levels[2] for which 
pointers are missing. Refer to Fig. 1 for a pictorial example 

in which the fol- lowing set of triples is indexed:    (0, 0, 
2), (0, 0, 3), (0, 1, 0), 

(1, 0, 4), (1, 2, 0), (1, 2, 1), (2, 0, 2), (2, 1, 0), (3, 2, 1), (3, 2, 2), 
(4, 2, 4) . 

The advantage of the introduced layout is two-fold. First, 
we can effectively compress the integer sequences that 
constitute the levels of the tries to achieve small storage 
requirements. Second, as exemplified above, the triple se- 
lection patterns are made cache-friendly and, hence, efficient 
by requiring to simply scan ranges of consecutive nodes 
in the trie levels. In what follows, we explore and quantify the 
impact of these two advantages. 

Before continuing, an important consideration is in or- 
der. The described data structure is static, i.e., it does not 
directly support dynamic updates. Note, however, that a 
simple amortized solution could solve this limitation. For 
example, we could maintain a “small” index holding the 
most recent updates. Whenever the small index 
reaches a predefined size, its content is merged with 
the one of the main, static, index. Queries also need to 
involve both indexes and their results have to be merged 
accordingly. 

Solving triple selection patterns. The pseudo code 

reported in Fig. 2 illustrates how triple patterns with one or 
two wildcard symbols are supported by our index. Given 
a 

 sequence S, function S.find(i, j, x) finds the ID x in the range 

S[i, j) and returns its absolute position in the sequence. If x 

is not found in the range, a default position, e.g., 1, is returned 
to signal the event and the number of matches will be 0. 
Function S.iterator at(i) instead instantiates an iterator 

starting at S[i]. We assume that invalid iterator is a function 
returning an iterator over an empty range (that is invalid). 
Furthermore, the select algorithm creates two iterators to 
scan ranges of the second and third levels of the trie, 

https://github.com/jermp/rdf_indexes
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respectively. These iterators are then used to define a final 
iterator that combines the iterating capabilities of both 
objects (line 20 of the pseudo code). 

For example, pattern matching (1, 2, ?) will return the 
two triples (1, 2, 0) and (1, 2, 1) because these are the ones 
sharing the first two specified components (1, 2). Fig. 1 high- 
lights the nodes and pointers accessed during the resolution 
of such pattern. In this case, we begin by fetching the pair 
of pointers (2, 4) = (levels[0].pointers[1], levels[0].pointers[2]) 
(lines 5 and 6). Next, we have to find the position of the 
ID 2 among the nodes in the second level. We do this 
with 3 = levels[1].nodes.find(2, 4, 2) (line   9).   Given that 
position, we fetch a new pair of pointers (4, 6) = 
(levels[1].pointers[3], levels[1].pointers[4]) (lines 16 and 17). Fi- 
nally, we know that all completions of the prefix (1, 2) are 
given by the node IDs found in the range levels[2].nodes[4, 6), 
that are 0 and 1. These will be returned by the iterator object 
created in line 20 of the pseudo code. 

We now discuss the time complexity of a triple selection 
pattern. We use the following nomenclature: n indicates the 
total number of triples; matches indicates the number of 
matches for a given pattern; S , P and O indicate the 
number of distinct subjects, predicates and objects respec- 
tively. Given an integer sequence S, we assume that: (1) 
we can randomly access any position of  S  and  retrieve 
the integer at such position in O(1) time; (2) the com- 
plexity of instantiating an iterator over the range S[i, j) 
and returning every integer in such range is Θ(j   i + 1), 
that is linear in the size of the range. Therefore it follows 
that the S.find(i, j, x) operation can be implemented using 
binary  search  in  O(1 + log(j    i)) that  is  O(1 + log  S ) 
time for any x and interval. It is then straight forward to 
see that the pattern ??? is supported in Θ(n) time, that is 
Θ(1) per triple. The patterns with two wildcard symbols 
are supported in Θ(1 + matches) time. The patterns with 
one wildcard need one find operation to be resolved in the 
second level of the trie dedicated to their support. Therefore, 
SP? takes O(1 + log P + matches) time, S?O and ?PO 

take O(1 + log S + matches) and O(1 + log O + matches) 
time respectively. Finally, the pattern SPO needs two find 

operations, thus taking O(1 + log |P| + log |O|) time. 

Supporting range queries. Another relevant characteristic of 

the introduced layout is that it can support also range 
queries, i.e., queries filtering the set of triples to be returned 
by means of range constraints. For example, we could im- 
pose a limit on the objects of the pattern ?PO by requesting 
all subjects with a given property and having their objects o 
such that l < o < r, with l and r being two fixed values. 

In order to support such queries we can modify the 
default lexicographic assignment of URIs to IDs as follows. 
Strings still follows a lexicographic ID assignment, i.e., 

1   select(triple) 
2 i = triple.first 
3 if i > levels[0].pointers.size() : d out of bounds 

4 return invalid iterator() 

5 begin = levels[0].pointers[i] 

6 end = levels[0].pointers[i + 1] 
7 j = begin 

8 if triple.second != ? : d not a wildcard symbol 
9 j = levels[1].nodes.find(begin, end, triple.second) 

10 if j == 1 : d j is not found in [begin, end) 

11 return invalid iterator() 

12 second = iterator(levels[0].pointers.iterator at(i), 
 

levels[1].nodes.iterator at(j)) 
13 i = j 
14 if i > levels[1].pointers.size() : 

15 return invalid iterator() 

16 begin = levels[1].pointers[i] 

17 end = levels[1].pointers[i + 1] 
18 j = begin 
19 third = iterator(levels[1].pointers.iterator at(i), 

 

levels[2].nodes.iterator at(j)) 

20 return iterator(triple.first, second, third) 

 
Fig. 2. Function select solving triple selection patterns with one or two 
wildcard symbols. The input is a triple object, assumed to be formed 
by its first , second and third attributes. 

 
 

these are sorted lexicographically and consecutive IDs are 
assigned in such order. Numeric types, instead – the ones 
over which we could possibly express a range 
restriction 
– such as integers or real numbers, dates, and so on5, are 
sorted in increasing order and compressed in a distinct data 
structure, say R. This R data structure is just a sorted integer 
sequence that, as we are going to illustrate next, supports 
binary search directly over the compressed representation. 

Now, the range restriction l < ?value < r will be 
handled as follows. 

1) The lower and upper bounds, l and r, are searched in R to 
obtain their IDs, say idA and idr. In the case l (r) is not 
present in R, let idA (idr) be the ID of the closest value in R 
smaller than l (larger than r). 

2) All entities whose IDs are larger than idA and less than idr 
will bound to the variable ?value and returned using the 
algorithm described in Fig. 2. 

In conclusion, range queries need at most two additional 
searches into a separate data structure with respect to a 
select query. As we will see in Section 4, the space cost 
of R is small because its data is sorted and very compressible. 
However, we do not focus much on range queries in the 
rest of the paper, hence we assume a traditional 
lexicographic ID assignment in the following. 

Representation. A key characteristic of the trie data struc- 

ture is to conceptually replace runs of the same ID x 
in a sequence with the pair (x, pointer), where the pointer 
information indicates the run length and where the run is 
located in the sequence. This already produces significant 
space savings when triples share many repeated IDs, as it 
holds for large RDF datasets. Again, refer to Fig. 1 for a 
basic 

 



 

 
 

CONCLUSIONS 

In this work we have proposed compressed indexes 
for the storage and search of large RDF datasets, 
delivering a remarkably improved 
effectiveness/efficiency trade-off against existing 
solutions. for the storage and search of large RDF 
datasets, delivering a remarkably improved 
effectiveness/efficiency trade-off against existing 
solutions.  In particular, the extensive ex- perimentation 
provided has shown that our best trade-off 
configuration reduces storage requirements by 30 – 
60% 
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