

×

Efficient Approach for Storage and Search of Large

RDF Datasets Using Compressed Indexes

Pusala Rajeswari 1, P.T.Sirisha2

1 M.C.A Student, Department of Computer Applications, Sri Padmavathi college of Computer science and Technology

2 Assistant Professor, Department of Computer Applications, Sri Padmavathi college of Computer science and Technology

Abstract—The sheer increase in volume of RDF data demands efficient solutions for the triple indexing problem, that is

to devise a compressed data structure to compactly represent RDF triples by guaranteeing, at the same time, fast

pattern matching operations. This problem lies at the heart of delivering good practical performance for the resolution

of complex SPARQL queries on large RDF datasets. In this work, we propose a trie-based index layout to solve the

problem and introduce two novel techniques to reduce its space of representation for improved effectiveness.

Introduction:

 Resource Description Framework (RDF1) is a W3C
standard offering a general graph-based model for de-

access and query RDF graph-structured data efficiently. In
this direction we can identify four relevant research topics.

scribing information as a set of (subject, predicate, object)
relations, known as triples. Representing data in RDF allows
subject and object entities to be unambiguously identified
and connected through directed and explainable relation-
ships, thus favoring the integration and reuse of different
information sources. Although RDF was initially conceived
as a metadata model for the Semantic Web and the Linked
Data [1], its generality and flexibility favoured its diffusion
in other domains ranging from digital libraries to bioin-
formatics and business intelligence. Moreover, the success
of initiatives such as schema.org and opengraph2 made RDF
the de-facto standard format for publishing semi-structured
information in social networks and Web sites. In fact,
major search engines like Google and Bing are providing
increasingly-better support for RDF.

Such wide popularity encouraged the development of
several data management systems able to deal with large
RDF datasets and the complexity of querying them via
SPARQL3, a query language that understands the RDF
model and allows to select and join graph-structured data
based on both content and patterns. Not surprisingly, the
increasing volume of RDF data available on-line and in
various repositories pushed researchers to investigate spe-
cific solutions enabling users and software agents to store,

• Compressed string dictionaries. Each RDF statement has
three components: a subject (S), an object (O), and a
predicate (P, also called a property) that denotes a
relationship. Each one of these components is a URI
string (or even a literal in the case of an object). Since
URI strings can be very long and the same URI
generally appears in many RDF statements, the
components of triples are commonly mapped to integer
IDs to save space, so that each triple in the dataset can
be represented with three integers.

• Triple indexing data structures. Indexes built over the
set of triples should allow fast access to data for
processing complex SPARQL queries involving large
sequences of triple selection patterns over RDF graphs
[2], [3].

• Query-planning algorithms. An effective query-planning al-
gorithm has to find a suitable order to the set of atomic
selection patterns that are needed to solve a SPARQL
query, in order to speed up its execution and optimize
expensive join operations [4], [5], [6].

• Inference. RDF triples are used to infer new
relationships in order to improve the quality of the data and
discover possible inconsistencies [7], [8].

In this work, we focus on the triple indexing problem that
is to design a static index for the integer triples that attains
to efficient resolution of all possible selection patterns
using as little space as possible. This is crucial to guarantee
practical SPARQL query evaluation. Therefore, we do not
directly manage a string dictionary mapping URIs to
integer IDs that, as discussed above, is a different
problem.

Moving from a critical analysis of the state-of-the-art,
we note that existing solutions to the problem require
too much space, because either: rely on materializing all pos-
sible permutations of the S-P-O components [9], [5]; use
expensive additional supporting structures [10], [5]; do not
use sophisticated data compression techniques to effectively
reduce the space for encoding triple identifiers [11], [6]. Fur-
thermore, this additional space overhead does not always.

pay off in terms of reduced query response time. The aim of
this work is that of addressing these issues by proposing
compressed indexes for RDF data that are both compact and
fast.

 contributions. In particular, detailed contributions are as
follows.

1) propose the use of a trie-based index layout delivering a
considerably better efficiency for all triple selection patterns,
thanks to the cache-friendly nature of its pattern matching
algorithm. Specifically, the index materializes three different
permutations of the triples in order to (symmetrically)
support all triple selection patterns with one or two wildcard
symbols. By leveraging on well- engineered compression
techniques, we show that this design is already as compact as

−

{

}

−

the most space-efficient competitor in the literature and 2
– 4 faster on average for all selection patterns.

2) Starting from the aforementioned index layout, we de-
vise two optimization aimed at reducing the redundancy
of the representation. The first technique builds on the
observation that the order of the triples given by a
permutation can be actually exploited to compress an-
other permutation, hence cross-compressing the index. The
second technique shows that it is possible to eliminate a
permutation without affecting (or even improving) triple
retrieval efficiency.

3) Extensive and thorough experiments aimed to assess
the space and time performance of our proposal versus
state-of-the-art competitors are conducted on publicly
available RDF datasets with a number of triples ranging
from 88 millions up to 2 billions and show that our best
space/time trade-off configuration substantially outper-
forms existing solutions at the state-of-the-art, by taking
30 – 60% less space and speeding up query execution by
a factor of 2 – 81×.

Source code. In the interest of reproducibility, our code is
available at https://github.com/jermp/rdf indexes.

THE PERMUTED TRIE INDEX

In this section we introduce our trie-based index that solves
the triple indexing problem mentioned in Section 1: compress-
ing a large set of integer triples by granting the efficient
resolution of sequences of triple selection patterns. In par-
ticular, in Section 3.1 we introduce the base indexing data
structure and in Section 3.2 and 3.3 we discuss two variants
aimed at reducing redundancies in the representation.

In order to better support our design choices and ex-
plain the intuition behind the described ideas, we show in
the following the results of some motivating experiments
conducted on the DBpedia dataset – “the nucleus for a
Web of Data” [23] – that is the English version of DBpedia
(version 3.9) containing more than 351 millions of triples.
(See also Table 3 at page 9). In Section 4 we will report on the
comprehensive set of experiments conducted to assess the
performance in space and time of our implementations ver-
sus state-of-the-art competitors on publicly available RDF
datasets of varying size and characteristics.

 Data structure

As a high-level overview, our index maintains three dif-
ferent permutations of the triples, with each permutation
sorted to allow efficient searches and effective compression.
The permutations chosen are SPO, POS and OSP in order
to (symmetrically) support all the six different triple selec-
tion patterns with one or two wildcard symbols: SP? and
S?? over SPO; ?PO and ?P? over POS; S?O and ??O

over OSP. The two additional patterns with, respectively,

Fig. 1. A trie data structure representing a set of triples. Shaded

boxes indicate pointers whereas the others refer to the nodes of the
trie. Nodes in the first level are implicit, thus are not part of the
data structure but reported here in smaller font for better visualization.
Similarly, the dashed arrows are just for representational purposes
and point to the position written in the corresponding originating box.
Lastly, we highlight in thick stroke the nodes and pointers that are

accessed during the resolution of the pattern (1, 2, ?).

all symbols specified or none, can be resolved over any
permutation, e.g., over the canonical SPO in order to
avoid permuting back each returned triple.

Each permutation of the triples is represented as a 3-
level trie data structure, with nodes at the same level
con- catenated together to form an integer sequence. We

keep track of where groups of siblings begin and end in
the concatenated sequence of nodes by storing such

pointers as absolute positions in the sequence of nodes.
Therefore, the pointers are integer sequences as well.

Moreover, since the triples are represented by the trie
data structure in sorted order, the n node IDs in the first

level of each trie are always complete sequences of integers
ranging from 0 to n 1
and, thus, can be omitted. We can model each trie data

structure with an array levels[0, 1, 2] of three objects, each
one having two integer sequences of nodes and pointers. An
exception is represented by levels[0] for which, as discussed

above, nodes are missing, and by levels[2] for which
pointers are missing. Refer to Fig. 1 for a pictorial example

in which the fol- lowing set of triples is indexed: (0, 0,
2), (0, 0, 3), (0, 1, 0),

(1, 0, 4), (1, 2, 0), (1, 2, 1), (2, 0, 2), (2, 1, 0), (3, 2, 1), (3, 2, 2),
(4, 2, 4) .

The advantage of the introduced layout is two-fold. First,
we can effectively compress the integer sequences that
constitute the levels of the tries to achieve small storage
requirements. Second, as exemplified above, the triple se-
lection patterns are made cache-friendly and, hence, efficient
by requiring to simply scan ranges of consecutive nodes
in the trie levels. In what follows, we explore and quantify the
impact of these two advantages.

Before continuing, an important consideration is in or-
der. The described data structure is static, i.e., it does not
directly support dynamic updates. Note, however, that a
simple amortized solution could solve this limitation. For
example, we could maintain a “small” index holding the
most recent updates. Whenever the small index
reaches a predefined size, its content is merged with
the one of the main, static, index. Queries also need to
involve both indexes and their results have to be merged
accordingly.

Solving triple selection patterns. The pseudo code

reported in Fig. 2 illustrates how triple patterns with one or
two wildcard symbols are supported by our index. Given
a

 sequence S, function S.find(i, j, x) finds the ID x in the range

S[i, j) and returns its absolute position in the sequence. If x

is not found in the range, a default position, e.g., 1, is returned
to signal the event and the number of matches will be 0.
Function S.iterator at(i) instead instantiates an iterator

starting at S[i]. We assume that invalid iterator is a function
returning an iterator over an empty range (that is invalid).
Furthermore, the select algorithm creates two iterators to
scan ranges of the second and third levels of the trie,

https://github.com/jermp/rdf_indexes

| | | | | |

−

−

— | |

| | | |
| |

respectively. These iterators are then used to define a final
iterator that combines the iterating capabilities of both
objects (line 20 of the pseudo code).

For example, pattern matching (1, 2, ?) will return the
two triples (1, 2, 0) and (1, 2, 1) because these are the ones
sharing the first two specified components (1, 2). Fig. 1 high-
lights the nodes and pointers accessed during the resolution
of such pattern. In this case, we begin by fetching the pair
of pointers (2, 4) = (levels[0].pointers[1], levels[0].pointers[2])
(lines 5 and 6). Next, we have to find the position of the
ID 2 among the nodes in the second level. We do this
with 3 = levels[1].nodes.find(2, 4, 2) (line 9). Given that
position, we fetch a new pair of pointers (4, 6) =
(levels[1].pointers[3], levels[1].pointers[4]) (lines 16 and 17). Fi-
nally, we know that all completions of the prefix (1, 2) are
given by the node IDs found in the range levels[2].nodes[4, 6),
that are 0 and 1. These will be returned by the iterator object
created in line 20 of the pseudo code.

We now discuss the time complexity of a triple selection
pattern. We use the following nomenclature: n indicates the
total number of triples; matches indicates the number of
matches for a given pattern; S , P and O indicate the
number of distinct subjects, predicates and objects respec-
tively. Given an integer sequence S, we assume that: (1)
we can randomly access any position of S and retrieve
the integer at such position in O(1) time; (2) the com-
plexity of instantiating an iterator over the range S[i, j)
and returning every integer in such range is Θ(j i + 1),
that is linear in the size of the range. Therefore it follows
that the S.find(i, j, x) operation can be implemented using
binary search in O(1 + log(j i)) that is O(1 + log S)
time for any x and interval. It is then straight forward to
see that the pattern ??? is supported in Θ(n) time, that is
Θ(1) per triple. The patterns with two wildcard symbols
are supported in Θ(1 + matches) time. The patterns with
one wildcard need one find operation to be resolved in the
second level of the trie dedicated to their support. Therefore,
SP? takes O(1 + log P + matches) time, S?O and ?PO

take O(1 + log S + matches) and O(1 + log O + matches)
time respectively. Finally, the pattern SPO needs two find

operations, thus taking O(1 + log |P| + log |O|) time.

Supporting range queries. Another relevant characteristic of

the introduced layout is that it can support also range
queries, i.e., queries filtering the set of triples to be returned
by means of range constraints. For example, we could im-
pose a limit on the objects of the pattern ?PO by requesting
all subjects with a given property and having their objects o
such that l < o < r, with l and r being two fixed values.

In order to support such queries we can modify the
default lexicographic assignment of URIs to IDs as follows.
Strings still follows a lexicographic ID assignment, i.e.,

1 select(triple)
2 i = triple.first
3 if i > levels[0].pointers.size() : d out of bounds

4 return invalid iterator()

5 begin = levels[0].pointers[i]

6 end = levels[0].pointers[i + 1]
7 j = begin

8 if triple.second != ? : d not a wildcard symbol
9 j = levels[1].nodes.find(begin, end, triple.second)

10 if j == 1 : d j is not found in [begin, end)

11 return invalid iterator()

12 second = iterator(levels[0].pointers.iterator at(i),

levels[1].nodes.iterator at(j))
13 i = j
14 if i > levels[1].pointers.size() :

15 return invalid iterator()

16 begin = levels[1].pointers[i]

17 end = levels[1].pointers[i + 1]
18 j = begin
19 third = iterator(levels[1].pointers.iterator at(i),

levels[2].nodes.iterator at(j))

20 return iterator(triple.first, second, third)

Fig. 2. Function select solving triple selection patterns with one or two
wildcard symbols. The input is a triple object, assumed to be formed
by its first , second and third attributes.

these are sorted lexicographically and consecutive IDs are
assigned in such order. Numeric types, instead – the ones
over which we could possibly express a range
restriction
– such as integers or real numbers, dates, and so on5, are
sorted in increasing order and compressed in a distinct data
structure, say R. This R data structure is just a sorted integer
sequence that, as we are going to illustrate next, supports
binary search directly over the compressed representation.

Now, the range restriction l < ?value < r will be
handled as follows.

1) The lower and upper bounds, l and r, are searched in R to
obtain their IDs, say idA and idr. In the case l (r) is not
present in R, let idA (idr) be the ID of the closest value in R
smaller than l (larger than r).

2) All entities whose IDs are larger than idA and less than idr
will bound to the variable ?value and returned using the
algorithm described in Fig. 2.

In conclusion, range queries need at most two additional
searches into a separate data structure with respect to a
select query. As we will see in Section 4, the space cost
of R is small because its data is sorted and very compressible.
However, we do not focus much on range queries in the
rest of the paper, hence we assume a traditional
lexicographic ID assignment in the following.

Representation. A key characteristic of the trie data struc-

ture is to conceptually replace runs of the same ID x
in a sequence with the pair (x, pointer), where the pointer
information indicates the run length and where the run is
located in the sequence. This already produces significant
space savings when triples share many repeated IDs, as it
holds for large RDF datasets. Again, refer to Fig. 1 for a
basic

CONCLUSIONS

In this work we have proposed compressed indexes
for the storage and search of large RDF datasets,
delivering a remarkably improved
effectiveness/efficiency trade-off against existing
solutions. for the storage and search of large RDF
datasets, delivering a remarkably improved
effectiveness/efficiency trade-off against existing
solutions. In particular, the extensive ex- perimentation
provided has shown that our best trade-off
configuration reduces storage requirements by 30 –
60%

REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,”
Scientific American, vol. 284, no. 5, pp. 34–43, 2001.

[2] M. Wylot, M. Hauswirth, P. Cudré-Mauroux, and S. Sakr, “Rdf
data storage and query processing schemes: A survey,” ACM
Computing Surveys (CSUR), vol. 51, no. 4, p. 84, 2018.

[3] M. T. Ö zsu, “A survey of rdf data management systems,” Front.
Comput. Sci., vol. 10, no. 3, pp. 418–432, Jun. 2016.

[4] T. Neumann and G. Weikum, “The rdf-3x engine for scalable man-
agement of rdf data,” The VLDB JournalThe International Journal on
Very Large Data Bases, vol. 19, no. 1, pp. 91–113, 2010.

[5] ——, “x-rdf-3x: fast querying, high update rates, and consistency
for rdf databases,” Proceedings of the VLDB Endowment, vol. 3, no. 1-
2, pp. 256–263, 2010.

[6] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu, “Triplebit: a
fast and compact system for large scale rdf data,” Proceedings of the
VLDB Endowment, vol. 6, no. 7, pp. 517–528, 2013.

[7] H. Paulheim and C. Bizer, “Type inference on noisy rdf data,” in
International semantic web conference. Springer, 2013, pp. 510–525.

[8] J. Subercaze, C. Gravier, J. Chevalier, and F. Laforest, “Inferray:
fast in-memory rdf inference,” Proceedings of the VLDB Endowment,
vol. 9, no. 6, pp. 468–479, 2016.

[9] C. Weiss, P. Karras, and A. Bernstein, “Hexastore: sextuple index-
ing for semantic web data management,” Proceedings of the VLDB
Endowment, vol. 1, no. 1, pp. 1008–1019, 2008.

[10] M. A. Martı́nez-Prieto, M. A. Gallego, and J. D. Fernández, “Ex-
change and consumption of huge rdf data,” in Extended Semantic
Web Conference. Springer, 2012, pp. 437–452.

[11] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler, “Matrix bit
loaded: a scalable lightweight join query processor for rdf data,”
in Proceedings of the 19th international conference on World wide web .
ACM, 2010, pp. 41–50.

[12] D. J. Abadi, A. Marcus, S. Madden, and K. Hollenbach, “Sw-store:
a vertically partitioned DBMS for semantic web data manage-
ment,” VLDB J., vol. 18, no. 2, pp. 385–406, 2009.

[13] S. Sankar, M. Singh, A. Sayed, and J. A. Bani-Younis, “An efficient
and scalable rdf indexing strategy based on b-hashed-bitmap al-
gorithm using cuda,” International Journal of Computer Applications,
vol. 104, no. 7, 2014.

[14] N. R. Brisaboa, S. Ladra, and G. Navarro, “k2-trees for compact
web graph representation,” in International Symposium on String
Processing and Information Retrieval. Springer, 2009, pp. 18–30.

[15] K. Sadakane, “New text indexing functionalities of the compressed
suffix arrays,” Journal of Algorithms, vol. 48, no. 2, pp. 294–313,
2003.

[16] S. Á lvarez-Garcı́a, N. Brisaboa, J. D. Fernández, M. A. Martı́nez-
Prieto, and G. Navarro, “Compressed vertical partitioning for effi-
cient rdf management,” Knowledge and Information Systems, vol. 44,
no. 2, pp. 439–474, 2015.

[17] N. R. Brisaboa, A. Cerdeira-Pena, A. Farina, and G. Navarro, “A
compact rdf store using suffix arrays,” in International Symposium
on String Processing and Information Retrieval. Springer, 2015, pp.

	Data structure

